
AMP:the Attention Mechanism of Multiple Prompts for Transfer Learning

Anonymous ACL submission

Abstract

Prompt transfer learning can significantly im-001
prove the performance of prompt-tuning meth-002
ods. However, it requires much manual work003
to find out the proper source tasks which can004
yield positive transfer for the target task. We005
propose a two-stage multiple prompts trans-006
fer learning approach called AMP to address007
this drawback. First, we train a source prompt008
for each task as task embedding. Second, we009
learn a target prompt for each task which is010
an attention-weighted sum of source prompts011
through training an attention component. The012
attentions control the influence each source task013
yields for the target task, through which proper014
source tasks for the target task can be auto-015
matically identified. A source prompt is a 2D016
matrix, but the traditional attention mechanism017
only receives vectors. The prior methods em-018
ploy pooling or flattened method to transform019
the matrix to the vector for computing the at-020
tentions between a set of matrices. We pro-021
pose a method called DAM which can compute022
attentions between matrices directly without023
transforming. DAM method can more exactly024
compute the attentions between matrices. Wide025
experiments demonstrate that AMP is effective026
and can improve the performance of prompt-027
tuning without any prior search.028

1 Introduction029

In earlier years, the most commonly used ap-030

proach is to fine-tune the entire pretrained lan-031

guage models(PLMs) for NLP tasks(Devlin et al.032

(2018);Liu et al. (2019);Lewis et al. (2019);Yang033

et al. (2019);Bao et al. (2020)). Although fine-034

tuning method achieves state-of-the-art perfor-035

mance, it requires to update all parameters of PLMs036

and store a large specific-task model for each task.037

Recently, many studies focus on prompt-038

tuning method which learns a small number of039

prompt tokens for each task on frozen PLMs(Liu040

Figure 1: An illustration of our AMP method. (a): We
combine source prompts to learn an attention component
to obtain a target prompt for each task. (b): Each target
prompt is an attention-weighted sum of source prompts.
The learned attentions control the influence each source
task yields for the target task.

et al. (2021b);Chen et al. (2022);Qin and Eisner 041

(2021);Han et al. (2022)). It only updates the 042

prompt parameters but keeps PLMs fixed during 043

training. It merely stores a specified small prompt 044

for each task and the backbone PLMs are shared 045

across all tasks. However, prompt-tuning meth- 046

ods decrease task performance and are sensitive to 047

prompt initialization(Lester et al. (2021);Liu et al. 048

(2021a);Gu et al. (2021)). 049

Some literatures(Vu et al. (2021);Gu et al. 050

(2021);Asai et al. (2022)) propose prompt trans- 051

fer learning to solve these shortcomings. When it 052

starts to learn a target task, it firstly learn a source 053

prompt on one or more source tasks similar with 054

the target task and then use the source prompt to ini- 055

tialize the target prompt. It transfers the knowledge 056

of source tasks to the target task and improves the 057

performance of the target task. However, it requires 058

extensive test or considerable manual computation 059

to find out source tasks which can yield positive 060

transfer for a target task. 061

In this paper,we propose a two-stage multiple 062

1



prompts transfer learning approach called AMP063

which is illustrated in Figure 1. In first stage, AMP064

trains a source prompt for each task as task em-065

bedding on a frozen PLM. In second stage, AMP066

learns an attention component to compute the at-067

tentions between source prompts. Given the atten-068

tions, a new prompt for each task is calculated as069

attention-weighted sum of source prompts. We call070

this prompt as target prompt. The attentions control071

influence each source task yields for the target task.072

A high attention is learned if a source task can yield073

positive influence for the target task. Otherwise,074

a low attention is learned. This can make AMP075

to automatically identify source tasks which yield076

positive transfer for the target task.077

The attention mechanism is always exploited078

on an input matrix consisted of a set of vec-079

tors(Vaswani et al. (2017);Devlin et al. (2018);Liu080

et al. (2019);Radford et al. (2018)). It firstly081

projects the input matrix into three matrices–082

queries,keys and values and then calculates the083

attentions between each query vector and all key084

vectors through the dot product. Finally, an output085

matrix is obtained where each vector is attention-086

weighted sum of value vectors. However, this pro-087

cedure is unable to compute attentions between088

a set of matrices directly. The prior methods089

transform the matrix into the vector before com-090

puting attentions. The widely used methods are091

the pooling method which computes average or092

maximum of each dimension to obatin the vec-093

tor and flattened method which reshapes a matrix094

into a sequence(Asai et al. (2022);Dosovitskiy et al.095

(2020);Wang et al. (2021);Chu et al. (2021)). The096

pooling method causes some details lost and the097

flattened method destroys the original structure.098

They can’t express attentions between matrices ex-099

actly.100

A source prompt is a 2D matrix. We introduce101

a new method called DAM to compute the atten-102

tions between source prompts. It can more exactly103

compute attentions between a set of matrices.104

We empirically evaluate our AMP method on105

diverse tasks. The experimental results show that106

AMP can automatically finds out right source tasks107

for target task and largely improves the perfor-108

mance of prompt-tuning method.109

2 Background110

In this section, we give a brief overview of common111

methods in NLP. This is followed by our goal.112

Task definition. We define a set of n tasks: C = 113

{T1, T2, ..., Tn}. The aim is to share knowledge 114

between tasks to improve the performance of each 115

task with low training and storing cost. 116

Transfer learning. A masked language model is 117

pretrained on large corpus of unlabelled text(called 118

PLM). When learning a specified task, PLM is 119

transferred to the task and the full parameters 120

of PLM are fine-tuned on the task(Devlin et al. 121

(2018);Liu et al. (2019);Yang et al. (2019);Lan et al. 122

(2019);He et al. (2020)). An independent model is 123

obtained for each task. 124

θ1 ← argmin
θ

L(T1; θ)

...

θn ← argmin
θ

L(Tn; θ)

125

where, L denotes as the loss function and θ repre- 126

sents the parameters of PLM. 127

It aims to make each task benefit from the knowl- 128

edge stored in PLM. 129

Multi-task learning. All tasks are trained simul- 130

taneously on a PLM((Liu et al. (2016);Liu et al. 131

(2017); Ruder (2017);Sanh et al. (2019);Zhang and 132

Yang (2021))). A shared model is learned for all 133

tasks. 134

θ
′ ← argmin

θ

n∑
i=1

L(Ti; θ) 135

Only a shared mode is stored for all tasks. More 136

importantly, it can make all tasks benefit from each 137

other. However, all tasks have to be prepared well 138

before training. If a new task is added after training, 139

it will have to access all tasks to retrain the model 140

from scratch. 141

Prompt-tuning. It adds some prompt tokens into 142

the task. Then the task is fed into a PLM to train. 143

Only those prompt parameters are updated during 144

training, but the PLM is kept fixed. It learns a sep- 145

arated prompt for each task, but PLM is shared 146

across all tasks((Li and Liang (2021);Liu et al. 147

(2021b);Qin and Eisner (2021)). 148

ϕ1 ← argmin
ϕ

L(T1;ϕ, θ)

...

ϕn ← argmin
ϕ

L(Tn;ϕ, θ)

149

2



where, ϕ denotes the prompt parameters. ϕ is much150

smaller than θ. So, prompt-tuning does with low151

training and storing cost. However, it always per-152

forms not better than full-parameters tuning and153

is sensitive to prompt initialization(Lester et al.154

(2021);Gu et al. (2021)).155

Prompt transfer learning. When to learn a156

prompt for a target task Ti , it firstly learns a source157

prompt ϕ
′

on one or more tasks and then uses ϕ
′

158

to initialize the target prompt(Vu et al. (2021);Gu159

et al. (2021);Sanh et al. (2021);Min et al. (2021)).160

Ts =
⋃

1≤j≤m,j ̸=i

Tj ,m ∈ {1, . . . , n}

ϕ
′ ← argmin

ϕ
L(Ts, θ)

ϕi ← argmin
ϕ

L(Ti;ϕ
′
, θ)

161

Vu et al. (2021) shows that when target prompt is162

initialized by right source prompt, the performance163

of prompt-tuning methods can be largely improved.164

It is, however, difficult to find out the right source165

tasks for a target task. Because the relationships be-166

tween tasks are extremely complexed. Intuitively,167

source tasks which are same type as target task can168

yield positive transfer for target task. But Vu et al.169

(2021) suggests that some source tasks which are170

different type with target task can also yield posi-171

tive transfer. More seriously, even through some172

source tasks are same type with target task, they173

yield negative transfer. It requires to test source174

task one by one to find out a set of right source175

tasks for the target task.176

Vu et al. (2021) proposes a method which in-177

terprets learned prompt for each task as task em-178

bedding and similarity between tasks is defined as179

the cosine similarity score between task prompts.180

Vu et al. (2021) shows that the source tasks which181

have high similarity scores with the target task can182

yield positive transfer in general. It doesn’t require183

massive test, but it requires much manual work to184

compute the similarity scores between target task185

and each source task . Additionally, negative trans-186

fer still occurs between tasks with high similarity187

scores.188

ATTEMPT(Asai et al. (2022)) can automatically189

find out proper source prompts for each example190

in target task through computing the attention be-191

tween the example embedding and source prompts.192

However, it can’t express the relationships between193

the whole target task and source tasks. Addition-194

ally, it has to retrain all tasks when a new task is 195

added after training. 196

Our goal. We hope to not only achieve to trans- 197

fer knowledge from source tasks to target task, but 198

also how much influence each source task yields 199

for target task is exactly expressed. We hope to au- 200

tomatically identify right source tasks which yield 201

positive transfer for target task. We also hope to 202

flexibly add a new task. 203

3 Method 204

In this section, we show our AMP method in detail. 205

AMP trains a source prompt for each task in the first 206

stage(§3.1). Then it combines all source prompts 207

to train an attention component, through which a 208

target prompt for each task is learned(§3.2). We 209

propose DAM method to compute the attention 210

of matrices during learning target prompt(§3.2.1). 211

Subsequently, we give an efficient implementation 212

method of DAM detailedly(§3.2.2). Finally, we 213

show inference process of AMP(§3.3) and how to 214

add a new task(§3.4). 215

3.1 Source Prompt 216

In first stage, we train a source prompt for each of n 217

tasks on a frozen PLM as the task embedding. The 218

length of all source prompts is set to be same. We 219

obtain n source prompts {P1, ..., Pn},where Pi ∈ 220

Rl∗d, l is prompt length and d is model dimension 221

of PLM. n prompts are packaged into a 3D matrix 222

P ∈ Rn∗l∗d. 223

3.2 Target Prompt 224

In second stage, we put an attention component ψ 225

on top of PLM. The attention component takes P 226

as the input. We calculate the attentions between 227

source prompts through ψ. Then we obtain n target 228

prompts {P ′
1, ..., P

′
n}, each of which is an attention- 229

weighted sum of source prompts as followed. 230P
′
1
...
P

′
n

 =

a11 . . . a1n
...

an1 . . . ann


P1

...
Pn

 231

Each task is prefixed with a correspond target 232

prompt and then the task is fed into the PLM to train 233

again. During training, only ψ is updated, while 234

the source prompts P and PLM are kept fixed. ψ 235

is trained by all tasks simultaneously. 236

The attentions represent the influence each 237

source task yields for target task. A high atten- 238

tion is learned if a source task can yield positive 239

3



influence for the target task. Otherwise, a low at-240

tention is learned.241

3.2.1 Attention Component242

The attention component ψ consists of three projec-243

tion parameter matrices WQ ∈ Rd∗k, WK ∈ Rd∗k244

and W V ∈ Rd∗v ,where d is the model dimension245

of PLM, k is the dimension of queries and keys,246

v is the dimension of values and v is equal to d .247

The input P is projected into three 3D matrices–248

queries Q ∈ Rn∗l∗k, keys K ∈ Rn∗l∗k and values249

V ∈ Rn∗l∗v, where each query and key are a 2D250

matrix.251

We propose DAM method to calculate the atten-252

tion of a query-key pair (q, k).253

atten(q, k) =
1

l2

l∑
i

l∑
j

(ai
⊗

bj)254

where,
⊗

represents dot product, ai and bj denote255

a vector in q and k, respectively. It calculates the256

dot product between each vector in query q and257

that in key k, so it is more exact. It is illustrated in258

Figure 7.259

3.2.2 Implementation Details of DAM260

DAM is implemented in following 4 steps.261

Firstly, we reshape P ∈ Rn∗l∗d into matrix P
′ ∈262

Rm∗d , where m = n ∗ l . P
′

is linearly projected263

to obtain the matrix Q,K and V .264

P
′
WQ = Q ∈ Rm∗k

P
′
WK = K ∈ Rm∗k

P
′
W V = V ∈ Rm∗v

265

Secondly, We calculate the attentions between266

queries and keys.267

QKT = S ∈ Rm∗m268

S is divide into n ∗n blocks,where the size of each269

block is l ∗ l .270

S =



k1 · · · kn

q1 b11 · · · b1n

...
...

. . .
...

qn bn1 · · · bnn


271

the block bij represents dot products between each 272

vector in query qi and that in key kj . 273

bij =


k1j · · · klj

q1i a11 · · · a1l
...

...
. . .

...
qli al1 · · · all

 274

Thirdly, we leverage convolution operator on S 275

to get the sum of each block. The size of convolu- 276

tion kernel is set to l ∗ l, which is same as that of 277

block. The stride size is set to l. The kernel value 278

is set to1. We obtain a matrix S
′ ∈ Rn∗n. Then S

′
279

is scaled by 1/l2. A softmax function is leveraged 280

on S
′
. 281

S
′
=


k1 · · · kn

q1 a11 · · · a1n
...

...
. . .

...
qn an1 · · · ann

 282

where S
′
ij is the attention between query qi and key 283

kj . 284

Fourthly, V ∈ Rm∗v is reshaped into V
′ ∈ 285

Rn∗l∗v. Then we multiply V
′

by S
′

to obatin the 286

output matrix O ∈ Rn∗l∗v , where n target prompts 287

is earned and the length and dimension of target 288

prompt are l and v,respectively. Each target prompt 289

corresponds a task. 290

3.3 Inference 291

After training, we obtain a target prompt for each 292

task . The source prompts and the attention com- 293

ponent are no longer needed. The target prompt is 294

concatenated to the input embedding to form the 295

input sequence. Then the input sequence is fed 296

into PLM to acquire the final result. The inference 297

process is same as in prompt-tuning. AMP doesn’t 298

increase extra inference cost. 299

3.4 Adding a new task 300

When a new task is added after training original 301

tasks, AMP firstly learns a source prompt for the 302

new task and then combines all source prompts 303

to train the attention component to obtain a target 304

prompt for the new task. As the attention compo- 305

nent is not used during inference, the inference pro- 306

cess of original tasks isn’t affected. AMP doesn’t 307

require complete re-training when a new task is 308

added. 309

4



4 Experiments310

We conduct experiments on 11 NLP tasks across311

diverse types to evaluate the performance of our312

AMP method in this section. Those tasks and the re-313

lated datasets are shown in §4.1. The experimental314

setup is described in §4.2.315

4.1 Tasks316

We briefly list the tasks used in our experiment. A317

detailed description about those tasks is shown in318

Appendix §A.4.319

Sentiment analysis predicts whether a sen-320

tence to be positive or negative: IMDB(Maas321

et al. (2011)), SST-2(Socher et al. (2013)), Yelp-322

2(Zhang et al. (2015)). Sentence relatedness323

predicts whether one sentence is similar with324

the other or not: STS-B(Cer et al. (2017),325

MRPC(Dolan and Brockett (2005)). Entailment326

predicts whether two sentences entail or contra-327

dict: RTE(Giampiccolo et al. (2007)), SciTail(Khot328

et al. (2018)), CB(De Marneffe et al. (2019)).329

Question answering predicts the right answers330

for some questions after reading a passage: Mul-331

tiRC(Khashabi et al. (2018)), BoolQ(Clark et al.332

(2019)), QNLI(Wang et al. (2018)).333

4.2 Experimental Setup334

Source prompt training. We use RoBERTa-335

base(Liu et al. (2019)) as PLM. We adopt the336

AdamW optimizer. The learning rate is set 10−4337

with a linear decay. We set the maximum training338

epochs to 30 with early stopping. The length of339

prompt tokens is set 100 for all tasks. Each prompt340

is initialized by randomly sampling tokens from341

common vocabularies.342

Attention component training. We still use343

RoBERTa-base as PLM. The maximum training344

epochs is set to 10. The learning rate is set 5∗10−5345

with a linear decay. The maximum token length is346

set to 384 for all tasks. We combine the datasets of347

all tasks together to train the attention component348

using examples-proportional strategy(Raffel et al.349

(2020)), where the maximum training examples are350

limited to 100K for each task.351

In attention component, v is set to 768 which is352

the model dimension of RoBERTa-base and k is353

set to 768.354

Baselines. We compare AMP with fine-tuning,355

prompt-tuning, SPoT and ATTEMPT. SPoT adopts356

two strategies: SPoT-s and SPoT-m. SPoT-s initial- 357

izes target prompt with similarity-weight average 358

of all source prompts. SPoT-m initializes target 359

prompt with a source prompt learned on MNLI 360

task which is proven to be able to improve the per- 361

formance for most target tasks (Vu et al. (2021)). 362

Max-pooling method for computing attentions. 363

We make a comparison between DAM method and 364

max-pooling method for computing attentions be- 365

tween source prompts. The max-pooling method 366

takes the same steps as DAM except the computa- 367

tion of attentions. It firstly obtains the query matri- 368

ces, key matrices and value matrices as the first step 369

of DAM. Then each query and key is translated into 370

a vector through performing max-pool operation 371

for each dimension. The dot product between each 372

query and key is calculated to obtain the attention 373

matrix. The following steps are same as the DAM 374

method. 375

5 Result 376

We show the main result in §5.1. We present the 377

the effectiveness of DAM in §5.2. 378

5.1 AMP 379

As illustrated in Table 1, AMP outperforms prompt- 380

tuning, SPoT-s and ATTEMPT. There are five find- 381

ings as followed. 382

(1) AMP outperforms prompt-tuning by a large 383

margin. AMP improves performance for 9 out of 384

11 tasks. This shows that AMP can find out right 385

source tasks for most target tasks. 386

(2) AMP performs better than SPoT-s. AMP 387

doesn’t achieve improvement of performance for 2 388

out of 11 tasks, but SPoT-s doesn’t increase perfor- 389

mance for 5 tasks. This shows that the attentions 390

learned dynamically are more reliable than constant 391

similarity scores for finding right source tasks. 392

(3) AMP performs lower than SPoT-m. AMP 393

doesn’t conduct prior massive search which is re- 394

quired to SPoT-m. AMP outperforms ATTEMPT. 395

(4)We observe that AMP is more beneficial for 396

small datasets than large datasets. AMP achieves 397

improvement of 6.3% for MultiRC(5.1k) and 6.6% 398

for BoolQ(9.4k) , but it only increases 1.8% and 399

3.1% performance for IMDB(25k) and SST-2(67k) 400

respectively . This shows that AMP can find more 401

right source tasks for small task. 402

(5)We also find that AMP can match fine-tuning 403

for 2 tasks. AMP helps close the gaps between 404

prompt-tuning and fine-tuning.This indicates that 405

5



Dataset fine-tuning prompt-tuning SPoT-s SPoT-m ATTEMPT AMP
IMDB 93.1 86.5 85.2 91.8 90.3 88.3
SST-2 90.1 86.8 87.5 87.1 86.3 89.9
Yelp-2 88.4 83.5 81.2 84.9 83.1 83.9
STS-B 86.5 81.2 83.5 85.2 83.4 86.3
MRPC 87.9 69.4 68.5 74.1 73.3 76.6
RTE 71.1 57.8 66.4 68.8 68.1 66.8

SciTail 93.3 87.8 86.2 88.1 86.3 86.9
CB 83.5 71.4 75.3 84.1 81.3 78.9

MultiRC 73.1 64.4 74.1 76.2 70.1 70.7
BoolQ 75.8 63.5 69.4 72.2 68.2 70.1
QNLI 89.5 85.4 84.3 86.2 85.1 83.3
Mean 84.8 76.2 78.3 81.7 79.6 80.2

Table 1: Results of different tuning methods. All results are based on RoBERTa-base. The results are Pearson
Correlation for STS-B , F1 score for MultiRC and accuracy score for others. The ATTEMPT represents shared
ATTEMPT.

Figure 2: Absolute imporvement of DAM over max-pooling.

prompt-tuning method has potential to outper-406

form fine-tuning method through transferring right407

source tasks to target task .408

5.2 DAM409

Figure 2 shows the improvement of performance410

of DAM over max-pooling method. We can find411

that DAM method exceeds max-pooling method412

by a margin. At the best, DAM improves 2.3%413

performance. This shows that DAM could be more414

helpful for improving performance of task.415

6 Analyses416

Scale of PLM. The size of parameter matrix417

WQ,WK and W V is controlled by model dimen-418

sion of PLM. So, we think that AMP is largely419

affected by PLM. We evaluate AMP on small PLM.420

As illustrated in Figure 3, AMP perform worse than421

prompt-tuning .422

Figure 3: Performance of AMP on RoBERTa-small
model

Dimension of queries and keys. We evalu- 423

ate the performance of AMP with different k 424

{512, 256, 64}. As illustrated in Figure 4, the per- 425

formance of AMP decreases as k becomes small. 426

This indicates that it is important to project source 427

prompt into high-dimensional space for perfor- 428

6



Figure 4: Performance of AMP on different dimension
of queries and keys

Figure 5: Performance of AMP under different
task sets. C1:{STS-B, MPRC}, C2:{STS-B, MPRC,
QNLI},C3:{STS-B, MRPC, SST-2}

mance of task.429

Different task sets We empirically analyze how430

different task sets affect the performance of AMP.431

The result is shown in Figure 5. We find that the432

performance of the same task change with task sets.433

The right source tasks for a target task are not same434

in different task sets. This shows that proper source435

tasks play an important role for the performance of436

target task.437

Attention visualization. Figure 6 is the attention438

matrix learned by AMP. In general, AMP gives439

a high attention for two same type of tasks, for440

example IMDB and Yelp2, STS-B and MRPC, RTE441

and ScilTail.442

The task MRPC highly attend QNLI, but they are443

different type . Similar phenomenon also appears444

between RTE and QNLI ,STS-B and QNLI. In-445

Figure 6: Attentions between target tasks(row) and
source tasks(column).

versely, even though QNLI is same type with Muli- 446

tiRC , but QNLI is lowly attended by MulitiRC 447

. This shows that AMP can find out the implicit 448

relationships between tasks. 449

7 Related Work 450

Parameter-efficient transfer method 451

.Adapter(Houlsby et al. (2019);Karimi Ma- 452

habadi et al. (2021);Rücklé et al. (2020);Hu et al. 453

(2021)) inserts a small learnable module into 454

the PLM. It only trains the module while keeps 455

PLM fixed during training.BitFit(Zaken et al. 456

(2021)) only updates the biases of PLM for each 457

task.Pfeiffer et al. (2020) proposes AdatperFusion 458

to improve the performance of Adapter and achieve 459

the multi-task learning. 460

Recently, learnable soft-prompt methods(Liu 461

et al. (2021b);Li and Liang (2021);Lester et al. 462

(2021);Zhang et al. (2021)) have gradually replaced 463

early hard-prompt methods(Schick and Schütze 464

(2020);Gao et al. (2020);Shin et al. (2020);Jiang 465

et al. (2020)). 466

In concurrent work, (Vu et al. (2021);Gu et al. 467

(2021);Asai et al. (2022)) also explore prompt trans- 468

fer methods. Gu et al. (2021) pretrain a prompt on 469

10GB data and then transfer the prompt to target 470

task. Vu et al. (2021) requries much computation 471

to find the right source tasks for a target task. How- 472

ever, our work mainly focuses on automatically 473

searching right source tasks for a target task. 474

Multi-task transfer learning methods. Recent 475

approaches train a large model on massive tasks. 476

7



Then the model is transferred to unseen tasks477

without updating any parameter (Talmor and478

Berant (2019);Sanh et al. (2021);Wang et al.479

(2022);Mishra et al. (2021);Wei et al. (2021);Gupta480

et al. (2022);He et al. (2021);).They focus on tran-481

ing a unified model which can be applied in any482

NLP task.483

8 Conclusion484

We present a multi-prompt transfer learning ap-485

proach called AMP. AMP exactly computes the486

influence each source task yields for the target task487

and can automatically identify right source tasks488

for the target task. AMP largely improves perfor-489

mance of promp-tuning, while it doesn’t increase490

extra inference cost. AMP can flexibly add new491

task without complete retraining. Additionally, We492

propose a DAM method which can exactly compute493

the attentions between a set of matrices. Finally,494

we visual the attention matrix to show that AMP495

can reveal the implicit relationships between tasks.496

Limitations497

Our method has three main limitations. First, AMP498

has to train twice for each task. This increases train-499

ing time. It combines multiple tasks to train the500

attention component, which increases the training501

difficulties. Secondly, it requires that the maximum502

tokens for each task must be same in the second503

stage. It has to make trade-off between memory504

and performance. Thirdly, the computation cost505

of DAM increases exponential times compared to506

max-pooling method. DAM method is not suit-507

able for computing the attentions between large508

matrices.509

References510

Akari Asai, Mohammadreza Salehi, Matthew E Peters,511
and Hannaneh Hajishirzi. 2022. Attempt: Parameter-512
efficient multi-task tuning via attentional mixtures513
of soft prompts. In Proceedings of the 2022 Con-514
ference on Empirical Methods in Natural Language515
Processing, pages 6655–6672.516

Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan517
Yang, Xiaodong Liu, Yu Wang, Jianfeng Gao, Song-518
hao Piao, Ming Zhou, et al. 2020. Unilmv2: Pseudo-519
masked language models for unified language model520
pre-training. In International conference on machine521
learning, pages 642–652. PMLR.522

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-523
Gazpio, and Lucia Specia. 2017. Semeval-2017524

task 1: Semantic textual similarity-multilingual and 525
cross-lingual focused evaluation. arXiv preprint 526
arXiv:1708.00055. 527

Xiang Chen, Ningyu Zhang, Xin Xie, Shumin Deng, 528
Yunzhi Yao, Chuanqi Tan, Fei Huang, Luo Si, and 529
Huajun Chen. 2022. Knowprompt: Knowledge- 530
aware prompt-tuning with synergistic optimization 531
for relation extraction. In Proceedings of the ACM 532
Web Conference 2022, pages 2778–2788. 533

Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, 534
Haibing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua 535
Shen. 2021. Twins: Revisiting the design of spatial 536
attention in vision transformers. Advances in Neural 537
Information Processing Systems, 34:9355–9366. 538

Christopher Clark, Kenton Lee, Ming-Wei Chang, 539
Tom Kwiatkowski, Michael Collins, and Kristina 540
Toutanova. 2019. Boolq: Exploring the surprising 541
difficulty of natural yes/no questions. arXiv preprint 542
arXiv:1905.10044. 543

Marie-Catherine De Marneffe, Mandy Simons, and Ju- 544
dith Tonhauser. 2019. The commitmentbank: Inves- 545
tigating projection in naturally occurring discourse. 546
In proceedings of Sinn und Bedeutung, volume 23, 547
pages 107–124. 548

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 549
Kristina Toutanova. 2018. Bert: Pre-training of deep 550
bidirectional transformers for language understand- 551
ing. arXiv preprint arXiv:1810.04805. 552

Bill Dolan and Chris Brockett. 2005. Automati- 553
cally constructing a corpus of sentential paraphrases. 554
In Third International Workshop on Paraphrasing 555
(IWP2005). 556

Alexey Dosovitskiy, Lucas Beyer, Alexander 557
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, 558
Thomas Unterthiner, Mostafa Dehghani, Matthias 559
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020. 560
An image is worth 16x16 words: Transformers 561
for image recognition at scale. arXiv preprint 562
arXiv:2010.11929. 563

Tianyu Gao, Adam Fisch, and Danqi Chen. 2020. 564
Making pre-trained language models better few-shot 565
learners. arXiv preprint arXiv:2012.15723. 566

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and 567
William B Dolan. 2007. The third pascal recognizing 568
textual entailment challenge. In Proceedings of the 569
ACL-PASCAL workshop on textual entailment and 570
paraphrasing, pages 1–9. 571

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang. 572
2021. Ppt: Pre-trained prompt tuning for few-shot 573
learning. arXiv preprint arXiv:2109.04332. 574

Shashank Gupta, Subhabrata Mukherjee, Krishan Sub- 575
udhi, Eduardo Gonzalez, Damien Jose, Ahmed H 576
Awadallah, and Jianfeng Gao. 2022. Sparsely acti- 577
vated mixture-of-experts are robust multi-task learn- 578
ers. arXiv preprint arXiv:2204.07689. 579

8



Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and580
Maosong Sun. 2022. Ptr: Prompt tuning with rules581
for text classification. AI Open, 3:182–192.582

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-583
Kirkpatrick, and Graham Neubig. 2021. Towards a584
unified view of parameter-efficient transfer learning.585
arXiv preprint arXiv:2110.04366.586

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and587
Weizhu Chen. 2020. Deberta: Decoding-enhanced588
bert with disentangled attention. arXiv preprint589
arXiv:2006.03654.590

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,591
Bruna Morrone, Quentin De Laroussilhe, Andrea592
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.593
Parameter-efficient transfer learning for nlp. In In-594
ternational Conference on Machine Learning, pages595
2790–2799. PMLR.596

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan597
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,598
and Weizhu Chen. 2021. Lora: Low-rank adap-599
tation of large language models. arXiv preprint600
arXiv:2106.09685.601

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham602
Neubig. 2020. How can we know what language603
models know? Transactions of the Association for604
Computational Linguistics, 8:423–438.605

Rabeeh Karimi Mahabadi, James Henderson, and Se-606
bastian Ruder. 2021. Compacter: Efficient low-rank607
hypercomplex adapter layers. Advances in Neural608
Information Processing Systems, 34:1022–1035.609

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,610
Shyam Upadhyay, and Dan Roth. 2018. Looking611
beyond the surface: A challenge set for reading com-612
prehension over multiple sentences. In Proceedings613
of the 2018 Conference of the North American Chap-614
ter of the Association for Computational Linguistics:615
Human Language Technologies, Volume 1 (Long Pa-616
pers), pages 252–262.617

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2018.618
Scitail: A textual entailment dataset from science619
question answering. In Proceedings of the AAAI620
Conference on Artificial Intelligence, volume 32.621

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,622
Kevin Gimpel, Piyush Sharma, and Radu Soricut.623
2019. Albert: A lite bert for self-supervised learn-624
ing of language representations. arXiv preprint625
arXiv:1909.11942.626

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.627
The power of scale for parameter-efficient prompt628
tuning. arXiv preprint arXiv:2104.08691.629

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan630
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,631
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-632
noising sequence-to-sequence pre-training for natural633
language generation, translation, and comprehension.634
arXiv preprint arXiv:1910.13461.635

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: 636
Optimizing continuous prompts for generation. arXiv 637
preprint arXiv:2101.00190. 638

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 639
2016. Recurrent neural network for text classi- 640
fication with multi-task learning. arXiv preprint 641
arXiv:1605.05101. 642

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2017. 643
Adversarial multi-task learning for text classification. 644
arXiv preprint arXiv:1704.05742. 645

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, 646
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2021a. 647
P-tuning v2: Prompt tuning can be comparable to 648
fine-tuning universally across scales and tasks. arXiv 649
preprint arXiv:2110.07602. 650

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, 651
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. Gpt 652
understands, too. arXiv preprint arXiv:2103.10385. 653

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 654
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 655
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 656
Roberta: A robustly optimized bert pretraining ap- 657
proach. arXiv preprint arXiv:1907.11692. 658

Andrew Maas, Raymond E Daly, Peter T Pham, Dan 659
Huang, Andrew Y Ng, and Christopher Potts. 2011. 660
Learning word vectors for sentiment analysis. In 661
Proceedings of the 49th annual meeting of the associ- 662
ation for computational linguistics: Human language 663
technologies, pages 142–150. 664

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han- 665
naneh Hajishirzi. 2021. Metaicl: Learning to learn in 666
context. arXiv preprint arXiv:2110.15943. 667

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and 668
Hannaneh Hajishirzi. 2021. Cross-task generaliza- 669
tion via natural language crowdsourcing instructions. 670
arXiv preprint arXiv:2104.08773. 671

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, 672
Kyunghyun Cho, and Iryna Gurevych. 2020. 673
Adapterfusion: Non-destructive task composition for 674
transfer learning. arXiv preprint arXiv:2005.00247. 675

Guanghui Qin and Jason Eisner. 2021. Learning how 676
to ask: Querying lms with mixtures of soft prompts. 677
arXiv preprint arXiv:2104.06599. 678

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya 679
Sutskever, et al. 2018. Improving language under- 680
standing by generative pre-training. 681

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 682
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 683
Wei Li, and Peter J Liu. 2020. Exploring the limits 684
of transfer learning with a unified text-to-text trans- 685
former. The Journal of Machine Learning Research, 686
21(1):5485–5551. 687

9



Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman688
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna689
Gurevych. 2020. Adapterdrop: On the effi-690
ciency of adapters in transformers. arXiv preprint691
arXiv:2010.11918.692

Sebastian Ruder. 2017. An overview of multi-task693
learning in deep neural networks. arXiv preprint694
arXiv:1706.05098.695

Victor Sanh, Albert Webson, Colin Raffel, Stephen H696
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine697
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun698
Raja, et al. 2021. Multitask prompted training en-699
ables zero-shot task generalization. arXiv preprint700
arXiv:2110.08207.701

Victor Sanh, Thomas Wolf, and Sebastian Ruder. 2019.702
A hierarchical multi-task approach for learning em-703
beddings from semantic tasks. In Proceedings of704
the AAAI Conference on Artificial Intelligence, vol-705
ume 33, pages 6949–6956.706

Timo Schick and Hinrich Schütze. 2020. Exploit-707
ing cloze questions for few shot text classification708
and natural language inference. arXiv preprint709
arXiv:2001.07676.710

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,711
Eric Wallace, and Sameer Singh. 2020. Autoprompt:712
Eliciting knowledge from language models with713
automatically generated prompts. arXiv preprint714
arXiv:2010.15980.715

Richard Socher, Alex Perelygin, Jean Wu, Jason716
Chuang, Christopher D Manning, Andrew Y Ng, and717
Christopher Potts. 2013. Recursive deep models for718
semantic compositionality over a sentiment treebank.719
In Proceedings of the 2013 conference on empiri-720
cal methods in natural language processing, pages721
1631–1642.722

Alon Talmor and Jonathan Berant. 2019. Multiqa:723
An empirical investigation of generalization and724
transfer in reading comprehension. arXiv preprint725
arXiv:1905.13453.726

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob727
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz728
Kaiser, and Illia Polosukhin. 2017. Attention is all729
you need. Advances in neural information processing730
systems, 30.731

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and732
Daniel Cer. 2021. Spot: Better frozen model adap-733
tation through soft prompt transfer. arXiv preprint734
arXiv:2110.07904.735

Alex Wang, Amanpreet Singh, Julian Michael, Felix736
Hill, Omer Levy, and Samuel R Bowman. 2018.737
Glue: A multi-task benchmark and analysis platform738
for natural language understanding. arXiv preprint739
arXiv:1804.07461.740

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, 741
Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and 742
Ling Shao. 2021. Pyramid vision transformer: A ver- 743
satile backbone for dense prediction without convolu- 744
tions. In Proceedings of the IEEE/CVF international 745
conference on computer vision, pages 568–578. 746

Yizhong Wang, Swaroop Mishra, Pegah Alipoor- 747
molabashi, Yeganeh Kordi, Amirreza Mirzaei, 748
Anjana Arunkumar, Arjun Ashok, Arut Sel- 749
van Dhanasekaran, Atharva Naik, David Stap, et al. 750
2022. Benchmarking generalization via in-context 751
instructions on 1,600+ language tasks. arXiv e-prints, 752
pages arXiv–2204. 753

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin 754
Guu, Adams Wei Yu, Brian Lester, Nan Du, An- 755
drew M Dai, and Quoc V Le. 2021. Finetuned lan- 756
guage models are zero-shot learners. arXiv preprint 757
arXiv:2109.01652. 758

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car- 759
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019. 760
Xlnet: Generalized autoregressive pretraining for lan- 761
guage understanding. Advances in neural informa- 762
tion processing systems, 32. 763

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold- 764
berg. 2021. Bitfit: Simple parameter-efficient 765
fine-tuning for transformer-based masked language- 766
models. arXiv preprint arXiv:2106.10199. 767

Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng, 768
Zhen Bi, Chuanqi Tan, Fei Huang, and Huajun 769
Chen. 2021. Differentiable prompt makes pre-trained 770
language models better few-shot learners. arXiv 771
preprint arXiv:2108.13161. 772

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. 773
Character-level convolutional networks for text classi- 774
fication. Advances in neural information processing 775
systems, 28. 776

Yu Zhang and Qiang Yang. 2021. A survey on multi- 777
task learning. IEEE Transactions on Knowledge and 778
Data Engineering, 34(12):5586–5609. 779

10



A Appendix780

A.1 Number of parameters of AMP781

source prompt training. The source prompts782

are trained through general promtp-tuning method.783

The number of parameters to be updated are n ∗ l,784

where n is prompt length and l is dimension of785

PLM.786

Attention component training. The attention787

component ψ consists of three parameter matrices788

WQ ∈ Rd∗k,WK ∈ Rd∗k and W V ∈ Rd∗v, where789

v is equal to d. The number of parameters is 2dk +790

d2.791

Number of parameters of different tuning meth-792

ods As illustrated in Table 2, the number of pa-793

rameters of AMP is less than 1.4% of those of794

Fine-tuning.

method parameters
Fine-tuning 125M

prompt-tuning 77k
SPoT 77k

ATTEMPT 232K
AMP 1.8M

Table 2: Number of parameters of different method
based on RoBERTa-base model. The prompt length is
set 100.

795

A.2 Method Details796

DAM vs max-pooling We visual DAM and max-797

pooling method in Figure 7. We can see that why798

DAM is more exactly calculate the attentions than799

max-pooling.800

Inference process After traing, according to801

section 3.2.2, a group of target prompts are ob-802

tained, each of which corresponds to a task. The803

target prompt is used to inference instead of804

source prompt. Source prompts and the atten-805

tiom componen are not used during inference.This806

brings two benefits: first, it doesn’t increase any807

inference time than prompt-tuning method and808

only increase prompt computation than fine-tuning809

method;second, when a new task is added after810

training, the attention component must be updated.811

Howerver, the inference process of the original812

task is not affected.So, AMP can flexibly add a813

new task.814

A.3 Hyperparameters 815

We conduct search on the hyperparameters includ- 816

ing learning rate {10−4, 5 ∗ 10−4, 10−5, 5 ∗ 10−5}, 817

training epoches {10, 30, 50}, batch size {4, 8}. 818

The search doesn’t be conducted on all tasks. We 819

choose ScilTail and BoolQ to obtain the best hyper- 820

parameter setup. All experiments are performed on 821

a single GPU. The results are reported on valida- 822

tion sets except IMDB, Yelp-2 and ScilTail. Those 823

three tasks are reported on test sets. For each task, 824

we run for 3 times and the best result is reported. 825

AMP The maximum token length for source 826

prompt traning can be different. It is set to 348 827

for MultiRC, 256 for other task. The maximum 828

token length for target prompt traning must keep 829

same for all tasks. We set it to be 384. We set 830

weight decay to be 10−5. The warm step is set to 831

500. 832

SPoT. SPoT-m: (Vu et al. (2021) shows that the 833

task MNLI has good transferability and can im- 834

prove the performance for most task. A source task 835

is firstly obtained on MNLI task and then is used to 836

initialize the target prompt for each task in our task 837

sets. SPoT-s: We obtain a source prompt for each 838

task as prompt-tuning. The similarities between 839

tasks are obtained through the average cosine sim- 840

ilarity between prompt token in (Vu et al. (2021). 841

The other settings is same as those in AMP. 842

ATTEMPT We don’t use the prompt for large- 843

scale datasets as source prompt like Asai et al. 844

(2022). We train a source prompt for each task 845

in our task sets and then transfer them to other 846

tasks. This is in line with AMP. 847

A.4 Task sets 848

To verify whether AMP can automatically identify 849

right source tasks for target task, we sample 11 task 850

from a collection of NLP tasks without any prior 851

bias choice. Among those tasks, 4 tasks are from 852

GLUE and the other 4 tasks are from SuperGLUE. 853

We list those tasks detailedly in Table 3. 854

11



Figure 7: DAM vs max-pooling for compting the attention between matrices.

Task soure type metric input type result type
IMDB others Sentiment analysis accuracy single sententce positive/negative
SST-2 GLUE Sentiment analysis accuracy single sentence positive/negative
Yelp-2 others Sentiment analysis accuracy single sentence positive/negative
STS-B GLUE Sentence relatedness Pearson corr. sentence-pair similarity score(1-5)
MRPC GLUE Sentence relatedness accuracy sentence-pair equivalent/not equivalent
RTE GlUE Entailment accuracy text-hypothesis entailment/not entailment

SciTail others Entailment accuracy text-hypothesis entailment/not entailment
CB SuperGLUE Entailment accuracy text-hypothesis entailment/not entailment

MultiRC SuperGLUE Question answering F1
a paragraph
a question

a list of answers
each answer is ture or false

BoolQ SuperGLUE Question answering accuracy question-paragraph pair yes or no
QNLI GLUE Question answering accuracy question-paragraph pair answer is contained in paragraph or not

Table 3: The details of 11 tasks. The metrics are those used in our experiments.

12


	Introduction
	Background
	Method
	Source Prompt 
	Target Prompt 
	Attention Component 
	Implementation Details of DAM

	Inference 
	Adding a new task

	Experiments
	Tasks
	Experimental Setup

	Result
	AMP
	DAM

	Analyses
	Related Work
	Conclusion
	Appendix
	Number of parameters of AMP
	Method Details
	Hyperparameters
	Task sets


