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Abstract

Prompt transfer learning can significantly im-001
prove the performance of prompt-tuning meth-002
ods. However, it requires much manual work003
to find out the proper source tasks which can004
yield positive transfer for the target task. We005
propose a two-stage multiple prompts trans-006
fer learning approach called AMP to address007
this drawback. First, we train a source prompt008
for each task as task embedding. Second, we009
learn a target prompt for each task which is010
an attention-weighted sum of source prompts011
through training an attention component. The012
attentions control the influence each source task013
yields for the target task, through which proper014
source tasks for the target task can be auto-015
matically identified. A source prompt is a 2D016
matrix, but the traditional attention mechanism017
only receives vectors. The prior methods em-018
ploy pooling or flattened method to transform019
the matrix to the vector for computing the at-020
tentions between a set of matrices. We pro-021
pose a method called DAM which can compute022
attentions between matrices directly without023
transforming. DAM method can more exactly024
compute the attentions between matrices. Wide025
experiments demonstrate that AMP is effective026
and can improve the performance of prompt-027
tuning without any prior search.028

1 Introduction029

In earlier years, the most commonly used ap-030

proach is to fine-tune the entire pretrained lan-031

guage models(PLMs) for NLP tasks(Devlin et al.032

(2018);Liu et al. (2019);Lewis et al. (2019);Yang033

et al. (2019);Bao et al. (2020)). Although fine-034

tuning method achieves state-of-the-art perfor-035

mance, it requires to update all parameters of PLMs036

and store a large specific-task model for each task.037

Recently, many studies focus on prompt-038

tuning method which learns a small number of039

prompt tokens for each task on frozen PLMs(Liu040

Figure 1: An illustration of our AMP method. (a): We
combine source prompts to learn an attention component
to obtain a target prompt for each task. (b): Each target
prompt is an attention-weighted sum of source prompts.
The learned attentions control the influence each source
task yields for the target task.

et al. (2021b);Chen et al. (2022);Qin and Eisner 041

(2021);Han et al. (2022)). It only updates the 042

prompt parameters but keeps PLMs fixed during 043

training. It merely stores a specified small prompt 044

for each task and the backbone PLMs are shared 045

across all tasks. However, prompt-tuning meth- 046

ods decrease task performance and are sensitive to 047

prompt initialization(Lester et al. (2021);Liu et al. 048

(2021a);Gu et al. (2021)). 049

Some literatures(Vu et al. (2021);Gu et al. 050

(2021);Asai et al. (2022)) propose prompt trans- 051

fer learning to solve these shortcomings. When it 052

starts to learn a target task, it firstly learn a source 053

prompt on one or more source tasks similar with 054

the target task and then use the source prompt to ini- 055

tialize the target prompt. It transfers the knowledge 056

of source tasks to the target task and improves the 057

performance of the target task. However, it requires 058

extensive test or considerable manual computation 059

to find out source tasks which can yield positive 060

transfer for a target task. 061

In this paper,we propose a two-stage multiple 062
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prompts transfer learning approach called AMP063

which is illustrated in Figure 1. In first stage, AMP064

trains a source prompt for each task as task em-065

bedding on a frozen PLM. In second stage, AMP066

learns an attention component to compute the at-067

tentions between source prompts. Given the atten-068

tions, a new prompt for each task is calculated as069

attention-weighted sum of source prompts. We call070

this prompt as target prompt. The attentions control071

influence each source task yields for the target task.072

A high attention is learned if a source task can yield073

positive influence for the target task. Otherwise,074

a low attention is learned. This can make AMP075

to automatically identify source tasks which yield076

positive transfer for the target task.077

The attention mechanism is always exploited078

on an input matrix consisted of a set of vec-079

tors(Vaswani et al. (2017);Devlin et al. (2018);Liu080

et al. (2019);Radford et al. (2018)). It firstly081

projects the input matrix into three matrices–082

queries,keys and values and then calculates the083

attentions between each query vector and all key084

vectors through the dot product. Finally, an output085

matrix is obtained where each vector is attention-086

weighted sum of value vectors. However, this pro-087

cedure is unable to compute attentions between088

a set of matrices directly. The prior methods089

transform the matrix into the vector before com-090

puting attentions. The widely used methods are091

the pooling method which computes average or092

maximum of each dimension to obatin the vec-093

tor and flattened method which reshapes a matrix094

into a sequence(Asai et al. (2022);Dosovitskiy et al.095

(2020);Wang et al. (2021);Chu et al. (2021)). The096

pooling method causes some details lost and the097

flattened method destroys the original structure.098

They can’t express attentions between matrices ex-099

actly.100

A source prompt is a 2D matrix. We introduce101

a new method called DAM to compute the atten-102

tions between source prompts. It can more exactly103

compute attentions between a set of matrices.104

We empirically evaluate our AMP method on105

diverse tasks. The experimental results show that106

AMP can automatically finds out right source tasks107

for target task and largely improves the perfor-108

mance of prompt-tuning method.109

2 Background110

In this section, we give a brief overview of common111

methods in NLP. This is followed by our goal.112

Task definition. We define a set of n tasks: C = 113

{T1, T2, ..., Tn}. The aim is to share knowledge 114

between tasks to improve the performance of each 115

task with low training and storing cost. 116

Transfer learning. A masked language model is 117

pretrained on large corpus of unlabelled text(called 118

PLM). When learning a specified task, PLM is 119

transferred to the task and the full parameters 120

of PLM are fine-tuned on the task(Devlin et al. 121

(2018);Liu et al. (2019);Yang et al. (2019);Lan et al. 122

(2019);He et al. (2020)). An independent model is 123

obtained for each task. 124

θ1 ← argmin
θ

L(T1; θ)

...

θn ← argmin
θ

L(Tn; θ)

125

where, L denotes as the loss function and θ repre- 126

sents the parameters of PLM. 127

It aims to make each task benefit from the knowl- 128

edge stored in PLM. 129

Multi-task learning. All tasks are trained simul- 130

taneously on a PLM((Liu et al. (2016);Liu et al. 131

(2017); Ruder (2017);Sanh et al. (2019);Zhang and 132

Yang (2021))). A shared model is learned for all 133

tasks. 134

θ
′ ← argmin

θ

n∑
i=1

L(Ti; θ) 135

Only a shared mode is stored for all tasks. More 136

importantly, it can make all tasks benefit from each 137

other. However, all tasks have to be prepared well 138

before training. If a new task is added after training, 139

it will have to access all tasks to retrain the model 140

from scratch. 141

Prompt-tuning. It adds some prompt tokens into 142

the task. Then the task is fed into a PLM to train. 143

Only those prompt parameters are updated during 144

training, but the PLM is kept fixed. It learns a sep- 145

arated prompt for each task, but PLM is shared 146

across all tasks((Li and Liang (2021);Liu et al. 147

(2021b);Qin and Eisner (2021)). 148

ϕ1 ← argmin
ϕ

L(T1;ϕ, θ)

...

ϕn ← argmin
ϕ

L(Tn;ϕ, θ)

149
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where, ϕ denotes the prompt parameters. ϕ is much150

smaller than θ. So, prompt-tuning does with low151

training and storing cost. However, it always per-152

forms not better than full-parameters tuning and153

is sensitive to prompt initialization(Lester et al.154

(2021);Gu et al. (2021)).155

Prompt transfer learning. When to learn a156

prompt for a target task Ti , it firstly learns a source157

prompt ϕ
′

on one or more tasks and then uses ϕ
′

158

to initialize the target prompt(Vu et al. (2021);Gu159

et al. (2021);Sanh et al. (2021);Min et al. (2021)).160

Ts =
⋃

1≤j≤m,j ̸=i

Tj ,m ∈ {1, . . . , n}

ϕ
′ ← argmin

ϕ
L(Ts, θ)

ϕi ← argmin
ϕ

L(Ti;ϕ
′
, θ)

161

Vu et al. (2021) shows that when target prompt is162

initialized by right source prompt, the performance163

of prompt-tuning methods can be largely improved.164

It is, however, difficult to find out the right source165

tasks for a target task. Because the relationships be-166

tween tasks are extremely complexed. Intuitively,167

source tasks which are same type as target task can168

yield positive transfer for target task. But Vu et al.169

(2021) suggests that some source tasks which are170

different type with target task can also yield posi-171

tive transfer. More seriously, even through some172

source tasks are same type with target task, they173

yield negative transfer. It requires to test source174

task one by one to find out a set of right source175

tasks for the target task.176

Vu et al. (2021) proposes a method which in-177

terprets learned prompt for each task as task em-178

bedding and similarity between tasks is defined as179

the cosine similarity score between task prompts.180

Vu et al. (2021) shows that the source tasks which181

have high similarity scores with the target task can182

yield positive transfer in general. It doesn’t require183

massive test, but it requires much manual work to184

compute the similarity scores between target task185

and each source task . Additionally, negative trans-186

fer still occurs between tasks with high similarity187

scores.188

ATTEMPT(Asai et al. (2022)) can automatically189

find out proper source prompts for each example190

in target task through computing the attention be-191

tween the example embedding and source prompts.192

However, it can’t express the relationships between193

the whole target task and source tasks. Addition-194

ally, it has to retrain all tasks when a new task is 195

added after training. 196

Our goal. We hope to not only achieve to trans- 197

fer knowledge from source tasks to target task, but 198

also how much influence each source task yields 199

for target task is exactly expressed. We hope to au- 200

tomatically identify right source tasks which yield 201

positive transfer for target task. We also hope to 202

flexibly add a new task. 203

3 Method 204

In this section, we show our AMP method in detail. 205

AMP trains a source prompt for each task in the first 206

stage(§3.1). Then it combines all source prompts 207

to train an attention component, through which a 208

target prompt for each task is learned(§3.2). We 209

propose DAM method to compute the attention 210

of matrices during learning target prompt(§3.2.1). 211

Subsequently, we give an efficient implementation 212

method of DAM detailedly(§3.2.2). Finally, we 213

show inference process of AMP(§3.3) and how to 214

add a new task(§3.4). 215

3.1 Source Prompt 216

In first stage, we train a source prompt for each of n 217

tasks on a frozen PLM as the task embedding. The 218

length of all source prompts is set to be same. We 219

obtain n source prompts {P1, ..., Pn},where Pi ∈ 220

Rl∗d, l is prompt length and d is model dimension 221

of PLM. n prompts are packaged into a 3D matrix 222

P ∈ Rn∗l∗d. 223

3.2 Target Prompt 224

In second stage, we put an attention component ψ 225

on top of PLM. The attention component takes P 226

as the input. We calculate the attentions between 227

source prompts through ψ. Then we obtain n target 228

prompts {P ′
1, ..., P

′
n}, each of which is an attention- 229

weighted sum of source prompts as followed. 230P
′
1
...
P

′
n

 =

a11 . . . a1n
...

an1 . . . ann


P1

...
Pn

 231

Each task is prefixed with a correspond target 232

prompt and then the task is fed into the PLM to train 233

again. During training, only ψ is updated, while 234

the source prompts P and PLM are kept fixed. ψ 235

is trained by all tasks simultaneously. 236

The attentions represent the influence each 237

source task yields for target task. A high atten- 238

tion is learned if a source task can yield positive 239
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influence for the target task. Otherwise, a low at-240

tention is learned.241

3.2.1 Attention Component242

The attention component ψ consists of three projec-243

tion parameter matrices WQ ∈ Rd∗k, WK ∈ Rd∗k244

and W V ∈ Rd∗v ,where d is the model dimension245

of PLM, k is the dimension of queries and keys,246

v is the dimension of values and v is equal to d .247

The input P is projected into three 3D matrices–248

queries Q ∈ Rn∗l∗k, keys K ∈ Rn∗l∗k and values249

V ∈ Rn∗l∗v, where each query and key are a 2D250

matrix.251

We propose DAM method to calculate the atten-252

tion of a query-key pair (q, k).253

atten(q, k) =
1

l2

l∑
i

l∑
j

(ai
⊗

bj)254

where,
⊗

represents dot product, ai and bj denote255

a vector in q and k, respectively. It calculates the256

dot product between each vector in query q and257

that in key k, so it is more exact. It is illustrated in258

Figure 7.259

3.2.2 Implementation Details of DAM260

DAM is implemented in following 4 steps.261

Firstly, we reshape P ∈ Rn∗l∗d into matrix P
′ ∈262

Rm∗d , where m = n ∗ l . P
′

is linearly projected263

to obtain the matrix Q,K and V .264

P
′
WQ = Q ∈ Rm∗k

P
′
WK = K ∈ Rm∗k

P
′
W V = V ∈ Rm∗v

265

Secondly, We calculate the attentions between266

queries and keys.267

QKT = S ∈ Rm∗m268

S is divide into n ∗n blocks,where the size of each269

block is l ∗ l .270

S =



k1 · · · kn

q1 b11 · · · b1n

...
...

. . .
...

qn bn1 · · · bnn


271

the block bij represents dot products between each 272

vector in query qi and that in key kj . 273

bij =


k1j · · · klj

q1i a11 · · · a1l
...

...
. . .

...
qli al1 · · · all

 274

Thirdly, we leverage convolution operator on S 275

to get the sum of each block. The size of convolu- 276

tion kernel is set to l ∗ l, which is same as that of 277

block. The stride size is set to l. The kernel value 278

is set to1. We obtain a matrix S
′ ∈ Rn∗n. Then S

′
279

is scaled by 1/l2. A softmax function is leveraged 280

on S
′
. 281

S
′
=


k1 · · · kn

q1 a11 · · · a1n
...

...
. . .

...
qn an1 · · · ann

 282

where S
′
ij is the attention between query qi and key 283

kj . 284

Fourthly, V ∈ Rm∗v is reshaped into V
′ ∈ 285

Rn∗l∗v. Then we multiply V
′

by S
′

to obatin the 286

output matrix O ∈ Rn∗l∗v , where n target prompts 287

is earned and the length and dimension of target 288

prompt are l and v,respectively. Each target prompt 289

corresponds a task. 290

3.3 Inference 291

After training, we obtain a target prompt for each 292

task . The source prompts and the attention com- 293

ponent are no longer needed. The target prompt is 294

concatenated to the input embedding to form the 295

input sequence. Then the input sequence is fed 296

into PLM to acquire the final result. The inference 297

process is same as in prompt-tuning. AMP doesn’t 298

increase extra inference cost. 299

3.4 Adding a new task 300

When a new task is added after training original 301

tasks, AMP firstly learns a source prompt for the 302

new task and then combines all source prompts 303

to train the attention component to obtain a target 304

prompt for the new task. As the attention compo- 305

nent is not used during inference, the inference pro- 306

cess of original tasks isn’t affected. AMP doesn’t 307

require complete re-training when a new task is 308

added. 309
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4 Experiments310

We conduct experiments on 11 NLP tasks across311

diverse types to evaluate the performance of our312

AMP method in this section. Those tasks and the re-313

lated datasets are shown in §4.1. The experimental314

setup is described in §4.2.315

4.1 Tasks316

We briefly list the tasks used in our experiment. A317

detailed description about those tasks is shown in318

Appendix §A.4.319

Sentiment analysis predicts whether a sen-320

tence to be positive or negative: IMDB(Maas321

et al. (2011)), SST-2(Socher et al. (2013)), Yelp-322

2(Zhang et al. (2015)). Sentence relatedness323

predicts whether one sentence is similar with324

the other or not: STS-B(Cer et al. (2017),325

MRPC(Dolan and Brockett (2005)). Entailment326

predicts whether two sentences entail or contra-327

dict: RTE(Giampiccolo et al. (2007)), SciTail(Khot328

et al. (2018)), CB(De Marneffe et al. (2019)).329

Question answering predicts the right answers330

for some questions after reading a passage: Mul-331

tiRC(Khashabi et al. (2018)), BoolQ(Clark et al.332

(2019)), QNLI(Wang et al. (2018)).333

4.2 Experimental Setup334

Source prompt training. We use RoBERTa-335

base(Liu et al. (2019)) as PLM. We adopt the336

AdamW optimizer. The learning rate is set 10−4337

with a linear decay. We set the maximum training338

epochs to 30 with early stopping. The length of339

prompt tokens is set 100 for all tasks. Each prompt340

is initialized by randomly sampling tokens from341

common vocabularies.342

Attention component training. We still use343

RoBERTa-base as PLM. The maximum training344

epochs is set to 10. The learning rate is set 5∗10−5345

with a linear decay. The maximum token length is346

set to 384 for all tasks. We combine the datasets of347

all tasks together to train the attention component348

using examples-proportional strategy(Raffel et al.349

(2020)), where the maximum training examples are350

limited to 100K for each task.351

In attention component, v is set to 768 which is352

the model dimension of RoBERTa-base and k is353

set to 768.354

Baselines. We compare AMP with fine-tuning,355

prompt-tuning, SPoT and ATTEMPT. SPoT adopts356

two strategies: SPoT-s and SPoT-m. SPoT-s initial- 357

izes target prompt with similarity-weight average 358

of all source prompts. SPoT-m initializes target 359

prompt with a source prompt learned on MNLI 360

task which is proven to be able to improve the per- 361

formance for most target tasks (Vu et al. (2021)). 362

Max-pooling method for computing attentions. 363

We make a comparison between DAM method and 364

max-pooling method for computing attentions be- 365

tween source prompts. The max-pooling method 366

takes the same steps as DAM except the computa- 367

tion of attentions. It firstly obtains the query matri- 368

ces, key matrices and value matrices as the first step 369

of DAM. Then each query and key is translated into 370

a vector through performing max-pool operation 371

for each dimension. The dot product between each 372

query and key is calculated to obtain the attention 373

matrix. The following steps are same as the DAM 374

method. 375

5 Result 376

We show the main result in §5.1. We present the 377

the effectiveness of DAM in §5.2. 378

5.1 AMP 379

As illustrated in Table 1, AMP outperforms prompt- 380

tuning, SPoT-s and ATTEMPT. There are five find- 381

ings as followed. 382

(1) AMP outperforms prompt-tuning by a large 383

margin. AMP improves performance for 9 out of 384

11 tasks. This shows that AMP can find out right 385

source tasks for most target tasks. 386

(2) AMP performs better than SPoT-s. AMP 387

doesn’t achieve improvement of performance for 2 388

out of 11 tasks, but SPoT-s doesn’t increase perfor- 389

mance for 5 tasks. This shows that the attentions 390

learned dynamically are more reliable than constant 391

similarity scores for finding right source tasks. 392

(3) AMP performs lower than SPoT-m. AMP 393

doesn’t conduct prior massive search which is re- 394

quired to SPoT-m. AMP outperforms ATTEMPT. 395

(4)We observe that AMP is more beneficial for 396

small datasets than large datasets. AMP achieves 397

improvement of 6.3% for MultiRC(5.1k) and 6.6% 398

for BoolQ(9.4k) , but it only increases 1.8% and 399

3.1% performance for IMDB(25k) and SST-2(67k) 400

respectively . This shows that AMP can find more 401

right source tasks for small task. 402

(5)We also find that AMP can match fine-tuning 403

for 2 tasks. AMP helps close the gaps between 404

prompt-tuning and fine-tuning.This indicates that 405
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Dataset fine-tuning prompt-tuning SPoT-s SPoT-m ATTEMPT AMP
IMDB 93.1 86.5 85.2 91.8 90.3 88.3
SST-2 90.1 86.8 87.5 87.1 86.3 89.9
Yelp-2 88.4 83.5 81.2 84.9 83.1 83.9
STS-B 86.5 81.2 83.5 85.2 83.4 86.3
MRPC 87.9 69.4 68.5 74.1 73.3 76.6
RTE 71.1 57.8 66.4 68.8 68.1 66.8

SciTail 93.3 87.8 86.2 88.1 86.3 86.9
CB 83.5 71.4 75.3 84.1 81.3 78.9

MultiRC 73.1 64.4 74.1 76.2 70.1 70.7
BoolQ 75.8 63.5 69.4 72.2 68.2 70.1
QNLI 89.5 85.4 84.3 86.2 85.1 83.3
Mean 84.8 76.2 78.3 81.7 79.6 80.2

Table 1: Results of different tuning methods. All results are based on RoBERTa-base. The results are Pearson
Correlation for STS-B , F1 score for MultiRC and accuracy score for others. The ATTEMPT represents shared
ATTEMPT.

Figure 2: Absolute imporvement of DAM over max-pooling.

prompt-tuning method has potential to outper-406

form fine-tuning method through transferring right407

source tasks to target task .408

5.2 DAM409

Figure 2 shows the improvement of performance410

of DAM over max-pooling method. We can find411

that DAM method exceeds max-pooling method412

by a margin. At the best, DAM improves 2.3%413

performance. This shows that DAM could be more414

helpful for improving performance of task.415

6 Analyses416

Scale of PLM. The size of parameter matrix417

WQ,WK and W V is controlled by model dimen-418

sion of PLM. So, we think that AMP is largely419

affected by PLM. We evaluate AMP on small PLM.420

As illustrated in Figure 3, AMP perform worse than421

prompt-tuning .422

Figure 3: Performance of AMP on RoBERTa-small
model

Dimension of queries and keys. We evalu- 423

ate the performance of AMP with different k 424

{512, 256, 64}. As illustrated in Figure 4, the per- 425

formance of AMP decreases as k becomes small. 426

This indicates that it is important to project source 427

prompt into high-dimensional space for perfor- 428
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Figure 4: Performance of AMP on different dimension
of queries and keys

Figure 5: Performance of AMP under different
task sets. C1:{STS-B, MPRC}, C2:{STS-B, MPRC,
QNLI},C3:{STS-B, MRPC, SST-2}

mance of task.429

Different task sets We empirically analyze how430

different task sets affect the performance of AMP.431

The result is shown in Figure 5. We find that the432

performance of the same task change with task sets.433

The right source tasks for a target task are not same434

in different task sets. This shows that proper source435

tasks play an important role for the performance of436

target task.437

Attention visualization. Figure 6 is the attention438

matrix learned by AMP. In general, AMP gives439

a high attention for two same type of tasks, for440

example IMDB and Yelp2, STS-B and MRPC, RTE441

and ScilTail.442

The task MRPC highly attend QNLI, but they are443

different type . Similar phenomenon also appears444

between RTE and QNLI ,STS-B and QNLI. In-445

Figure 6: Attentions between target tasks(row) and
source tasks(column).

versely, even though QNLI is same type with Muli- 446

tiRC , but QNLI is lowly attended by MulitiRC 447

. This shows that AMP can find out the implicit 448

relationships between tasks. 449

7 Related Work 450

Parameter-efficient transfer method 451

.Adapter(Houlsby et al. (2019);Karimi Ma- 452

habadi et al. (2021);Rücklé et al. (2020);Hu et al. 453

(2021)) inserts a small learnable module into 454

the PLM. It only trains the module while keeps 455

PLM fixed during training.BitFit(Zaken et al. 456

(2021)) only updates the biases of PLM for each 457

task.Pfeiffer et al. (2020) proposes AdatperFusion 458

to improve the performance of Adapter and achieve 459

the multi-task learning. 460

Recently, learnable soft-prompt methods(Liu 461

et al. (2021b);Li and Liang (2021);Lester et al. 462

(2021);Zhang et al. (2021)) have gradually replaced 463

early hard-prompt methods(Schick and Schütze 464

(2020);Gao et al. (2020);Shin et al. (2020);Jiang 465

et al. (2020)). 466

In concurrent work, (Vu et al. (2021);Gu et al. 467

(2021);Asai et al. (2022)) also explore prompt trans- 468

fer methods. Gu et al. (2021) pretrain a prompt on 469

10GB data and then transfer the prompt to target 470

task. Vu et al. (2021) requries much computation 471

to find the right source tasks for a target task. How- 472

ever, our work mainly focuses on automatically 473

searching right source tasks for a target task. 474

Multi-task transfer learning methods. Recent 475

approaches train a large model on massive tasks. 476
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Then the model is transferred to unseen tasks477

without updating any parameter (Talmor and478

Berant (2019);Sanh et al. (2021);Wang et al.479

(2022);Mishra et al. (2021);Wei et al. (2021);Gupta480

et al. (2022);He et al. (2021);).They focus on tran-481

ing a unified model which can be applied in any482

NLP task.483

8 Conclusion484

We present a multi-prompt transfer learning ap-485

proach called AMP. AMP exactly computes the486

influence each source task yields for the target task487

and can automatically identify right source tasks488

for the target task. AMP largely improves perfor-489

mance of promp-tuning, while it doesn’t increase490

extra inference cost. AMP can flexibly add new491

task without complete retraining. Additionally, We492

propose a DAM method which can exactly compute493

the attentions between a set of matrices. Finally,494

we visual the attention matrix to show that AMP495

can reveal the implicit relationships between tasks.496

Limitations497

Our method has three main limitations. First, AMP498

has to train twice for each task. This increases train-499

ing time. It combines multiple tasks to train the500

attention component, which increases the training501

difficulties. Secondly, it requires that the maximum502

tokens for each task must be same in the second503

stage. It has to make trade-off between memory504

and performance. Thirdly, the computation cost505

of DAM increases exponential times compared to506

max-pooling method. DAM method is not suit-507

able for computing the attentions between large508

matrices.509
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A Appendix780

A.1 Number of parameters of AMP781

source prompt training. The source prompts782

are trained through general promtp-tuning method.783

The number of parameters to be updated are n ∗ l,784

where n is prompt length and l is dimension of785

PLM.786

Attention component training. The attention787

component ψ consists of three parameter matrices788

WQ ∈ Rd∗k,WK ∈ Rd∗k and W V ∈ Rd∗v, where789

v is equal to d. The number of parameters is 2dk +790

d2.791

Number of parameters of different tuning meth-792

ods As illustrated in Table 2, the number of pa-793

rameters of AMP is less than 1.4% of those of794

Fine-tuning.

method parameters
Fine-tuning 125M

prompt-tuning 77k
SPoT 77k

ATTEMPT 232K
AMP 1.8M

Table 2: Number of parameters of different method
based on RoBERTa-base model. The prompt length is
set 100.

795

A.2 Method Details796

DAM vs max-pooling We visual DAM and max-797

pooling method in Figure 7. We can see that why798

DAM is more exactly calculate the attentions than799

max-pooling.800

Inference process After traing, according to801

section 3.2.2, a group of target prompts are ob-802

tained, each of which corresponds to a task. The803

target prompt is used to inference instead of804

source prompt. Source prompts and the atten-805

tiom componen are not used during inference.This806

brings two benefits: first, it doesn’t increase any807

inference time than prompt-tuning method and808

only increase prompt computation than fine-tuning809

method;second, when a new task is added after810

training, the attention component must be updated.811

Howerver, the inference process of the original812

task is not affected.So, AMP can flexibly add a813

new task.814

A.3 Hyperparameters 815

We conduct search on the hyperparameters includ- 816

ing learning rate {10−4, 5 ∗ 10−4, 10−5, 5 ∗ 10−5}, 817

training epoches {10, 30, 50}, batch size {4, 8}. 818

The search doesn’t be conducted on all tasks. We 819

choose ScilTail and BoolQ to obtain the best hyper- 820

parameter setup. All experiments are performed on 821

a single GPU. The results are reported on valida- 822

tion sets except IMDB, Yelp-2 and ScilTail. Those 823

three tasks are reported on test sets. For each task, 824

we run for 3 times and the best result is reported. 825

AMP The maximum token length for source 826

prompt traning can be different. It is set to 348 827

for MultiRC, 256 for other task. The maximum 828

token length for target prompt traning must keep 829

same for all tasks. We set it to be 384. We set 830

weight decay to be 10−5. The warm step is set to 831

500. 832

SPoT. SPoT-m: (Vu et al. (2021) shows that the 833

task MNLI has good transferability and can im- 834

prove the performance for most task. A source task 835

is firstly obtained on MNLI task and then is used to 836

initialize the target prompt for each task in our task 837

sets. SPoT-s: We obtain a source prompt for each 838

task as prompt-tuning. The similarities between 839

tasks are obtained through the average cosine sim- 840

ilarity between prompt token in (Vu et al. (2021). 841

The other settings is same as those in AMP. 842

ATTEMPT We don’t use the prompt for large- 843

scale datasets as source prompt like Asai et al. 844

(2022). We train a source prompt for each task 845

in our task sets and then transfer them to other 846

tasks. This is in line with AMP. 847

A.4 Task sets 848

To verify whether AMP can automatically identify 849

right source tasks for target task, we sample 11 task 850

from a collection of NLP tasks without any prior 851

bias choice. Among those tasks, 4 tasks are from 852

GLUE and the other 4 tasks are from SuperGLUE. 853

We list those tasks detailedly in Table 3. 854
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Figure 7: DAM vs max-pooling for compting the attention between matrices.

Task soure type metric input type result type
IMDB others Sentiment analysis accuracy single sententce positive/negative
SST-2 GLUE Sentiment analysis accuracy single sentence positive/negative
Yelp-2 others Sentiment analysis accuracy single sentence positive/negative
STS-B GLUE Sentence relatedness Pearson corr. sentence-pair similarity score(1-5)
MRPC GLUE Sentence relatedness accuracy sentence-pair equivalent/not equivalent
RTE GlUE Entailment accuracy text-hypothesis entailment/not entailment

SciTail others Entailment accuracy text-hypothesis entailment/not entailment
CB SuperGLUE Entailment accuracy text-hypothesis entailment/not entailment

MultiRC SuperGLUE Question answering F1
a paragraph
a question

a list of answers
each answer is ture or false

BoolQ SuperGLUE Question answering accuracy question-paragraph pair yes or no
QNLI GLUE Question answering accuracy question-paragraph pair answer is contained in paragraph or not

Table 3: The details of 11 tasks. The metrics are those used in our experiments.
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