AMP:the Attention Mechanism of Multiple Prompts for Transfer Learning

Anonymous ACL submission

Abstract

Prompt transfer learning can significantly im-
prove the performance of prompt-tuning meth-
ods. However, it requires much manual work
to find out the proper source tasks which can
yield positive transfer for the target task. We
propose a two-stage multiple prompts trans-
fer learning approach called AMP to address
this drawback. First, we train a source prompt
for each task as task embedding. Second, we
learn a target prompt for each task which is
an attention-weighted sum of source prompts
through training an attention component. The
attentions control the influence each source task
yields for the target task, through which proper
source tasks for the target task can be auto-
matically identified. A source prompt is a 2D
matrix, but the traditional attention mechanism
only receives vectors. The prior methods em-
ploy pooling or flattened method to transform
the matrix to the vector for computing the at-
tentions between a set of matrices. We pro-
pose a method called DAM which can compute
attentions between matrices directly without
transforming. DAM method can more exactly
compute the attentions between matrices. Wide
experiments demonstrate that AMP is effective
and can improve the performance of prompt-
tuning without any prior search.

1 Introduction

In earlier years, the most commonly used ap-
proach is to fine-tune the entire pretrained lan-
guage models(PLMs) for NLP tasks(Devlin et al.
(2018);Liu et al. (2019);Lewis et al. (2019);Yang
et al. (2019);Bao et al. (2020)). Although fine-
tuning method achieves state-of-the-art perfor-
mance, it requires to update all parameters of PLMs
and store a large specific-task model for each task.

Recently, many studies focus on prompt-
tuning method which learns a small number of
prompt tokens for each task on frozen PLMs(Liu

/ P!IMDB

Pace — Attention —>-_. PLM

: /' component

(a) Architecture of our AMP

P'imps an s A Piwos
P’agp A cee azn Pagp
P’an Anq s ann Panui

(b) Each target prompt is an attention-weighted sum of source prompts

Figure 1: An illustration of our AMP method. (a): We
combine source prompts to learn an attention component
to obtain a target prompt for each task. (b): Each target
prompt is an attention-weighted sum of source prompts.
The learned attentions control the influence each source
task yields for the target task.

et al. (2021b);Chen et al. (2022);Qin and Eisner
(2021);Han et al. (2022)). It only updates the
prompt parameters but keeps PLMs fixed during
training. It merely stores a specified small prompt
for each task and the backbone PLMs are shared
across all tasks. However, prompt-tuning meth-
ods decrease task performance and are sensitive to
prompt initialization(Lester et al. (2021);Liu et al.
(2021a);Gu et al. (2021)).

Some literatures(Vu et al. (2021);Gu et al.
(2021);Asai et al. (2022)) propose prompt trans-
fer learning to solve these shortcomings. When it
starts to learn a target task, it firstly learn a source
prompt on one or more source tasks similar with
the target task and then use the source prompt to ini-
tialize the target prompt. It transfers the knowledge
of source tasks to the target task and improves the
performance of the target task. However, it requires
extensive test or considerable manual computation
to find out source tasks which can yield positive
transfer for a target task.

In this paper,we propose a two-stage multiple

prompts transfer learning approach called AMP
which is illustrated in Figure 1. In first stage, AMP
trains a source prompt for each task as task em-
bedding on a frozen PLM. In second stage, AMP
learns an attention component to compute the at-
tentions between source prompts. Given the atten-
tions, a new prompt for each task is calculated as
attention-weighted sum of source prompts. We call
this prompt as target prompt. The attentions control
influence each source task yields for the target task.
A high attention is learned if a source task can yield
positive influence for the target task. Otherwise,
a low attention is learned. This can make AMP
to automatically identify source tasks which yield
positive transfer for the target task.

The attention mechanism is always exploited
on an input matrix consisted of a set of vec-
tors(Vaswani et al. (2017);Devlin et al. (2018);Liu
et al. (2019);Radford et al. (2018)). It firstly
projects the input matrix into three matrices—
queries,keys and values and then calculates the
attentions between each query vector and all key
vectors through the dot product. Finally, an output
matrix is obtained where each vector is attention-
weighted sum of value vectors. However, this pro-
cedure is unable to compute attentions between
a set of matrices directly. The prior methods
transform the matrix into the vector before com-
puting attentions. The widely used methods are
the pooling method which computes average or
maximum of each dimension to obatin the vec-
tor and flattened method which reshapes a matrix
into a sequence(Asai et al. (2022);Dosovitskiy et al.
(2020); Wang et al. (2021);Chu et al. (2021)). The
pooling method causes some details lost and the
flattened method destroys the original structure.
They can’t express attentions between matrices ex-
actly.

A source prompt is a 2D matrix. We introduce
a new method called DAM to compute the atten-
tions between source prompts. It can more exactly
compute attentions between a set of matrices.

We empirically evaluate our AMP method on
diverse tasks. The experimental results show that
AMP can automatically finds out right source tasks
for target task and largely improves the perfor-
mance of prompt-tuning method.

2 Background

In this section, we give a brief overview of common
methods in NLP. This is followed by our goal.

Task definition. We define a set of n tasks: C' =
{T1,T5,...,T,,}. The aim is to share knowledge
between tasks to improve the performance of each
task with low training and storing cost.

Transfer learning. A masked language model is
pretrained on large corpus of unlabelled text(called
PLM). When learning a specified task, PLM is
transferred to the task and the full parameters
of PLM are fine-tuned on the task(Devlin et al.
(2018);Liu et al. (2019);Yang et al. (2019);Lan et al.
(2019);He et al. (2020)). An independent model is
obtained for each task.

01 < argmin L(11;6)
0

0y, < argmin L(T),;0)
0

where, [, denotes as the loss function and 6 repre-
sents the parameters of PLM.

It aims to make each task benefit from the knowl-
edge stored in PLM.

Multi-task learning. All tasks are trained simul-
taneously on a PLM((Liu et al. (2016);Liu et al.
(2017); Ruder (2017);Sanh et al. (2019);Zhang and
Yang (2021))). A shared model is learned for all
tasks.

n
0 argminz L(T;;0)
o =

Only a shared mode is stored for all tasks. More
importantly, it can make all tasks benefit from each
other. However, all tasks have to be prepared well
before training. If a new task is added after training,
it will have to access all tasks to retrain the model
from scratch.

Prompt-tuning. It adds some prompt tokens into
the task. Then the task is fed into a PLM to train.
Only those prompt parameters are updated during
training, but the PLM is kept fixed. It learns a sep-
arated prompt for each task, but PLM is shared
across all tasks((Li and Liang (2021);Liu et al.
(2021b);Qin and Eisner (2021)).

¢1 < argmin L(T1; ¢,0)
@

Gn < argmin L(Tm b, 9)
@

where, ¢ denotes the prompt parameters. ¢ is much
smaller than . So, prompt-tuning does with low
training and storing cost. However, it always per-
forms not better than full-parameters tuning and
is sensitive to prompt initialization(Lester et al.
(2021);Gu et al. (2021)).

Prompt transfer learning. When to learn a
prompt for a target task 77 , it firstly learns a source
prompt ¢ on one or more tasks and then uses ¢’

to initialize the target prompt(Vu et al. (2021);Gu
et al. (2021);Sanh et al. (2021);Min et al. (2021)).

.=

1<j<m,j#i

¢ <+ argmin L(Ts, 0)
¢

T;,me{l,...,n}

/

¢i = argmin L(T3; ¢ ,0)
6

Vu et al. (2021) shows that when target prompt is
initialized by right source prompt, the performance
of prompt-tuning methods can be largely improved.

It is, however, difficult to find out the right source
tasks for a target task. Because the relationships be-
tween tasks are extremely complexed. Intuitively,
source tasks which are same type as target task can
yield positive transfer for target task. But Vu et al.
(2021) suggests that some source tasks which are
different type with target task can also yield posi-
tive transfer. More seriously, even through some
source tasks are same type with target task, they
yield negative transfer. It requires to test source
task one by one to find out a set of right source
tasks for the target task.

Vu et al. (2021) proposes a method which in-
terprets learned prompt for each task as task em-
bedding and similarity between tasks is defined as
the cosine similarity score between task prompts.
Vu et al. (2021) shows that the source tasks which
have high similarity scores with the target task can
yield positive transfer in general. It doesn’t require
massive test, but it requires much manual work to
compute the similarity scores between target task
and each source task . Additionally, negative trans-
fer still occurs between tasks with high similarity
scores.

ATTEMPT(Asai et al. (2022)) can automatically
find out proper source prompts for each example
in target task through computing the attention be-
tween the example embedding and source prompts.
However, it can’t express the relationships between
the whole target task and source tasks. Addition-

ally, it has to retrain all tasks when a new task is
added after training.

Our goal. We hope to not only achieve to trans-
fer knowledge from source tasks to target task, but
also how much influence each source task yields
for target task is exactly expressed. We hope to au-
tomatically identify right source tasks which yield
positive transfer for target task. We also hope to
flexibly add a new task.

3 Method

In this section, we show our AMP method in detail.
AMP trains a source prompt for each task in the first
stage(§3.1). Then it combines all source prompts
to train an attention component, through which a
target prompt for each task is learned(§3.2). We
propose DAM method to compute the attention
of matrices during learning target prompt(§3.2.1).
Subsequently, we give an efficient implementation
method of DAM detailedly(§3.2.2). Finally, we
show inference process of AMP(§3.3) and how to
add a new task(§3.4).

3.1 Source Prompt

In first stage, we train a source prompt for each of n
tasks on a frozen PLM as the task embedding. The
length of all source prompts is set to be same. We
obtain n source prompts { P, ..., P, },where P; €
R™? [is prompt length and d is model dimension
of PLM. n prompts are packaged into a 3D matrix
Pc Rn*l*d'

3.2 Target Prompt

In second stage, we put an attention component ¢
on top of PLM. The attention component takes P
as the input. We calculate the attentions between
source prompts through /. Then we obtain n target

prompts { P;, ..., P, }, each of which is an attention-
weighted sum of source prompts as followed.
/
Pl ail] ... Qip P1
P;L Gnl Qnn P,

Each task is prefixed with a correspond target
prompt and then the task is fed into the PLM to train
again. During training, only v is updated, while
the source prompts P and PLM are kept fixed. v
is trained by all tasks simultaneously.

The attentions represent the influence each
source task yields for target task. A high atten-
tion is learned if a source task can yield positive

influence for the target task. Otherwise, a low at-
tention is learned.

3.2.1 Attention Component

The attention component) consists of three projec-
tion parameter matrices W% € R™F WK ¢ Ré+*
and WV € R® where d is the model dimension
of PLM, £k is the dimension of queries and keys,
v is the dimension of values and v is equal to d .
The input P is projected into three 3D matrices—
queries Q € R™* keys K € R™** and values
V € R™ where each query and key are a 2D
matrix.

We propose DAM method to calculate the atten-
tion of a query-key pair (¢, k).

l l
atten(q, k) = %2 Z Z(ai ® bj)

where,) represents dot product, a; and b; denote
a vector in ¢ and k, respectively. It calculates the
dot product between each vector in query ¢ and
that in key £, so it is more exact. It is illustrated in
Figure 7.

3.2.2 Implementation Details of DAM
DAM is implemented in following 4 steps.

Firstly, we reshape P € R™*? into matrix P’ €
R™* where m = n . P is linearly projected
to obtain the matrix (), K and V' .

PwWe =QeRm™*
PWE = K ¢ R™*
PWY =V eR™

Secondly, We calculate the attentions between

queries and keys.

S is divide into n * n blocks,where the size of each
blockis *1.

k1 kn
| bn o bin
S =

the block b;; represents dot products between each
vector in query ¢; and that in key £;.

... l

1 kj k]

q; (@11 - ai
bi]’ = .
l

q; \an - ay

Thirdly, we leverage convolution operator on S
to get the sum of each block. The size of convolu-
tion kernel is set to [x [, which is same as that of
block. The stride size is set to [. The kernel value
is set tol. We obtain a matrix S € R™". Then S’
is scaled by 1/1%. A softmax function is leveraged
onS'.

ki - kn
g1 fa11 - Qln
S =
dn \anl Gnn

where SZ'- ; 1s the attention between query ¢; and key
k;.

Fourthly, V' € R™*% is reshaped into V' &
R™v_ Then we multiply V' by S’ to obatin the
output matrix O € R™"*V | where n target prompts
is earned and the length and dimension of target
prompt are [and v,respectively. Each target prompt
corresponds a task.

3.3 Inference

After training, we obtain a target prompt for each
task . The source prompts and the attention com-
ponent are no longer needed. The target prompt is
concatenated to the input embedding to form the
input sequence. Then the input sequence is fed
into PLM to acquire the final result. The inference
process is same as in prompt-tuning. AMP doesn’t
increase extra inference cost.

3.4 Adding a new task

When a new task is added after training original
tasks, AMP firstly learns a source prompt for the
new task and then combines all source prompts
to train the attention component to obtain a target
prompt for the new task. As the attention compo-
nent is not used during inference, the inference pro-
cess of original tasks isn’t affected. AMP doesn’t
require complete re-training when a new task is
added.

4 [Experiments

We conduct experiments on 11 NLP tasks across
diverse types to evaluate the performance of our
AMP method in this section. Those tasks and the re-
lated datasets are shown in §4.1. The experimental
setup is described in §4.2.

4.1 Tasks

We briefly list the tasks used in our experiment. A
detailed description about those tasks is shown in
Appendix §A 4.

Sentiment analysis predicts whether a sen-
tence to be positive or negative: IMDB(Maas
et al. (2011)), SST-2(Socher et al. (2013)), Yelp-
2(Zhang et al. (2015)). Sentence relatedness
predicts whether one sentence is similar with
the other or not: STS-B(Cer et al. (2017),
MRPC(Dolan and Brockett (2005)). Entailment
predicts whether two sentences entail or contra-
dict: RTE(Giampiccolo et al. (2007)), SciTail(Khot
et al. (2018)), CB(De Marneffe et al. (2019)).
Question answering predicts the right answers
for some questions after reading a passage: Mul-
tiRC(Khashabi et al. (2018)), BoolQ(Clark et al.
(2019)), QNLI(Wang et al. (2018)).

4.2 Experimental Setup

Source prompt training. We use RoBERTa-
base(Liu et al. (2019)) as PLM. We adopt the
AdamW optimizer. The learning rate is set 10~*
with a linear decay. We set the maximum training
epochs to 30 with early stopping. The length of
prompt tokens is set 100 for all tasks. Each prompt
is initialized by randomly sampling tokens from
common vocabularies.

Attention component training. We still use
RoBERTa-base as PLM. The maximum training
epochs is set to 10. The learning rate is set 5+ 1075
with a linear decay. The maximum token length is
set to 384 for all tasks. We combine the datasets of
all tasks together to train the attention component
using examples-proportional strategy(Raffel et al.
(2020)), where the maximum training examples are
limited to 100K for each task.

In attention component, v is set to 768 which is
the model dimension of RoBERTa-base and % is
set to 768.

Baselines. We compare AMP with fine-tuning,
prompt-tuning, SPoT and ATTEMPT. SPoT adopts

two strategies: SPoT-s and SPoT-m. SPoT-s initial-
izes target prompt with similarity-weight average
of all source prompts. SPoT-m initializes target
prompt with a source prompt learned on MNLI
task which is proven to be able to improve the per-
formance for most target tasks (Vu et al. (2021)).

Max-pooling method for computing attentions.
We make a comparison between DAM method and
max-pooling method for computing attentions be-
tween source prompts. The max-pooling method
takes the same steps as DAM except the computa-
tion of attentions. It firstly obtains the query matri-
ces, key matrices and value matrices as the first step
of DAM. Then each query and key is translated into
a vector through performing max-pool operation
for each dimension. The dot product between each
query and key is calculated to obtain the attention
matrix. The following steps are same as the DAM
method.

5 Result

We show the main result in §5.1. We present the
the effectiveness of DAM in §5.2.

5.1 AMP

As illustrated in Table 1, AMP outperforms prompt-
tuning, SPoT-s and ATTEMPT. There are five find-
ings as followed.

(1) AMP outperforms prompt-tuning by a large
margin. AMP improves performance for 9 out of
11 tasks. This shows that AMP can find out right
source tasks for most target tasks.

(2) AMP performs better than SPoT-s. AMP
doesn’t achieve improvement of performance for 2
out of 11 tasks, but SPoT-s doesn’t increase perfor-
mance for 5 tasks. This shows that the attentions
learned dynamically are more reliable than constant
similarity scores for finding right source tasks.

(3) AMP performs lower than SPoT-m. AMP
doesn’t conduct prior massive search which is re-
quired to SPoT-m. AMP outperforms ATTEMPT.

(4)We observe that AMP is more beneficial for
small datasets than large datasets. AMP achieves
improvement of 6.3% for MultiRC(5.1k) and 6.6%
for BoolQ(9.4k) , but it only increases 1.8% and
3.1% performance for IMDB(25k) and SST-2(67k)
respectively . This shows that AMP can find more
right source tasks for small task.

(5)We also find that AMP can match fine-tuning
for 2 tasks. AMP helps close the gaps between
prompt-tuning and fine-tuning.This indicates that

Dataset | fine-tuning | prompt-tuning | SPoT-s | SPoT-m | ATTEMPT | AMP
IMDB 93.1 86.5 85.2 91.8 90.3 88.3
SST-2 90.1 86.8 87.5 87.1 86.3 89.9
Yelp-2 88.4 83.5 81.2 84.9 83.1 83.9
STS-B 86.5 81.2 83.5 85.2 834 86.3
MRPC 87.9 69.4 68.5 74.1 73.3 76.6
RTE 71.1 57.8 66.4 68.8 68.1 66.8
SciTail 93.3 87.8 86.2 88.1 86.3 86.9
CB 83.5 71.4 75.3 84.1 81.3 78.9
MultiRC 73.1 64.4 74.1 76.2 70.1 70.7
BoolQ 75.8 63.5 69.4 72.2 68.2 70.1
QNLI 89.5 854 84.3 86.2 85.1 83.3
Mean 84.8 76.2 78.3 81.7 79.6 80.2

Table 1: Results of different tuning methods. All results are based on RoBERTa-base. The results are Pearson
Correlation for STS-B , F1 score for MultiRC and accuracy score for others. The ATTEMPT represents shared

ATTEMPT.

Abs.

T T T T T
IMDB SST-2 Yelp-2 STS-B MRPC

T T T
RTE SciTail CcB
dataset

T T T
MultiRC BoolQ QNLI

Figure 2: Absolute imporvement of DAM over max-pooling.

prompt-tuning method has potential to outper-
form fine-tuning method through transferring right
source tasks to target task .

5.2 DAM

Figure 2 shows the improvement of performance
of DAM over max-pooling method. We can find
that DAM method exceeds max-pooling method
by a margin. At the best, DAM improves 2.3%
performance. This shows that DAM could be more
helpful for improving performance of task.

6 Analyses

Scale of PLM. The size of parameter matrix
W WX and WV is controlled by model dimen-
sion of PLM. So, we think that AMP is largely
affected by PLM. We evaluate AMP on small PLM.
As illustrated in Figure 3, AMP perform worse than
prompt-tuning .

80
—8— AMP
Prompt-tuning

70 4

Accuracy(%)

.-_*___‘_\/

60+

50

T T T T
IMDB MRPC SciTail BoolQ

dataset

Figure 3: Performance of AMP on RoBERTa-small
model

Dimension of queries and keys. We evalu-
ate the performance of AMP with different &
{512,256, 64}. As illustrated in Figure 4, the per-
formance of AMP decreases as k becomes small.
This indicates that it is important to project source
prompt into high-dimensional space for perfor-

100
—o— k=512

k=256
—— k=64

90 4

80

Accuracy(%)

70 4

60

T T T T
SST-2 MRPC ScilTail BoolQ
dataset

Figure 4: Performance of AMP on different dimension
of queries and keys

100 4

Accuracy(%)

STS-B

MRPC
dataset

Figure 5: Performance of AMP under different
task sets. C1:{STS-B, MPRC}, C2:{STS-B, MPRC,
QNLI},C3:{STS-B, MRPC, SST-2}

mance of task.

Different task sets We empirically analyze how
different task sets affect the performance of AMP.
The result is shown in Figure 5. We find that the
performance of the same task change with task sets.
The right source tasks for a target task are not same
in different task sets. This shows that proper source
tasks play an important role for the performance of
target task.

Attention visualization. Figure 6 is the attention
matrix learned by AMP. In general, AMP gives
a high attention for two same type of tasks, for
example IMDB and Yelp2, STS-B and MRPC, RTE
and ScilTail.

The task MRPC highly attend QNLI, but they are
different type . Similar phenomenon also appears
between RTE and QNLI ,STS-B and QNLI. In-

IMDB
S5T-2

Yelp-2

STS-B
0.25

MPRC
0.20

SciTail
0.15

MultiRC
0.10

BoolQ
aNLI 0.05

.

- EE B
&

target prompt
E
m

o
o &
ER

MPRC
MultiRC
BoolQ
QNLI

o
0
&

Yelp-2

source prompt

Figure 6: Attentions between target tasks(row) and
source tasks(column).

versely, even though QNLI is same type with Muli-
tiRC , but QNLI is lowly attended by MulitiRC
. This shows that AMP can find out the implicit
relationships between tasks.

7 Related Work

Parameter-efficient transfer method
.Adapter(Houlsby et al. (2019);Karimi Ma-
habadi et al. (2021);Riicklé et al. (2020);Hu et al.
(2021)) inserts a small learnable module into
the PLM. It only trains the module while keeps
PLM fixed during training.BitFit(Zaken et al.
(2021)) only updates the biases of PLM for each
task.Pfeiffer et al. (2020) proposes AdatperFusion
to improve the performance of Adapter and achieve
the multi-task learning.

Recently, learnable soft-prompt methods(Liu
et al. (2021b);Li and Liang (2021);Lester et al.
(2021);Zhang et al. (2021)) have gradually replaced
early hard-prompt methods(Schick and Schiitze
(2020);Gao et al. (2020);Shin et al. (2020);Jiang
et al. (2020)).

In concurrent work, (Vu et al. (2021);Gu et al.
(2021);Asai et al. (2022)) also explore prompt trans-
fer methods. Gu et al. (2021) pretrain a prompt on
10GB data and then transfer the prompt to target
task. Vu et al. (2021) requries much computation
to find the right source tasks for a target task. How-
ever, our work mainly focuses on automatically
searching right source tasks for a target task.

Multi-task transfer learning methods. Recent
approaches train a large model on massive tasks.

Then the model is transferred to unseen tasks
without updating any parameter (Talmor and
Berant (2019);Sanh et al. (2021);Wang et al.
(2022);Mishra et al. (2021);Wei et al. (2021);Gupta
et al. (2022);He et al. (2021);).They focus on tran-
ing a unified model which can be applied in any
NLP task.

8 Conclusion

We present a multi-prompt transfer learning ap-
proach called AMP. AMP exactly computes the
influence each source task yields for the target task
and can automatically identify right source tasks
for the target task. AMP largely improves perfor-
mance of promp-tuning, while it doesn’t increase
extra inference cost. AMP can flexibly add new
task without complete retraining. Additionally, We
propose a DAM method which can exactly compute
the attentions between a set of matrices. Finally,
we visual the attention matrix to show that AMP
can reveal the implicit relationships between tasks.

Limitations

Our method has three main limitations. First, AMP
has to train twice for each task. This increases train-
ing time. It combines multiple tasks to train the
attention component, which increases the training
difficulties. Secondly, it requires that the maximum
tokens for each task must be same in the second
stage. It has to make trade-off between memory
and performance. Thirdly, the computation cost
of DAM increases exponential times compared to
max-pooling method. DAM method is not suit-
able for computing the attentions between large
matrices.

References

Akari Asai, Mohammadreza Salehi, Matthew E Peters,
and Hannaneh Hajishirzi. 2022. Attempt: Parameter-
efficient multi-task tuning via attentional mixtures
of soft prompts. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6655-6672.

Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan
Yang, Xiaodong Liu, Yu Wang, Jianfeng Gao, Song-
hao Piao, Ming Zhou, et al. 2020. Unilmv2: Pseudo-
masked language models for unified language model
pre-training. In International conference on machine
learning, pages 642—-652. PMLR.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017

task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng,
Yunzhi Yao, Chuangi Tan, Fei Huang, Luo Si, and
Huajun Chen. 2022. Knowprompt: Knowledge-
aware prompt-tuning with synergistic optimization
for relation extraction. In Proceedings of the ACM
Web Conference 2022, pages 2778-2788.

Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang,
Haibing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua
Shen. 2021. Twins: Revisiting the design of spatial
attention in vision transformers. Advances in Neural
Information Processing Systems, 34:9355-9366.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Marie-Catherine De Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Inves-
tigating projection in naturally occurring discourse.
In proceedings of Sinn und Bedeutung, volume 23,
pages 107-124.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Bill Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.

In Third International Workshop on Paraphrasing
(IWP2005).

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.
An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Tianyu Gao, Adam Fisch, and Dangi Chen. 2020.
Making pre-trained language models better few-shot
learners. arXiv preprint arXiv:2012.15723.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
William B Dolan. 2007. The third pascal recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL workshop on textual entailment and
paraphrasing, pages 1-9.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.
2021. Ppt: Pre-trained prompt tuning for few-shot
learning. arXiv preprint arXiv:2109.04332.

Shashank Gupta, Subhabrata Mukherjee, Krishan Sub-
udhi, Eduardo Gonzalez, Damien Jose, Ahmed H
Awadallah, and Jianfeng Gao. 2022. Sparsely acti-
vated mixture-of-experts are robust multi-task learn-
ers. arXiv preprint arXiv:2204.07689.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and
Maosong Sun. 2022. Ptr: Prompt tuning with rules
for text classification. Al Open, 3:182—192.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
arXiv preprint arXiv:2110.04366.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790-2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423—438.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural
Information Processing Systems, 34:1022-1035.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 252-262.

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.
Scitail: A textual entailment dataset from science
question answering. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang.
2016. Recurrent neural network for text classi-
fication with multi-task learning. arXiv preprint
arXiv:1605.05101.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017.
Adversarial multi-task learning for text classification.
arXiv preprint arXiv:1704.05742.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam,
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2021a.
P-tuning v2: Prompt tuning can be comparable to
fine-tuning universally across scales and tasks. arXiv
preprint arXiv:2110.07602.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. Gpt
understands, too. arXiv preprint arXiv:2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Andrew Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th annual meeting of the associ-
ation for computational linguistics: Human language
technologies, pages 142—-150.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2021. Metaicl: Learning to learn in
context. arXiv preprint arXiv:2110.15943.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2021. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
arXiv preprint arXiv:2104.08773.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2020.
Adapterfusion: Non-destructive task composition for
transfer learning. arXiv preprint arXiv:2005.00247.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying Ims with mixtures of soft prompts.
arXiv preprint arXiv:2104.06599.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485-5551.

Andreas Riicklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2020. Adapterdrop: On the effi-
ciency of adapters in transformers. arXiv preprint
arXiv:2010.11918.

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

Victor Sanh, Thomas Wolf, and Sebastian Ruder. 2019.
A hierarchical multi-task approach for learning em-
beddings from semantic tasks. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6949-6956.

Timo Schick and Hinrich Schiitze. 2020. Exploit-
ing cloze questions for few shot text classification
and natural language inference. arXiv preprint
arXiv:2001.07676.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with
automatically generated prompts. arXiv preprint
arXiv:2010.15980.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631-1642.

Alon Talmor and Jonathan Berant. 2019. Multiqa:
An empirical investigation of generalization and
transfer in reading comprehension. arXiv preprint
arXiv:1905.13453.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and
Daniel Cer. 2021. Spot: Better frozen model adap-
tation through soft prompt transfer. arXiv preprint
arXiv:2110.07904.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

10

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan,
Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and
Ling Shao. 2021. Pyramid vision transformer: A ver-
satile backbone for dense prediction without convolu-
tions. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 568—578.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Sel-
van Dhanasekaran, Atharva Naik, David Stap, et al.
2022. Benchmarking generalization via in-context
instructions on 1,600+ language tasks. arXiv e-prints,
pages arXiv—2204.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv preprint arXiv:2106.10199.

Ningyu Zhang, Luogqiu Li, Xiang Chen, Shumin Deng,
Zhen Bi, Chuangi Tan, Fei Huang, and Huajun
Chen. 2021. Differentiable prompt makes pre-trained
language models better few-shot learners. arXiv
preprint arXiv:2108.13161.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28.

Yu Zhang and Qiang Yang. 2021. A survey on multi-
task learning. IEEE Transactions on Knowledge and
Data Engineering, 34(12):5586-5609.

A Appendix

A.1 Number of parameters of AMP

source prompt training. The source prompts
are trained through general promtp-tuning method.
The number of parameters to be updated are n * [,
where n is prompt length and [is dimension of
PLM.

Attention component training. The attention
component) consists of three parameter matrices
W@ e R*F WE € R and WV € R, where
v is equal to d. The number of parameters is 2dk +
d2.

Number of parameters of different tuning meth-
ods As illustrated in Table 2, the number of pa-
rameters of AMP is less than 1.4% of those of
Fine-tuning.

method parameters
Fine-tuning 125M
prompt-tuning 77k
SPoT 77k
ATTEMPT 232K
AMP 1.8M

Table 2: Number of parameters of different method
based on RoBERTa-base model. The prompt length is
set 100.

A.2 Method Details

DAM vs max-pooling We visual DAM and max-
pooling method in Figure 7. We can see that why
DAM is more exactly calculate the attentions than
max-pooling.

Inference process After traing, according to
section 3.2.2, a group of target prompts are ob-
tained, each of which corresponds to a task. The
target prompt is used to inference instead of
source prompt. Source prompts and the atten-
tiom componen are not used during inference.This
brings two benefits: first, it doesn’t increase any
inference time than prompt-tuning method and
only increase prompt computation than fine-tuning
method;second, when a new task is added after
training, the attention component must be updated.
Howerver, the inference process of the original
task is not affected.So, AMP can flexibly add a
new task.

11

A.3 Hyperparameters

We conduct search on the hyperparameters includ-
ing learning rate {10™%,5% 107%,107°,5 % 1075},
training epoches {10, 30,50}, batch size {4, 8}.
The search doesn’t be conducted on all tasks. We
choose ScilTail and BoolQ to obtain the best hyper-
parameter setup. All experiments are performed on
a single GPU. The results are reported on valida-
tion sets except IMDB, Yelp-2 and ScilTail. Those
three tasks are reported on test sets. For each task,
we run for 3 times and the best result is reported.

AMP The maximum token length for source
prompt traning can be different. It is set to 348
for MultiRC, 256 for other task. The maximum
token length for target prompt traning must keep
same for all tasks. We set it to be 384. We set
weight decay to be 10~°. The warm step is set to
500.

SPoT. SPoT-m: (Vu et al. (2021) shows that the
task MNLI has good transferability and can im-
prove the performance for most task. A source task
is firstly obtained on MNLI task and then is used to
initialize the target prompt for each task in our task
sets. SPoT-s: We obtain a source prompt for each
task as prompt-tuning. The similarities between
tasks are obtained through the average cosine sim-
ilarity between prompt token in (Vu et al. (2021).
The other settings is same as those in AMP.

ATTEMPT We don’t use the prompt for large-
scale datasets as source prompt like Asai et al.
(2022). We train a source prompt for each task
in our task sets and then transfer them to other
tasks. This is in line with AMP.

A.4 Task sets

To verify whether AMP can automatically identify
right source tasks for target task, we sample 11 task
from a collection of NLP tasks without any prior
bias choice. Among those tasks, 4 tasks are from
GLUE and the other 4 tasks are from SuperGLUE.
We list those tasks detailedly in Table 3.

(a) DAM

max-pooling

key

\
-
i
i

max-pooling

(b) max-pooling

Figure 7: DAM vs max-pooling for compting the attention between matrices.

Task soure type metric input type result type
IMDB others Sentiment analysis accuracy single sententce positive/negative
SST-2 GLUE Sentiment analysis accuracy single sentence positive/negative
Yelp-2 others Sentiment analysis accuracy single sentence positive/negative
STS-B GLUE Sentence relatedness | Pearson corr. sentence-pair similarity score(1-5)
MRPC GLUE Sentence relatedness accuracy sentence-pair equivalent/not equivalent
RTE GIUE Entailment accuracy text-hypothesis entailment/not entailment
SciTail others Entailment accuracy text-hypothesis entailment/not entailment
CB SuperGLUE Entailment accuracy text-hypothesis entailment/not entailment
a paragraph
MultiRC | SuperGLUE | Question answering F1 a question each answer is ture or false
a list of answers
BoolQ | SuperGLUE | Question answering accuracy question-paragraph pair yes or no
QNLI GLUE Question answering accuracy question-paragraph pair | answer is contained in paragraph or not

Table 3: The details of 11 tasks. The metrics are those used in our experiments.

	Introduction
	Background
	Method
	Source Prompt
	Target Prompt
	Attention Component
	Implementation Details of DAM

	Inference
	Adding a new task

	Experiments
	Tasks
	Experimental Setup

	Result
	AMP
	DAM

	Analyses
	Related Work
	Conclusion
	Appendix
	Number of parameters of AMP
	Method Details
	Hyperparameters
	Task sets

