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Abstract

Softmax is the de facto standard for normaliz-001
ing logits in modern neural networks for lan-002
guage processing. However, by producing a003
dense probability distribution each token in the004
vocabulary has a nonzero chance of being se-005
lected at each generation step, leading to a vari-006
ety of reported problems in text generation. α-007
entmax of Peters et al. (2019) solves this prob-008
lem, but is unfortunately slower than softmax.009

In this paper, we propose an alternative to α-010
entmax, which keeps its virtuous characteris-011
tics, but is as fast as optimized softmax and012
achieves on par or better performance in ma-013
chine translation task.014

1 Introduction015

Sparseness of vector representations is a desirable016

trait in neural network models for natural language017

processing (NLP): words (subwords) are discrete018

objects by their nature, and, accordingly, are en-019

coded by one-hot embeddings at the input and out-020

put of neural networks. However, to predict a cate-021

gorical response in neural models, softmax is most022

often used, which produces a dense probability023

distribution, i.e. every category (word/subword)024

receives a non-zero probability.025

Recent studies suggest that it is this output den-026

sity that poses problems when the trained NLP027

model is used for inference. For example, in the028

case of text generation, unconstrained sampling029

from a trained language model results in poor qual-030

ity of the resulting text (Holtzman et al., 2020). In031

neural machine translation (NMT), exact decoding032

from a trained model often results in empty text033

(Stahlberg and Byrne, 2019).1 To get around these034

problems, constrained decoding techniques have035

been proposed, most of which artificially impose036

sparsity on softmax prediction. For example, Fan037

1The authors called this phenomenon the cat got your
tongue problem.

et al. (2018) propose to sample from the top-k prob- 038

able words, and Holtzman et al. (2020) propose to 039

sample from the most probable words, which com- 040

prise the cumulative probability p. While these 041

methods are effective, they are ad-hoc solutions 042

that lead to a mismatch between how the model is 043

trained and how it is used at inference. 044

In this regard, the works on sparse alternatives to 045

softmax stand apart since they allow us to make in- 046

ference from the model in the same way than it was 047

trained. Some of the most successful and elegant 048

solutions are sparsemax (Martins and Astudillo, 049

2016) and its generalization α-entmax (Peters et al., 050

2019). When coupled with suitable losses, these 051

transformations are not inferior to softmax, and 052

sometimes even surpass it as measured with fi- 053

nal performance metrics on a number of tasks. A 054

problem with these transformations however is that 055

they are significantly slower than softmax when the 056

number of categories (vocabulary size) is tens of 057

thousands, as in the case of text generation. This is 058

because α-entmax transformation—in its original 059

formulation—requires sorting over the logits.2 060

In this work, we ask the question: is it possible 061

to obtain a sparse output like that of α-entmax, but 062

without its degradation in computational speed? 063

Our answer is affirmative—we propose a sparse 064

output transformation that 065

• is on par or superior to softmax and α-entmax 066

in the NMT tasks, 067

• works as fast as softmax during training and 068

at inference, 069

• gives the same training dynamics as α-entmax 070

(in training steps). 071

The most surprising thing is that such a transforma- 072

tion is simply a shifted ReLU raised to power 1
α−1 , 073

which we call α-ReLU. 074

2We also compare against an approximate version which
only performs sorting on the highest values of the logits.
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The rest of the paper is organised as follows. In075

Sect. 2 we motivate the choice of α-ReLU as the076

output transformation, and also select an appro-077

priate loss function. In Sect. 3 we experimentally078

confirm our claims about performance and output079

speed of α-ReLU in the NMT task. Sect. 4 is de-080

voted to a comparative analysis of α-ReLU and081

α-entmax in terms of sparsity, ability to solve the082

empty translation problem, and training dynamics.083

2 α-ReLU at Output084

Our departure point is the α-entmax transformation085

of Peters et al. (2019) which can be defined for086

z ∈ Rd as087

α-entmaxi(z) = [(α− 1)zi − τ(z)]
1

α−1
+ ,088

where [x]+ := max{x, 0}, and τ : Rd → R is089

the (unique) function that satisfies
∑

j [(α−1)zj−090

τ(z)]
1

α−1
+ = 1 for any z. It is this threshold τ that091

makes the computation of α-entmax slow, because092

one needs to sort the components of z to find τ093

(Peters et al., 2019, Alg. 2).094

As we can see, the threshold τ is only needed to095

ensure that α-entmax(z) is a probability distribu-096

tion. We loosen this constraint, and only require097

non-negative weights, which is sufficient for most098

uses. Consider then a transformation099

α-ReLUi(z) := [(α− 1)zi − τ ]
1

α−1
+ , (1)100

where τ is a constant that does not depend on z. In101

order to force α-ReLU(z)—applied to the logits102

z—to converge to the one-hot vector ey of the gold103

label y we need to adjust the corresponding loss.104

This can easily be done by feeding the logits z105

and the output α-ReLU(z) into the following loss,106

which we call α-ReLU loss.107
108

`(z, y) = (α-ReLU(z)− ey)
>
(
z− τ

α−11
)

109

+ Hα[α-ReLU(z)], (2)110

where Hα[p] := 1
α(α−1)

(
1−

∑
j p

α
j

)
, α 6= 1, is111

the Tsallis α-entropy (Tsallis, 1988). The ratio-112

nale for coupling α-ReLU with the loss (2) is the113

following114

Lemma 1. For any τ ∈ R, the gradient of the
α-ReLU loss (2) is given by

∇z`(z, y) = α-ReLU(z)− ey.

Proof. The proof is in Appendix B.1. 115

By Lemma 1, gradient-based minimization of ` 116

indeed forces α-ReLU(z) → ey. Notice that this 117

is similar to what happens when the softmax nor- 118

malization is coupled with the cross-entropy loss 119

or when α-entmax is coupled with the entmax loss. 120

In both cases differentiating the loss with respect to 121

logits gives p−ey, where p is either softmax(z) or 122

α-entmax(z) (Martins and Astudillo, 2016; Peters 123

et al., 2019). 124

Remark. Recall that α-entmax is a generaliza- 125

tion of sparsemax. For example, 2-entmax is es- 126

sentially sparsemax, and for α ∈ (1, 2) we get 127

a smoothed version of sparsemax. Similarly, α- 128

ReLU is a kind of generalization of ReLU. So, the 129

standard ReLU is 2-ReLU (with τ = 0), and for 130

α ∈ (1, 2) we get a smoothed ReLU (see Fig. 1).

Figure 1: The graph of α-ReLU(x) for several α ∈
(1, 2], with τ = 0. 2-ReLU is a standard ReLU(x) :=
[x]+.

131

3 Experiments 132

In theory, nothing prevents α-ReLU from learning 133

what α-entmax is learning. However, in practice 134

we can have a different picture, because training 135

is conditioned by many factors—the size of the 136

dataset, the architecture of the neural network, the 137

optimization algorithm, etc. In this section, we 138

compare α-ReLU empirically with α-entmax (as 139

well as with sparsemax and softmax), assuming 140

all other factors are fixed. The goal of these ex- 141

periments is to evaluate the consequences of using 142

α-ReLU as drop-in replacement for α-entmax. 143

We test α-ReLU at output in a neural machine 144

translation task (Sutskever et al., 2014), which is 145

essentially a conditional text generation task. Com- 146

pared to open-ended text generation, there is a 147
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Output Transform Loss IWSLT De→En WMT En→De WMT En→Ru

softmax cross-entropy 35.3 28.7 22.4
sparsemax sparsemax loss 35.5 26.6 19.6
1.5-entmax 1.5-entmax loss 36.6 28.6 23.9
1.5-ReLU 1.5-ReLU loss 37.3 28.6 24.6

# Trainable parameters 47M 75M 75M

Table 1: NMT results: comparison of softmax, sparsemax, 1.5-Entmax and the proposed 1.5-ReLU as the output
transformations in the Transformer NMT model. Reported is detokenized test BLEU.

clearer metric of the quality of the generated text—148

the BLEU score (Papineni et al., 2002). As in149

open-ended text generation, at each prediction step,150

the NMT system needs to make a choice from all151

words (subwords) of the vocabulary, the size of152

which can reach several tens of thousands. There-153

fore, the sparsity of the output distribution becomes154

critical in such setups, since it can explicitly pre-155

vent the occurrence of most of the words that are156

inappropriate in the context.157

3.1 Setup158

Data. We conduct experiments on three datasets159

of varied sizes:160

• IWSLT’14 De→En (Cettolo et al.), 172K161

training examples,162

• WMT’14 En→De (Bojar et al., 2014), 4.5M163

training examples,164

• WMT’13 En→Ru (Bojar et al., 2013), 1.3M165

tranining examples.3166

We preprocess all datasets using the byte pair en-167

coding algorithm (Sennrich et al., 2016) with 10K168

merge operations on IWSLT, 40K merge opera-169

tions on WMT En→De, and 60K merge operations170

on WMT En→Ru. We report detokenized case-171

sensitive BLEU with SacreBLEU (Post, 2018).4172

Hyperparameters α and τ . In all experiments173

we set α = 1.5, because this value was recom-174

mended by Peters et al. (2019); Peters and Martins175

(2021) as the middle ground between α = 1 (soft-176

max) and α = 2 (sparsmax).177

The value for τ is chosen as follows: we run the178

first batch through a non-trained neural network,179

which has 1.5-entmax at the output, in the forward180

3We did not use the Yandex 1M Parallel Corpus because
of its license restrictions.

4BLEU+case.mixed+lang.en-
de+numrefs.1+smooth.exp+tok.13a+version.1.5.1

direction and determine the average τ value across 181

the batch. This value is then used to train the 1.5- 182

ReLU network. Our preliminary experiments have 183

shown that 1.5-ReLU convergence is sensitive to 184

the τ value, and that having output close to the 185

probability distribution early in the learning phase 186

works well with the rest of hyperparameters which 187

are set to their default values. 188

Training. We trained the Transformer Base 189

(Vaswani et al., 2017) using the OpenNMT-py 2.0 190

toolkit (Klein et al., 2017). Optimization details 191

are in Appendix A. 192

3.2 Results 193

The results are given in Table 1. Reported are 194

test BLEU scores for best checkpoints which are 195

selected based on validation BLEU. We observe 196

that the 1.5-ReLU performs on par with 1.5-entmax 197

or better, while sparsemax is inferior to all others. 198

Training Time. Fig. 2&3 show the training dy- 199

namics in training steps and in wall time on 200

WMT’14 En→De. Despite the closeness of perfor- 201

mance in intermediate steps and at the end of train- 202

ing, we see that on the larger datasets 1.5-entmax 203

is slower in wall time than softmax and 1.5-ReLU. 204

To speed up the learning process, Peters et al. 205

(2019) recommended limiting the number of sorted 206

logits in the α-entmax to the k largest logits. We 207

tried this on the WMT’14 En→De dataset using 208

k = 100, which is the default value in the author’s 209

implementation of α-entmax.5 The resulting train- 210

ing dynamics in absolute time is shown as a dashed 211

curve in Fig. 3 (middle). As we can see, partial 212

sorting indeed speeds up the learning process, and 213

at the same time does not harm the quality of the 214

translation. But in the end, learning is still slower 215

than in the case of 1.5-ReLU. Of course, one can 216

try to select such k that the speed of calculating 217

5https://github.com/deep-spin/entmax
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the 1.5-entmax will be as close as possible to the218

speed of 1.5-ReLU without losing quality, but this219

requires additional efforts on the part of the user,220

and this must be done for each case separately.221

In this regard, 1.5-ReLU does not require addi-222

tional fine-tuning, converges as fast as softmax in223

absolute time and performs on par or better. Thus224

1.5-ReLU combines all three desired properties:225

computation speed, task performance, and sparsity226

of output.227

Inference Time. We measured inference time of228

translating the WMT En→Ru test data with the229

different strategies and with different beam sizes.230

The results—normalized by the smallest value—231

are shown in Fig. 4. As can be seen the relative232

difference seems independent of the beam size:233

softmax is almost twice faster than 1.5-entmax234

(with full sorting over the logits). Even though235

the softmax version is optimized through the soft-236

max CUDA kernel, it performs equivalent to the237

1.5-ReLU model in terms of computation speed.238

4 Analysis239

4.1 Empty Translations240

We remind the reader that the cat got your tongue241

problem (Stahlberg and Byrne, 2019) is one of the242

main motivations for using sparse transformations243

when generating text. As Peters and Martins (2021)244

have shown, 1.5-entmax successfully tackles this245

problem by significantly lowering the proportion of246

cases where an empty string is more likely than the247

beam search hypothesis. For 1.5-ReLU, we also248

calculated this proportion, and compared it with the249

proportions for softmax and sparsemax (Table 2).250

As we see, 1.5-ReLU also successfully tackles the251

cat got your tongue problem.252

Output IWSLT WMT WMT
Transform De→En En→De En→Ru

softmax 7.5% 29.8% 31.7%
sparsemax 0% 0.03% 0%
1.5-entmax 0% 0.2% 0%
1.5-ReLU 0% 0.3% 0.1%

Table 2: Percentage of development set examples
for which the model assigns higher probability to the
empty string than to the beam-decoded hypothesis.

4.2 Sparsity 253

To compare the sparsity of 1.5-ReLU and 1.5- 254

entmax we depict in Fig. 5 the distributions of the 255

number of zero components after applying these 256

transformations (recall that for softmax all compo- 257

nents are always nonzero). Since we constructed 258

the α-ReLU in such way that it mimics the α- 259

entmax (at least in the early stages of training), we 260

expected that these two transformations would have 261

similar properties, including sparsity. However, 262

this is not the case: as we can see, the 1.5-ReLU 263

is significantly less sparse than the 1.5-entmax. It 264

is noteworthy that lower sparsity in this case cor- 265

relates with a better performance in the translation 266

task (see Table 1). 267

4.3 Impact of τ 268

The selection of τ was described in Section 3.1. 269

However, the question arises: does the described 270

approach lead to the choice of the optimal τ? To 271

find out, we trained the α-ReLU models for τ ∈ 272

{0, 0.1, 0.2, ..., 0.9, 1, 2, 5, 10} on the IWSLT data. 273

Note that all of these τ ’s have led to almost the 274

same result at the end of the training (as predicted 275

by Lemma 1). In Fig. 6, we present the dynamics of 276

early training only for τ ∈ {0, 0.1, 0.2, 0.3, 5, 10}, 277

since the curves for τ ∈ {0.4, ..., 0.9, 1, 2} practi- 278

cally coincided with the optimal curve correspond- 279

ing to τ = 0.3. Note that our τ selection method 280

gave a value of 0.33, thus we have no evidence 281

against the adequacy of our method. 282

4.4 Estimation of τ without data 283

On closer inspection, we noticed that the pre- 284

entmax logits in the untrained Transformer model 285

are distributed according to the normal law, regard- 286

less of what data is supplied to the input, Shapiro- 287

Wilk test, p-value > 0.15. This allows us, using 288

asymptotic theory, to estimate τ as 289

τ̂ =

√
dmodel

2(dmodel + dvocab)
· Φ−1(1− p∗), (3) 290

where dmodel is the size of hidden representations, 291

dvocab is the vocabulary size for a target language, 292

Φ−1(·) is the probit function and p∗ is the solution 293

of a non-linear equation that involves functions 294

related to the standard normal distribution (see Ap- 295

pendix B.2 for details). Table 3 compares the τ̃ 296

calculated by running data through an untrained 297

model with the estimate τ̂ obtained from (3). As 298

we can see, τ̂ practically coincides with τ̃ with an 299
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Figure 2: Training dynamics in training steps.

Figure 3: Training dynamics in absolute time. 1.5-entmax (k=100) is a variant of 1.5-entmax in which sorting is
performed only for the largest k = 100 logits.

Figure 4: Normalized inference for WMT En→Ru
with different beam sizes.

IWSLT’14 WMT’14 WMT’13
De→En En→De En→Ru

dmodel 512 512 512
dvocab 10,000 40,000 60,000
p∗ .0184 .0171 .0169

τ̃ .33 .17 .14
τ̂ .33 .17 .14

Table 3: Estimating threshold of 1.5-entmax: τ̃ is a
value obtained by running a data through an untrained
model; τ̂ is an estimate based on asymptotic theory, i.e.
without running the data through the model.

accuracy of two decimal places. Unfortunately, the 300

formula (3) is not universal: it is only true for the 301

Transformer architecture. 302

4.5 Self-normalization 303

The attentive reader may have noticed that the out- 304

put of α-ReLU is not normalized, i.e. the compo- 305

nents of α-ReLU(z) do not have to sum up to 1. 306

Accordingly, the question arises: how correct is it 307

to compare translation scores at different steps of 308

the beam-search decoding if the conditional prob- 309

abilities are not normalized? However, the com- 310

parison is possible if the α-ReLU(z) components 311

add up to approximately the same number, i.e. if 312

the model is self-normalizing. To check this, we 313

ran the trained α-ReLU model on the IWSLT and 314

WMT’14 test sets, and looked at the distribution of 315∑
i α-ReLUi(z) at each decoding step. The results 316

are shown in Fig. 7. As we can see, the sum of the 317

α-ReLU(z) components concentrates well around 318

its mean ≈ 1.24 (IWSLT) and 1.09 (WMT’14), 319

which might indicate that the model indeed has a 320

self-normalization property. 321

4.6 Training Dynamics 322

As we noted in Sect. 3.2, the training dynam- 323

ics are similar in all three cases (softmax, 1.5- 324

entmax, 1.5-ReLU) when time is measured in train- 325

ing steps. Here we attempt to explain this phe- 326
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Figure 5: Sparsity as proportion of zero components after ap-
plying 1.5-ReLU and 1.5-entmax.

Figure 6: Impact of τ on training dynamics,
IWSLT’14 En→De.

Figure 7: Distribution of the sum of α-ReLU(z) com-
ponents across the IWSLT’14 and WMT’14 test sets:
α-ReLU self-normalizes.

nomenon through the recently proposed Neural327

Tangent Kernel (NTK) approach of Jacot et al.328

(2018). Roughly speaking, the NTK theory sug-329

gests that a sufficiently wide neural network trains330

like a kernel regression. We use this theory to show331

(in Appendix B.3) that in all three cases the logits332

z(x, t) for a training instance x at a training step333

t evolve (approximately) according to the same334

differential equation335

dz

dt
= −E(x′,y′)[Kσ(x, x′) · (σ(z′)− ey′)], (4)336

where expectation is over training examples337

(x′, y′), σ(·) is one of the transformations con-338

sidered (softmax, α-entmax, or α-ReLU), and339

Kσ(x, x′) ∈ Rd×d is a positive semi-definite340

matrix that depends on σ. The Equation (4) is341

a non-linear matrix differential equation which342

in general cannot be solved analytically. How-343

ever, it has an equilibrium point z(x, t) such that344

E(x′,y′)[Kσ(x, x′) · (σ(z′)− ey′)] = 0, thus its so-345

lution converges to this point as t→∞. This simi-346

larity in the evolution of σ(z) implies the similarity347

in the evolution of the perfomance metric—such as348

BLEU—accross all three transformations.349

Model Avg. Score Std. Dev.

Reference 3.9 0.30
Softmax 3.3 0.75
1.5-entmax 3.2 0.74
1.5-ReLU 3.3 0.74

Table 4: Results of Human Evaluation across 270
random examples (with repetitions) from WMT’13
En→Ru test split. Scores are on a 4-point scale.

4.7 Human Evaluation 350

Although the BLEU metric (Papineni et al., 2002) 351

has stood the test of time, it is still an automated 352

assessment of translation quality. To double-check 353

the reliability of the results from Table 1, we de- 354

cided to manually evaluate the translations from 355

the WMT’13 En→Ru test split. To do this, we 356

followed the human evaluation setup from (Berard 357

et al., 2019). We formed two random samples of 358

135 instances each and gave them to two annotators. 359

45 instances were shared across two samples in or- 360

der to calculate inter-annotator agreement. Each 361

instance consists of an original sentence in English 362

and 4 candidate translations into Russian (refer- 363

ence, softmax, entmax, α-ReLU). The annotators 364

were to rate each translation on a 4-point scale. For 365

annotation instructions, see Appendix C. 366

The order of candidate translations was shuffled 367

for each instance, so the annotators did not know 368

which sentence is from which model. Nevertheless, 369

the annotator always had a good chance of guessing 370

which translation was the reference one, due to 371

the large difference in quality between human and 372

machine translation. 373

The results of human evaluation are shown in 374

Table 4. Cohen’s κ = 0.56, indicating moderate 375

agreement between annotators. As we can see, all 376
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three models give approximately the same transla-377

tion quality, and all three are significantly inferior378

to the reference translation. This is generally con-379

sistent with the results of 1.5-ReLU and 1.5-entmax380

in Table 1, but at the same time casts doubt on the381

softmax lag behind 1.5-ReLU and 1.5-entmax as382

the BLEU metric suggests.383

In Appendix D we give a few examples where384

1.5-ReLU translates better than 1.5-entmax and385

vice versa.386

5 Related Work387

Sparse seq2seq models. Our proposed α-ReLU388

transformation is based on the α-entmax transfor-389

mation of Peters et al. (2019), which in turn is390

a generalization of the sparsemax transformation391

(Martins and Astudillo, 2016). In our work, we392

study sparseness at the output of a neural network.393

Nevertheless, there are a number of works aimed394

at sparsification within a neural network. For ex-395

ample, Malaviya et al. (2018); Peters et al. (2019);396

Correia et al. (2019) show that sparsemax and α-397

entmax can replace softmax in the attention mech-398

anism with some success. A recent work of Zhang399

et al. (2021) attempted to replace softmax with a400

component-wise ReLU in the attention mechanism.401

Unfortunately, in its pure form, this replacement402

leads to the inability of the model to learn at all,403

since its loss function does not decrease during404

optimization. The authors solve this problem by405

adding a normalizing layer on top of the attention406

layer.407

These and other works (Zhang et al., 2019) state408

that sparsity in the weights of attention produces409

more interpretable patterns. However, Meister et al.410

(2021) questioned this claim and were unable to411

find clear evidence to support it. Therefore, in this412

work, we focused on the application of α-ReLU to413

the output of the transformer model, and not to the414

mechanism of attention, but at the same time we415

do not deny the possibility of studying the latter.416

Self-normalization. Self-normalizing training417

aims to bypass the need of normalization during in-418

ference time. This is done by tweaking the learning419

mechanism so that the sum of all predictions sums420

(approximately) to a constant value. Theoretical421

work on why this works is poorly understood (An-422

dreas et al., 2015) but early work in neural ma-423

chine translation has shown its empirical value.424

Vaswani et al. (2013) achieves that by using noise-425

contrastive estimation (the neural model is used to426

re-rank the output of a hierarchical phrase-based 427

machine translation system). Noise-contrastive es- 428

timation is also the standard training mechanism 429

for word2vec (more popular than the alternative 430

hierarchical softmax), which also eschews any ex- 431

pensive normalization. Differently, Devlin et al. 432

(2014) changes the training loss to include a factor 433

that encourages the normalizing factor to be 1. At 434

inference time, this is just assumed and decoding 435

time is reported to achieve a 15x speed-up. 436

6 Limitations and Risks 437

We believe that the main limitations of our work 438

are as follows: 439

• α-ReLU’s output is still not a probability dis- 440

tribution, as required by the classical formula- 441

tion of a probabilistic classification model. 442

• τ evaluation requires either running the data 443

through an untrained model with α-entmax at 444

the output, or deriving a formula similar to (3) 445

for each individual architecture. 446

• Our approach only works for the case when α- 447

ReLU is used at the output of the model, but 448

it is not clear how to use it as an alternative to 449

softmax/α-entmax in the attention layer. 450

The last mentioned limitation leads to the potential 451

risk of inability to learn if α-ReLU is misused in 452

the intermediate layers of the neural network such 453

as attention layers. The experiments of Zhang et al. 454

(2021) using vanilla ReLU (2-ReLU with τ = 0 455

in our notation) instead of softmax to produce at- 456

tention weights lead to a divergence of the loss 457

function of the Transformer model. This translates 458

into a waste of energy, especially when training 459

large models on large datasets. Therefore, we be- 460

lieve that in the future, a preliminary mathemati- 461

cal analysis and/or experiments with small models 462

on small datasets should be carried out as to why 463

the unnormalized distribution of attention weights 464

leads to the inability of the model to learn. 465

7 Conclusion 466

It seems that the sparsity of the output is natural for 467

(sub)word prediction models. Nevertheless, spar- 468

sity does not have to come with slowdown of com- 469

putations, as our work shows. The proposed trans- 470

formation, α-ReLU, gives a sparse output, shows 471

competitive performance, and is as fast as softmax. 472

The reduced dependency on the vocabulary size 473
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seems particularly important in translation, where474

neural models are moving more and more towards475

multi-lingual ones, which in general have a much476

higher vocabulary size in order to accommodate477

enough tokens for all languages.478

A natural extension of this work will be the eval-479

uation of α-ReLU in the problem of open-ended480

text generation, as well as a replacement for soft-481

max in the attention layers of Transformer models.482
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A Optimization665

IWSLT’14 De→En666

• Architecture: Transformer, embedding size 512, 6 layers, 8 heads, hidden size 1024, shared vocabu-667

lary.668

• Batch size: 4096 tokens (with gradient accumulation for 8 steps).669

• Optimizer: ADAM, β1 = 0.9, β2 = 0.998, noam decay, learning rate 2.0, 4000 warmup steps.670

• Dropout: 0.3671

• No label smoothing.672

WMT’14 En→De673

• Architecture: Transformer, embedding size 512, 6 layers, 8 heads, hidden size 2048, shared vocabu-674

lary of 40K tokens, shared embeddings and decoder embeddings.675

• Batch size: 4096 tokens (with gradient accumulation for 4 steps).676

• Optimizer: ADAM, β1 = 0.9, β2 = 0.998, noam decay, learning rate 2.0, 8000 warmup steps,677

average decay 0.0005.678

• Dropout: 0.1.679

• Attention dropout: 0.1.680

• No label smoothing.681

WMT’13 En→Ru Same as in WMT’14 En→De, except that Dropout is 0.3.682

A.1 GPU Power Consumption683

Dataset IWSLT’14 En→De WMT’14 De→En WMT’13 En→Ru
GPU(s) 1 × RTX 2080 Ti 2 × RTX 3090 4 × Tesla V100 SXM2
Power consumption, W 250 2×320 4×300

Training time, hours

softmax 15.41 30.06 28.43
sparsemax 24.43 73.33 58.82
1.5-entmax 26.11 79.89 61.20
1.5-ReLU 16.50 31.44 24.21

TOTAL hours 82.44 214.72 172.67
TOTAL kW-hours 20.61 137.42 207.20

GRAND TOTAL kW-hours 365.23

Table 5: Power consumed by GPUs for training.

We do not report CO2 consumption, as experiments were run in different countries, making aggregate684

statistics difficult to compute. The largest experiment (on WMT’13), were run in [MASKED], which685

benefits from a very low CO2 emission intensity in its electrical mix.686

B Proofs687

Notation. We let R denote the real numbers. Bold-faced lowercase letters (x) denote vectors in688

Euclidean space, bold-faced uppercase letters (A) denote matrices, plain-faced lowercase letters (x)689

denote scalars, ‖ · ‖ denotes the Euclidean norm: ‖x‖ :=
√
x>x. The gradient of f : Rd → R is denoted690

by∇f . The Jacobian of z 7→ g(z) is denoted by Jg(z). Also, we denote ReLU(x) := [x]+ := max{x, 0},691

[d] := {1, . . . , d}, ∆d−1 := {p ∈ Rd |
∑

i pi = 1, pi ≥ 0}, ey := (0, . . . , 0, 1, 0, . . . , 0) where 1 is at692

yth position.693
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B.1 Proof of Lemma 1. 694

First, let us calculate the Jacobian of the mapping z 7→ α-ReLU(z). Recall that

α-ReLUi(z) := [(α− 1)zi − τ ]
1

α−1
+ .

Therefore, the partial derivatives are given by 695

∂[α-ReLUi(z)]

∂zi
=

1

α− 1
· [(α− 1)zi − τ ]

1
α−1
−1

+ · (α− 1) = [(α− 1)zi − τ ]
2−α
α−1
+ , 696

= [α-ReLUi(z)]2−α 697

∂[α-ReLUi(z)]

∂zj
= 0. i 6= j 698

Thus, the Jacobian can be written concisely as 699

Jα-ReLU(z) = diag{[α-ReLU(z)]2−α}, (5) 700

where raising to power is done component-wise (i.e. xβ = [xβ1 , . . . , x
β
d ]), and diag[x] is a diagonal matrix 701

with x on its diagonal. 702

Recall the definition of the Tsallis α-entropy:

Hα[p] :=
1

α(α− 1)

1−
∑
j

pαj

 .

Its gradient w.r.t. p is

∇p Hα[p] = − 1

α− 1
pα−1,

Combining this with (5), and using the chain rule, we have 703

∇z Hα[α-ReLU(z)] = [Jα-ReLU(z)]> ·
(
− 1

α− 1
[α-ReLU(z)]α−1

)
704

=
[
diag{[α-ReLU(z)]2−α}

]> · (− 1

α− 1
[α-ReLU(z)]α−1

)
705

= − 1

α− 1
[α-ReLU(z)]2−α � [α-ReLU(z)]α−1 706

= − 1

α− 1
α-ReLU(z), (6) 707

where� is the Hadamard product (element-wise multiplication), and we used diag[x] ·y = x�y. Taking 708

into account (6), the gradient of the α-ReLU loss (2) w.r.t. z is 709

∇z`(z, y) = ∇z

[
(α-ReLU(z)− ey)

>
(
z− τ

α− 1
1

)]
+∇z Hα[α-ReLU(z)] 710

= (α-ReLU(z)− ey) + J>α-ReLU(z)

(
z− τ

α− 1
1

)
− 1

α− 1
α-ReLU(z) 711

= (α-ReLU(z)− ey) +
1

α− 1

[
diag{[α-ReLU(z)]2−α}

]>
[(α− 1)z− τ1]− 1

α− 1
α-ReLU(z) 712

= (α-ReLU(z)− ey) +
1

α− 1
[(α− 1)z− τ1]

2−α
α−1
+ � [(α− 1)z− τ1]︸ ︷︷ ︸
α-ReLU(z)

− 1

α− 1
α-ReLU(z) 713

= α-ReLU(z)− ey, 714

where in the fourth line we used [x]β+ � x = [x]β+ � [x]+ = [x]β+1
+ . This concludes the proof. 715

11



B.2 Approximation of τ for 1.5-entmax716

We derive the formula (3) in two steps: first in Lemma 2, we approximate τ(z) of 1.5-entmax when z is an717

arbitrary random sample from the normal distribution with zero mean and variance σ2; next in Lemma 3,718

we compute σ2 for the case when z is the pre-softmax vector of logits in the Transformer model.719

Lemma 2. Let z1, . . . , zd be independent and identically distributed random variables from the normal
distribution N (0, σ2). Then the thresholding function of 1.5-entmax(z) can be approximated as

τ(z) ≈ σ

2
Φ−1(1− p∗),

where Φ−1(·) is a probit function, and p∗ is the solution of

Φ−1(1− p) = m(p)−
√

4

σ2
· ε
p
− s(p)

with720

m(p) :=
1

p− ε
[
φ(Φ−1(x)

]x=p
x=ε

(7)721

s(p) :=
1

p− ε
[
−φ(Φ−1(x)) · Φ−1(x) + x

]x=p
x=ε
− [m(p)]2 (8)722

φ(t) :=
1√
2π
e−

t2

2723

ε :=
1

d
724

Proof. Let z(1) ≥ . . . ≥ z(d) be a sorting of z1, . . . , zd in descending order. Peters et al. (2019) showed725

that726

τ(z) =
M(k)

2
−
√

1

k
− S(k)

4
, (9)727

where k ∈ [d] is any index that satisfies728

z(k)

2
≥ M(k)

2
−
√

1

k
− S(k)

4
≥
z(k+1)

2
⇔ z(k) ≥M(k)−

√
4

k
− S(k) ≥ z(k+1) (10)729

with

M(k) :=
1

k

k∑
i=1

z(i), S(k) :=
1

k

k∑
i=1

z2(i) − [M(k)]2.

Approximating z(i) by its asymptotic mean σΦ−1
(
1− i

d

)
(Arnold et al., 2008), and denoting ε := 1

d ,730

p := k
d , we have731

M(k) ≈ 1

k

k∑
i=1

σΦ−1
(

1− i

d

)
≈ σ

p− ε

∫ p

ε
Φ−1(1− x)dx =

σ

p− ε

∫ p

ε
−Φ−1(x)dx732

=
σ

p− ε
[
φ(Φ−1(x))

]x=p
x=ε

= σm(p),733

where we approximated the average of finitely many numbers {Φ−1(1− i/d)}ki=1 by the mean value of734

the function Φ−1(1− x), and then we used the fact that −φ(Φ−1(x)) is an antiderivative for the probit735

function Φ−1(x); and m(p) is defined by (7).736

Similarly, for the second empirical moment, we have737

1

k

k∑
i=1

z2i ≈
1

k

k∑
i=1

[
σΦ−1

(
1− i

d

)]2
≈ σ2

p− ε

∫ p

ε
[Φ−1(1− x)]2dx =

σ2

p− ε

∫ p

ε
[Φ−1(x)]2dx738

=
σ2

p− ε
[
−φ(Φ−1(x)) · Φ−1(x) + x

]x=p
x=ε

,739
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and thus

S(k) ≈ σ2

p− ε
[
−φ(Φ−1(x)) · Φ−1(x) + x

]x=p
x=ε
− [m(p)]2 = σ2s(p),

where s(p) is defined by (8). Hence, finding k ∈ [d] that satisfies (10) is (approximately) equivalent to 740

finding p ∈ (0, 1) that satisfies 741

σΦ−1(1− p) = σm(p)−
√

4 · ε
p
− σ2s(p) ⇔ Φ−1(1− p) = m(p)−

√
4

σ2
· ε
p
− s(p). (11) 742

Let p∗ be the solution of (11). Then, taking into account (9), we have

τ(z) ≈ σm(p∗)

2
−

√
ε

p∗
− σ2s(p∗)

4
=
σ

2

(
m(p∗)−

√
4

σ2
· ε
p∗
− s(p∗)

)
=
σ

2
Φ−1(1− p∗),

which concludes the proof. 743

Lemma 3. Let z = Wx be a pre-softmax vector of logits in the OpenNMT-py (Klein et al., 2017) 744

implementation of the Transformer model (Vaswani et al., 2017). Then for any input, in a non-trained 745

model the logits z1, . . . , zd are distributed according to the normal distributionN
(

0, 2·dmodel
dmodel+dvocab

)
, where 746

dmodel is the size of hidden representations, and dvocab is the vocabulary size for a target language. 747

Proof. The default Transformer configuration in OpenNMT-py implies that the elements wij of W are 748

initialized from a uniform distribution U [−a, a], where a =
√

6
dmodel+dvocab

, thus 749

E[wij ] = 0, Var[wij ] =
(2a)2

12
=
a2

3
=

2

dmodel + dvocab
(12) 750

Since x is the result of a layer normalization (Ba et al., 2016), we have 751

1

dmodel

dmodel∑
j=1

xj = 0,
1

dmodel

dmodel∑
j=1

x2j = 1 (13) 752

Therefore, from (12) and (13), we have 753

E[zi] = E

dmodel∑
j=1

wijxj

 =

dmodel∑
j=1

E[wij ] · xj = 0, 754

Var[zi] = Var

dmodel∑
j=1

wijxj

 =
2

dmodel + dvocab

dmodel∑
j=1

x2j =
2 · dmodel

dmodel + dvocab
. 755

Being a sum of independent random variables, by the Central Limit Theorem, each zi tends to normal 756

distribution with the mean and variance above. 757

B.3 Derivation of the Equation (4) 758

We provide derivation for the case of α-ReLU. Extension to α-entmax and softmax is done analogously. 759

Let x ∈ Rn0 be the input vector. We define a feedforward neural network with L − 1 hidden layers 760

recursively: 761

h(0) = x 762

z(k) =
1

√
nk−1

W(k−1)h(k−1), 763

h(k) = σ(z(k)), k = 1, . . . , L− 1 764
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where W(k−1) ∈ Rnk×nk−1 is the weight matrix in the kth hidden layer, and σ(·) is a nonlinear activation
function applied element-wise. We consider the case of a multi-label classification, i.e. the output layer is
a vector

z := z(L) ∈ Rd,

which is fed into the α-ReLU loss:765

`(z, y) = (α-ReLU(z)− ey)
>
(
z− τ

α− 1
1

)
+ Hα[α-ReLU(z)], (14)766

where Hα[p] := 1
α(α−1)

∑
j(pj − pαj ), α 6= 1, is the Tsallis α-entropy (Tsallis, 1988). Given a training767

sample S := {(x, y)} learning is performed by minimizing the training error768

L := E(x,y)∼S [`(z(x), y)] (15)769

with respect to the network parameters θ := vec
(
{W(k−1)}k∈[L−1]

)
.770

Lemma 4. Let the training error (15) be minimized by gradient descent with infinitesimally small learning771

rate. Let z(x, t) ∈ Rd be the network output on any training instance x at time t, and y be the desired772

output. Then, as the widths of hidden layers nk → ∞, ∀k ∈ [L − 1], the output z(x, t) follows the773

following evolution774
dz

dt
= − E

(x′,y′)∼S
[K(x, x′) · (α-ReLU(z′)− ey′)], (16)775

where K(x, x′) ∈ Rd×d is a positive semidefinite matrix, and z′ := z(x′, t).776

Proof. From (15) and Lemma 1 we have777

∇zL = ∇z E(x′,y′)∼S [`(z′, y)] = ∇z`(z, y) = α-ReLU(z)− ey, (17)778

where we denoted z := z(x, t) and z′ := z(x′, t) for shorthand. Now, consider the gradient descent779

update780

θt+η = θt − η∇θL ⇔ θt+η − θt
η

= −∇θL, (18)781

where η is the learning rate. Taking the limit in (18) as η → 0, we have:782

dθ

dt
= −∇θL = −E(x′,y′)∼S [J>z′(θ) · ∇z′L],783

where the last equality is due to the chain rule. Combining this with (17), we get784

dθ

dt
= −E(x′,y′)∼S [J>z′(θ) · (α-ReLU(z′)− ey′)] (19)785

Applying the chain rule again, and using (19), we have786

dz

dt
= Jz(θ) · dθ

dt
= −E(x′,y′)∼S [Jz(θ)J>z′(θ)︸ ︷︷ ︸

K(x,x′;θ)

·(α-ReLU(z′)− ey′)].787

The quantity K(x, x′;θ) was named the Neural Tangent Kernel by Jacot et al. (2018). They also showed
(see their Theorem 1) that

K(x, x′;θ)→ K(x, x′) as n1, . . . , nL−1 →∞,

where K(x, x′) ∈ Rd×d is the deterministric kernel that does not depend on θ. This concludes the788

proof.789
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C Instructions for Human Annotators 790

You are shown a reference sentence and several candidate translations. Please indicate, for each,
on a 4-point scale, how much of the meaning is represented in the translation, ignoring the language quality.

Imagine you are a forgiving reader, ignoring any error that does not prevent you from getting
the meaning of the text. So please ignore language oddities, typographic errors and the like. (This is
difficult but key to us!)

The scale of meaning preservation is: 4 = Everything / 3 = Most / 2 = Little / 1 = None

As we are interested in comparing system’s output, you can refine your judgement using + or
−, e.g. 3+.

When you do not know, simply leave empty.

For instance, given the reference sentence

“This restaurant is beautiful and the staff is very friendly”,

valid judgements for different translations are provided in Table 6. 791

Score Sentence

4 “This restaurant is beautiful and the staff is very friendly.”
4 “This restaurant is beautiful and the staff is very friendly..”
4 “Beautiful restaurant, staff is very friendly.”
4− “This restaurant is beautiful and the staff is friendly.”
4− “Beautiful restaurant, staff is friendly.”
2+ “Friendly staff”
2 “This is a restaurant.”
1 “Hello guys!”
1 “Bad restaurant”
1− “Bad restaurant, bad staff”

Table 6: Evaluation example

We insist that evaluating by meaning differs from a natural intuitive evaluation. Provided the meaning is 792

not impacted, we want to ignore the language quality, the punctuation, the casing. 793
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D Translation Examples794

Source Flake was the central figure in Friday’s drama.
1.5-entmax Flèjk byl central’noj figuroj v drame pjatnadcatogo

veka.
Flake was the central figure in fifteenth century
drama.

1.5-ReLU Flèjk byl central’noj figuroj v drame pjatnicy. Flake was the central figure in Friday’s drama.

Source There were smiles and blue skies on Saturday (September 29) as the leaders of Turkey and Germany
met for breakfast in Berlin.

1.5-entmax V subbotu (29 sentjabrja) byli ulybki i goluboe nebo,
poskol’ku lidery Turcii i Germanii vstretilis’ dlja
razvala v Berline.

There were smiles and blue skies on Saturday
(September 29) as the leaders of Turkey and Ger-
many met for a breakup in Berlin.

1.5-ReLU V subbotu (29 sentjabrja) byli ulybki i goluboe nebo,
tak kak lidery Turcii i Germanii vstretilis’ dlja ot-
dyha v Berline.

There were smiles and blue skies on Saturday
(September 29) as the leaders of Turkey and Ger-
many met for a holiday in Berlin.

Source That Was Really Bad Body Language:
1.5-entmax Èto byl dejstvitel’no plohoj jazyk tela That was really bad body language.
1.5-ReLU Èto byl real’nyj jazyk tela That was real body language.

Source The city of Palu, which has more than 380,000 people, was strewn with debris from collapsed buildings
1.5-entmax Gorod Palu, v kotorom prozhivaet bolee 380 000

chelovek, byl razrushen zdanijami.
The city of Palu, home to over 380,000 people, was
destroyed by buildings.

1.5-ReLU Gorod Palu, u kotorogo bolee 380 000 chelovek,
nahodilsja v upadke zdanija.

The city of Palu, which has over 380,000 inhabi-
tants, was in decay building.

Table 7: Translation Examples
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