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Abstract

Finding interpretable factors for stock returns
is the most vital issue in the empirical asset
pricing domain. As data-driven methods, ex-
isting factor mining models can be categorized
into symbol-based and neural-based models.
Symbol-based models are interpretable but in-
efficient, while neural-based approaches are
efficient but lack interpretability. Hence, min-
ing interpretable factors effectively presents
a significant challenge. Inspired by the suc-
cess of Large Language Models (LLMs) in
various tasks, we propose a FActor Mining
Agent (FAMA) model that enables LLMs to
integrate the strengths of both neural and sym-
bolic models for factor mining. In this pa-
per, FAMA consists of two main components:
Cross-Sample Selection (CSS) and Chain-of-
Experience (CoE). CSS addresses the homo-
geneity challenges in LLMs during factor min-
ing by assimilating diverse factors as in-context
samples, whereas CoE enables LLMs to lever-
age past successful mining experiences, expe-
diting the mining of effective factors. Exper-
imental evaluations on real-world stock mar-
ket data demonstrate the effectiveness of our
approach by surpassing the SOTA RankIC by
0.006 and RankICIR by 0.105 in predicting
S&P 500 returns. Furthermore, the investment
simulation shows that our model can achieve
superior performance with an annualized return
of 39.0% and a Sharpe ratio of 667.6%.

1 Introduction

The task of predicting market trends in finance
presents a formidable challenge, given the in-
tricate interplay of various factors (Hou et al.,
2011), such as the dynamics of demand and sup-
ply (Hendricks and Singhal, 2009), market senti-
ment (Verma and Soydemir, 2009) and government
regulations (Ali Imran et al., 2020). In the field of
quantitative trading, the conventional approaches
often extract factors as indicative signals for mar-
ket trends from raw historical stock data first, then

Market Data

Factor Formula Stock A Stock AAPL

Factorl=close/open Close Close

Factor2=log(close) Open Open

\_
/(a) Symbolic Factor Model

(b) Neuro Factor Model

Factor1 = close/open Dussiock  ClosePris ULV .
oA lse on
Factor2 = log(close) QRLOMAAPD 12941 057
& T
Symbol Reggsswn Model Feature Extractor

Lo
04 07 05 09
Factor Feature

NewFactor = log(close/open)
Factor Formula

(c) Neuro-symbolic Factor Model
( Factor1 = close/open 03 04 05 06

Factor2 = log(close) 01 07 03 07
74
CoB&CsS
<
LLM R
fo
K NewFactor = log((close-open)/(high-

Figure 1: An illustration of three distinct factor mining
approaches: (a) symbolic factor model, (b) neural factor
model, and (c) our proposed neural-symbolic model.

serve them as input features for machine learning
models (Sharpe, 1964; Ross, 2013; Duan et al.,
2022). A pivotal step in this process entails discern-
ing and extracting effective factors that demonstrate
robust predictive capabilities for market trends (Ng
et al., 1992). As an illustrative example, the Cap-
ital Asset Pricing Model (CAPM) (Sharpe, 1964)
employed the market’s excess return as a predictive
factor for the return of a financial asset, thereby
contributing a seminal factor to finance.

Hence discovering factors with high returns
has been a trendy topic among investors and re-
searchers. The prevailing methods for mining fac-
tors can be in general divided into two groups,
namely symbolic factor and neural factor models.
As illustrated in Figure 1(a), in symbolic factor
models, factors are represented as symbolic ex-
pressions, then symbolic regression (Makke and
Chawla, 2022) serves as a common technique



for factor mining (Jin et al., 2019; Zhang et al.,
2020; Chen et al., 2021; Cui et al., 2021). For
instance, considering two factors, Factorl =
close/open and Factor2 = log(close), the fac-
tor values are calculated by the opening and clos-
ing price, then the two factors are inputted into
a symbolic regression model to generate a novel
factor, New Factor = log(close/open). The inter-
pretability of the symbolic factor model arises from
the explicit representation of the calculation pro-
cess for the factors. However, due to the vast search
space of symbolic factors, mining with symbolic
factor models often proves inefficient. Conversely,
neural factor approaches, gaining recent popularity,
transform factors into numerical features to opti-
mize factor extraction. As depicted in Figure 1(b),
neural factor models predict market trends by ex-
tracting numerical factor features from stock data
through feature extractors (Kelly et al., 2019; Gu
et al., 2021; Duan et al., 2022). Compared with
symbolic factor models, neural factor models ex-
hibit proficiency in extracting effective numerical
factors. However, the financial interpretability in
neural factor models struggles with implicit fea-
tures. The question we are facing is: Can an ef-
fective approach be devised for mining financially
interpretable factors conducive to predicting mar-
ket trends?

Recent advancements in LLMs have demon-
strated success across financial tasks, including
sentiment analysis (Guo et al., 2023) and finan-
cial text generation (Yang et al., 2023). Thanks
to its powerful In Context Learning (ICL) abil-
ity (Brown et al., 2020), we conceptualize LLMs
as a neuro-symbolic model illustrated in As de-
picted in Figure 1(c), that bridges two distinct rep-
resentations, i.e. numerical and symbolic factors,
aiming to achieve efficient mining of interpretable
ones. It is facile to consider utilizing the factors dis-
closed (Kakushadze, 2016) as contextual examples
to generate new factors through In-context Learn-
ing. Since the disclosed factors are often limited
in number, high correlation, and low complexity,
direct mining factors using ICL encounter chal-
lenges. These issues can be summarized in two
aspects: (1) The heightened homogeneity observed
among factors, characterized by the uniform struc-
ture, culminates in the generation of the singular
factor form through ICL. (2) The presence of a
noteworthy proportion of ineffective factors acts
as an impediment, hindering ICL from effectively

exploring novel patterns. Therefore, the efficacy of
mining effective factors using LLLMs is contingent
upon selecting diversity-guiding factors as contex-
tual samples to mitigate homogeneity. Additionally,
encouraging ICL to explore new patterns is key to
increasing the proportion of effective factors.

In this paper, we present the FActor Min-
ing Agent (FAMA), consisting of two main
parts: Cross-Sample Selection (CSS) and Chain-
of-Experience (CoE) methods. CSS is designed
to ensure the diversification of factor mining by
amalgamating low correlation classes of factors
as contextual samples, which empowers LLMs to
incorporate diversity-guiding factors and mitigate
the homogeneity of mined factors. CoE efficiently
encourages ICL to explore new paradigms by in-
corporating the paths of mining effective factors
as experiential prompts, which contributes to the
further optimization of factor mining in LLMs. Our
experimental results show better performance of
our model in predicting stock market returns com-
pared to previous approaches. Moreover, our model
also demonstrates a superior annualized return and
Sharpe ratio in the investment simulations.

Our contributions can be summarized as follows:

* To the best of our knowledge, we are the first
ones to use LLMs as a bridge between sym-
bolic and neural representations in the task of
factor mining.

* We propose a factor mining agent (FAMA)
to facilitate LLMs as factor miners, in which
its components CSS and CoE are designed to
tackle homogeneity issues and encourage ICL
in exploring new directions respectively.

* We expand the capabilities of LLMs to per-
form factor mining tasks and present a series
of experiments to demonstrate the effective-
ness of our proposed model.

2 Problem Formulation

2.1 Financial Factor

Consider a stock dataset for n stocks over 1" trad-
ing days. The features of all stocks are denoted
as X = [z, 22, ...,x,]. Consider the m features,
such as open and close prices, pertaining to each
stock j, denoted as z; € R™*T. We define the
factor space as F, where each factor f; € F is
defined as f; : R™*T — RT. The value of fac-
tor f; on stock j is defined as f;(z;) € RT. To



conveniently represent the symbolic form of fac-
tors, we employ the symbol function s( f;) to de-
note the symbolic text of factor f;. For example,
s(fi01) = “((close — open)/(high — low))”.

2.2 Factor Distance and Correlation

In practice, factor categorization has traditionally
depended on artificial classification rooted in fi-
nancial principles, such as momentum (Carhart,
1997) and trend (Han et al., 2016) factors. De-
spite the demonstrated high accuracy associated
with this approach, it involves a labor-intensive
process. To enhance the efficiency of factor classi-
fication, we advocate for a quantitative exploration
of correlations among factors. We consider the
factor space F is equipped with a distance map-
ping d : F x F — R, thereby establishing it as a
complete distance space (F, d), then correlations
between factors can be defined within this space
(F,d)asr:F x F — [—1,1]. This approach en-
ables a more efficient analysis of factor correlations
without a labor-intensive process.

2.3 Factor Mining

The goal of factor mining is to produce a new set
of factors F' C F that will lead to better predic-
tive performance of stocks in their portfolios. To
evaluate the predictive performance of factors, we
employ the Rank Information Coefficient (RankIC)
(Chuan and Wu, 2019). RankIC measures the corre-
lation between a factor’s ranking in equity exposure
and its subsequent return ranking. The RankIC on
period ¢ and average RankIC + is defined as fol-
lows:

RankICy(f) = COTT(OTderLl, ordery),

T
1 (1)
v(f) = T tgl RankICy,

where 07“aler1{_1 signifies the factor value ranking at
time ¢ — 1, and order; represents the return ranking
at time ¢, with C'orr(x,y) denoting the correlation
coefficient between vectors x and y. Given the
initial factor set F' = { f1, ..., f1}, its effectiveness
is assessed by computing the average RankIC of
the factors within the set, as described below:

V(F) =Ei[y(fi)], fi € F. (2)

We denote the combined model as g(X;F;I),
where X is the stock feature matrix and I is the
prompt entered into the LLMs. Our goal is that the

new set of factors mined by the model g achieves
the optimal average RankIC, defined as follows:

9" (X;F) = g(X; F;T7)
" = argmazxv(g(X; F;I)). 3)
I

3 Factor Mining Agent

As illustrated in Figure 2, our proposed FActor
Mining Agent (FAMA) consists of two main parts:
(1) Cross-Sample Selection (CSS) and (2) Chain-
of-Experience (CoE). FAMA improves the mining
factor effectiveness through iterative mining. In
each iteration, FAMA generates diversity guiding
factors via CSS and empirical paths through CoE
as prompts fed into LLMs for mining factors.

3.1 Definitions

To measure the distance and correlation between
factors quantitatively mentioned in Section 2.2, we
start with calculating the weighted average price of
the stock pool. It is defined as:

p=wX, “)

where w &€ R”™ denotes the total market value
weight corresponding to the company’s stock. Sub-
sequently, we calculate the factor exposure v; of
factor f; at the weighted average price p and em-
ploy z-score normalization as:

fi(p) — mean(fi(p))
std(fi(p)) '

Consequently, we define the distance between two
factors as:

&)

Vi =

d(fi, fj) = [vi — vjll2. (6)

Then, the correlation coefficient between the fac-
tors is defined as:

r(fi, fj) = Corr(vi, vj)
_ S (Vi = V) (v = v;) (D
S (Vie = Vi) (v — ¥5)2

3.2 Cross-Sample Selection

The CSS selects low-correlation guiding factors
as contexts thereby avoiding homogeneity of the
generated factors. It categorizes the factors into
different classes, sampling from the classes to get
a context sample of diversity factors. Here, we pro-
pose a clustering algorithm based on KMeans (K-
ishna and Murty, 1999) for factor clustering. The
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Figure 2: An overview of the FAMA model. FAMA(CI-n) denotes the nth iteration of the FAMA model. Initially,
(a) the input factors, stock data, and experience chain data are fed into the FAMA model. Subsequently, (b) the
CoE module utilizes the outcomes of FAMA(CI-(k — 1)) to produce a novel CoE*, and incorporates the diverse
guidance factors generated by the (c) CSS module to formulate a prompt. Lastly, the prompt is fed into the LLMs to
mine a new factor of FAMA(CI-k) as illustrated in (d), which is then stored in the factor database.

factor value v; of factor f; obtained from Equa-
tion 5 is used for clustering. Initially, we ran-
domly select k factor values as clustering centers
{p1, po,- -+, pux}. For each factor value vy, its
class is calculated as c(f;) = argmin |[v; — pj|*.
Subsequently, we update the clustering center using
the formula:

Hj = =7

Zw

8
e ®)

(fz) =j

We define the loss of the factor cluster model as:

k
T=3 3 -l

©)
=1 c(fy)=i
The optimal classification is defined as:
" = argmin J. (10)

C

We denote the set of factors C; belonging to the
same class ¢ as:

Ci = {fjl *(f;) = i}.

Subsequently, we randomly draw a sample f* from
each category C; to get a factor combination:

C:[fl,f2,---

(1)

R e (12)

Finally, (I < k) factors in the factor combination
FC are selected as context samples:
= [s(fil)a S(fiQ)v e 73(fil)]7 fij € FC.
13)

3.3 Chain-of-Experience

This part aims to involve past successful mining
experiences in ICL to facilitate factor mining ef-
fectiveness. The generation of experience chains
is divided into two phases: the initial generation
phase and the enhanced generation phase. In the
initial phase, we employ the initial set of factors for
generation. Following the acquisition of the previ-
ous factor clustering results C; through Equation 11
and with the size of C; denoted as p;, the initial
experience chain for category C; is generated. This
generation process relies on the ranking result of
as defined in Equation 1, which can be described
as follows:

CoE! =
(A < (1) <

= s(f3)),
< y(f).

(14)
In the enhanced phase, the experience chain used
in the previous step is denoted as CoEi(k_l). We
choose ICL-generated factor f*(*) with C’oEi(k_l)
having a higher v than all chain factors. Then, we



compute the correlation r defined in Equation 7 for

the new factor f*(*) and factors on C’oEfkil)

to get
the highest correlation factor f}(f). If the matched

factor f}(f) is at the end of the chain C}, the new
factor is treated as an extension of the experience.
Otherwise, the new factor f*() represents a new
experience, and it is introduced into the chain sub-
sequent to a split triggered by the matching factor

f}(f). This process can be defined uniformly as:

CoBf = s(f{") = -+ = () = s(+),

(A 1) = (£, FO), 90 < j < i,
15)
Our proposed FAMA integrates Cross-Sample
Selection (CSS) outlined in Section 3.2 and Chain-
of-Experience (CoE) detailed in Section 3.3 to-
gether to automatically generate diversity-guiding
factor samples and experience chains for iterative
factor mining. In each iteration, we utilize the
sample generated through CSS as an in-context
example and select the corresponding experience
chain, then feed them into the LLMs. The output
factor is added to the factor set and also contributes
to a new experience chain. The specific algorithm
is presented in Algorithm 1.

Algorithm 1: Factor Mining Agent
Data: Initial factor set F' = {f1,--- , fn},
number of mining m.
Result: Final factor set F', experience chain
set CoE™.
1 Generate the initial experience chain set
CoE® = {e1, -+ ,ex};
// Equation 14
2 fori < 1tomdo

3 C' < Cluster(F);// Equation 11
4 | S« SelectSamples(C,CoE(~1);
// Equation 13
s | foreach (s,e) € S do
6 prompt < s + e;
7 1+ LLM(prompt);
8 if (f') > maz(y(f)),Vf € e then
9 €/ «+GenChain(e, f');
L // Equation 15
10 F <« FU{f'};
11 CoE' + EU{e'};

12 return F, CoE™;

4 Experiments

Our experimental investigation revolves around ad-
dressing three key questions:

* Q1: How does our proposed model compare
to prior factor mining methods?

* Q2: Which factors within the experience
chain contribute to the enhancement of the
RankIC&RankICIR?

* Q3: How does our model perform under a
more realistic investment situation?

4.1 Experiment Settings

We use 38 factors from AlphalOl1 (Kakushadze,
2016) as our initial factor set F', the number of
clusters m is chosen to be 7, and the number of
randomly sampled factors [ is set to 2. We choose
text-davinci-002 ! as the LLM for factor mining.
The full factors and prompt examples are listed in
Appendix A and Appendix B.

4.2 Datasets

Given that these factors are specifically crafted for
the U.S. stock market, we opt for the correspond-
ing U.S. stock index, namely the S&P500 as the
stock set. Our dataset comprises all stocks from
the S&P500 index, with a focus on key fields in-
cluding closing price, opening price, low price,
high price, adjusted closing price, and total vol-
ume. The temporal scope of the stock data spans
from 2015/01/01 to 2022/01/01. The dataset is di-
vided into a training set (2015/01/01-2020/01/01),
a validation set (2020/01/01-2021/01/01) and a test
set (2021/01/01-2022/01/01). In our model, we
only use stock data for the time period 2020/06/01-
2021/01/01 as the training set, which is 10%
amount of the provided training set.

4.3 Baselines

We explored SOTA models in recent years for com-
parison, encompassing both symbolic factor mod-
els and neural factor models as follows:

* Alphal01 (Kakushadze, 2016) publicly dis-
closed by WorldQuant LLC 2, accompanied
by precise code-based definitions. It serves
as our initial set of factors from which our
factors are derived.

"https://platform.openai.com/docs/model-index-for-
researchers

Zhttps://www.worldquant.com/



Category Model Interpretability Training data usage Rank IC Rank ICIR
AlphalOl v - 0.025(0.000)  0.365(0.000)
Symbolic GP v 100% 0.027(0.005) 0.149(0.034)
LLM v 10% 0.015(0.008) 0.139(0.011)
DTransformer X 100% 0.025(0.005) 0.124(0.015)
Neural ALSTM X 100% 0.028(0.006) 0.167(0.021)
FactorVAE X 100% 0.048(0.008) 0.379(0.042)
FAMA(C) v 10% 0.023(0.006) 0.204(0.019)
Neural FAMA(-1) v 10% 0.016(0.006) 0.149(0.017)
Symbolic  FAMA(CI-3) v 10% 0.030(0.008)  0.372(0.031)
FAMA(CI-7) v 10% 0.054(0.010) 0.485(0.051)

Table 1: The performance of the compared models in returns prediction on the test dataset. Higher values for Rank
IC and Rank ICIR indicate superior performance. Interpretability indicates that the mined factors are financially
interpretable. LLM is the result of directly mining factors using LLMs. The term FAMA(C) corresponds to the
CSS model. Additionally, FAMA(I-n) signifies the application of the COE iteration n. The bold part highlights
the best-performing model in the evaluation. The mean and standard deviation of results from 10 experiments are

reported.

* GP (Chen et al., 2021) Genetic programming
algorithms create new factors through the mu-
tation of factor expression trees, a widely cited
model in factor mining.

* ALSTM (Qin et al., 2017) proposes a frame-
work based on attentional mechanisms and
long and short-term memory to predict stock
trends.

* DTransformer (Wang et al., 2022) forecasts
market indices by leveraging fundamental
rules characterizing stock market dynamics
through an encoder-decoder architecture and
a full attention mechanism.

FactorVAE (Duan et al., 2022) generates a
prior risk factor return rate within the Varia-
tional Autoencoder (VAE) framework. It re-
fines the prior factor return rate to approxi-
mate the posterior factor return rate.

4.4 Cross-Sectional Returns Prediction

In this experiment, we employ both the neural and
symbolic factor models to forecast future stock
returns for answering Q1. The Average Rank IC is
calculated between the forecasted and actual stock
returns, as defined in Equation 2. To better illustrate
the relationship between prediction effectiveness
and risk, we introduce the Rank ICIR, defined as
the ratio of the mean value of the Rank IC to the
standard deviation:

v(f)

- (16)
O RankIC(f)

Rank ICIR = E¢|
As evidenced in Table 1, FAMA demonstrates
superior performance compared to the most recent
benchmark, FactorVAE. FAMA exhibits improve-
ments of 0.006 on RankIC and 0.106 on RankICIR.
In addition, it can be observed from Table 1, that
both CSS and CoE exhibit improvement in factor
mining effects. Achieving satisfactory prediction
results using CSS or CoE individually faces chal-
lenges. When CSS and CoE are employed together,
the predictive performance of the model improves
with an increasing number of mining iterations.

(a) CoE Iteration Number (b) CSS Factor Number
006 Rank IC 0.04 —— Rank IC
0.05
000 0.02
0.03 0
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0.01 002
0 -0.04
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Figure 3: The results of parameter effects. Subfigure
(a) illustrates RankIC and RankICIR in relation to the
number of CoE iterations. Meanwhile, Subfigure (b)
portrays the plot of RankIC and RankICIR with respect
to the number of CSS samples.



To explore the impact of the number of CoE iter-
ations on the model, we set the CoE iterations from
1 to 7 and verify the effect of the corresponding iter-
ations. Results in Figure 3(a) show that the model’s
prediction effectiveness gradually improves with
an increase in CoE iterations. The improvement
effect of CoE largely depends on the generation
effect of the previous round of factors.

To explore the impact of sample number selec-
tion on the model, we changed the number of cross-
sample selections and conducted experiments. As
shown in Figure 3(b), until the number of samples
is 3, increasing the number of samples improves the
performance of the model. When the quantity of
samples surpasses a threshold of three, the efficacy
of the model shows a decrement. This observation
signifies that an excessive abundance of samples
fails to enhance the performance.

4.5 Randomized Modification of
Chain-of-Experience

0.05 0.5
M Rank IC
0.04

0.03 0.3
0.02 0.2
0.01 I 0.1

0 L 0

Initial Head Middle Tail Initial Head

Rank ICIR

Middle Tail

Figure 4: Impact of randomly deleting CoE nodes at
different locations on model prediction. [Initial is the
performance of factors generated by retaining the com-
plete experience chain of factors. Head, Middle, Tail
are the performance of factors generated after randomly
deleting the factors located at the head, middle, and tail
of the experience chain.

In the pursuit of unraveling the fundamental com-
ponents of the Chain-of-Experience (CoE) func-
tion, we conducted an experiment that entailed the
random deletion of nodes within the CoE. The ob-
jective of this endeavor is to address the inquiry
encapsulated in Q2. Nodes are categorized into
head nodes, middle nodes, and tail nodes. Given
that intermediate nodes may consist of multiple
nodes, we randomly select one among them as the
middle node. In each round of CoEs, we systemat-
ically delete the head node, middle node, and tail
node, utilizing the modified CoEs for factor mining.
The results, averaged over multiple rounds, are de-
picted in Figure 4. We observed that the removal
of initial nodes enhances the performance of factor
mining. This observation suggests that the inclu-
sion of an excessive number of low-performing

nodes compromises the efficacy of factor mining in
the LLM. Thus, it becomes imperative to adjust the
length of the chain over time for optimal results.

4.6 Portfolio Investment Simulation

We intend to answer Q3 by designing an investment
simulation of the stock market. For our model, we
implement a multi-factor strategy to predict factors
using the following approach. We select factors
with positive average RankIC values during the
valid period from 2020/01/01-2021/01/01. Funds
for each factor are allocated based on weights given
by:
_ RankI c? ast
S RankICP**"

where RankICP*" represents the mean RankIC
value during the valid period. We choose stocks
with the top 20% factor value to buy and sell them
in next day.

We evaluate the portfolio investment perfor-
mance using standard metrics, including Annu-
alized Return (AR), Volatility (Vol), and Sharpe
Ratios (SR):

(17)

Wi

AR = (14 R)®¥N _1, (18)
Vol = o, x V252, (19)
SR = @By~ Fy) V252, (20)

Op
where R represents the cumulative return rate, N
is the total number of trading days, o), is the daily
standard deviation of the portfolio, 12, is the ex-
pected daily return rate of the portfolio, 17y is the
risk-free rate 3.

Models AR(1) Vol(}) SR(?1)
S&P500 28.7% 13.0% 201.5%
GP 112% 6.8% 159.2%
Alphal01 132% 3.6% 340.8%
ALSTM 185% 223% 87.8%
DTransformer 18.6% 25.0% 80.8%
FactorVAE 31.8% 22.8% 132.2%
FAMA 39.0% 49% 667.6%

Table 2: Portfolio performance of the compared models
on the test datasets; 1 indicates a larger value is better,
J indicates a smaller value is better. The S&P500 repre-
sents a portfolio comprising all S&P500 stocks.

As depicted in Figure 5, the symbol-based ap-
proach exhibits lower volatility but yields com-
paratively lower returns. Conversely, neuro-based

3For simplicity, we set the risk-free rate to zero.
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Figure 5: Portfolio performance of factor mining mod-
els. Cumulative Return is defined as the ratio of the
model’s total return to the initial principal, calculated
from the first day of the testing period to the end of the
testing period.

approaches show higher returns, albeit accompa-
nied by elevated volatility. It is noteworthy that
our approach adeptly strikes a balance between
returns and volatility, demonstrating a consistent
performance throughout the investment simulation
without experiencing significant fluctuations. This
delicate equilibrium is achieved while concurrently
realizing a commendable return, highlighting the
robustness and stability inherent in our model.

It is evident from Table 2 that FAMA surpasses
current SOTA models, in the context of portfolio in-
vestment simulation. Specifically, there is a notable
increase of 7.2% in AR and a substantial improve-
ment of 326.8% in the SR.

5 Related Work

Financial Factor Mining. The initial phase of fac-
tor mining involves the manual mining of factors.
The Capital Asset Pricing Model (CAPM) (Sharpe,
1964), posits that the expected return of a financial
asset primarily depends on the market’s excess re-
turn. This contributed a groundbreaking factor to
the financial field. To refine this conceptual frame-
work, the Fama-French 3-factor model (Fama and
French, 1993) extends the CAPM by introducing
size and value risk factors alongside market risk
factors. However, manual factor mining is con-
sidered labor-intensive. To address this limitation
and efficiently mine effective factors in the market,
various symbolic factor-based models have been
proposed. AutoAlpha (Zhang et al., 2020) expe-
dites the identification of promising factor search

spaces through the utilization of genetic algorithms.
Furthermore, AlphaEvolve (Cui et al., 2021) has
developed a factor mining framework grounded in
AutoML, facilitating the evolution of initial factors
into new factors characterized by excess returns
and correlations. Factors derived through symbolic
factor models exhibit clear factor calculation steps,
making them easily interpretable. However, con-
strained by the vast symbolic factor target space,
these models are generally challenging to optimize.
This has prompted increased interest in the easy-to-
optimize neural factor models. In a recent study,
AE (Gu et al., 2021) introduces a novel latent fac-
tor conditional asset pricing model employing an
autoencoder. Additionally, FactorVAE (Duan et al.,
2022) integrates a dynamic factor model with a
variational autoencoder to approximate the optimal
factor model. The neural factor model, a method
for extracting numerical characteristic factors from
stock data through feature extraction, is known for
its heightened optimization efficiency. Despite this
advantage, factors constrained by implicit features
present challenges in terms of artificial identifica-
tion, resulting in a lack of interpretability in neural
factor models. In response to this, our proposed
model takes a strategic approach by combining
symbolic factors and leveraging neural factors for
feature extraction, achieving both financial inter-
pretability and high efficiency in the realm of factor
mining.

6 Conclusion

In this paper, we consider Large Language Mod-
els (LLMs) as a neural symbolic model for finan-
cial factor mining. To facilitate LLMs to pursue
our task, we proposed a model called Factor Min-
ing Agent (FAMA), which comprises two integral
components: Cross-Sample Selection (CSS) and
Chain-of-Experience (CoE). CSS mitigates the ho-
mogeneity in the mined factors by amalgamating di-
verse guidance factors. CoE encourages In-Context
Learning (ICL) to explore novel factor paradigms
by leveraging the paths leading to the mining of
effective factors as experiential prompts. Both CSS
and CoE components are integrated into our factor
mining agent to effectively mine financially inter-
pretable factors. Experimental results demonstrate
the effectiveness of our proposed approach. Our
future work includes exploring more avenues to
enhance the optimization of factor mining and ad-
dressing the illusionary effect of LLMs.



Limitations

When employing LLMs for factor mining, we ob-
served the illusionary phenomenon of LLMs within
the financial domain that introduces interference in
the factor mining process. In future endeavors, our
emphasis will be directed towards mitigating the
illusionary effects of LLMs in the context of factor
mining.

Ethics Statement

We utilize the OpenAl API in strict adherence to
the OpenAl User Rules for the generation of finan-
cial factors, ensuring the absence of harmful and
unethical information. Our approach has under-
gone validation in historical market scenarios and
expressly does not offer any form of investment
advice.
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A Factor

Factor

0 " (-1 * correlation(rank(delta(log(volume), 2)), rank(((close - open) / open)), 6))"

1 " (-1 * correlation(rank(open), rank(volume), 10))"

2 " (-1 * Ts_Rank(rank(low), 9))"

3 " (rank((open - (sum(vwap, 10) / 10))) * (-1 * abs(rank((close - vwap)))))"

4 " (-1 * correlation(open, volume, 10))"

5 " (-1 * rank(((sum(open, 5) * sum(returns, 5)) - delay((sum(open, 5) * sum(returns, 5)),10))))"

6 " ((rank(ts_max((vwap - close), 3)) + rank(ts_min((vwap - close), 3))) *rank(delta(volume, 3)))"

7 " (sign(delta(volume, 1)) * (-1 * delta(close, 1)))"

8 " (-1 * rank(covariance(rank(close), rank(volume), 5)))"

9 " ((-1 * rank(delta(returns, 3))) * correlation(open, volume, 10))"

10 | " (-1 * sum(rank(correlation(rank(high), rank(volume), 3)), 3))"

11 | " (-1 * rank(covariance(rank(high), rank(volume), 5)))"

12 | " (((-1 * rank(ts_rank(close, 10))) * rank(delta(delta(close, 1), 1))) *rank(ts_rank((volume / adv20),
5))"

13 | " (-1 * rank(((stddev(abs((close - open)), 5) + (close - open)) + correlation(close, open,10))))"

14 | " (((-1 * rank((open - delay(high, 1)))) * rank((open - delay(close, 1)))) * rank((open -delay(low,
D))"

15 | " (-1 * (delta(correlation(high, volume, 5), 5) * rank(stddev(close, 20))))"

16 | rank(((((-1 * returns) * adv20) * vwap) * (high - close)))

17 | " (-1 * ts_max(correlation(ts_rank(volume, 5), ts_rank(high, 5), 5), 3))"

18 | " scale(((correlation(adv20, low, 5) + ((high + low) / 2)) - close))"

19 | " (((1.0 - rank(((sign((close - delay(close, 1))) + sign((delay(close, 1) - delay(close, 2))))
+sign((delay(close, 2) - delay(close, 3)))))) * sum(volume, 5)) / sum(volume, 20))"

20 | rank((-1 * ((1 - (open / close))1)))

21 | " rank(((1 - rank((stddev(returns, 2) / stddev(returns, 5)))) + (1 - rank(delta(close, 1)))))"

22 | " ((Ts_Rank(volume, 32) * (1 - Ts_Rank(((close + high) - low), 16))) * (1 -Ts_Rank(returns, 32)))"

23 | " ((-1 * rank(Ts_Rank(close, 10))) * rank((close / open)))"

24 | " ((-1 * rank(stddev(high, 10))) * correlation(high, volume, 10))"

25 | (((high * low)0.5) - vwap)

26 | (rank((vwap - close)) / rank((vwap + close)))

27 | " (ts_rank((volume / adv20), 20) * ts_rank((-1 * delta(close, 7)), 8))"

28 | " (-1 * correlation(high, rank(volume), 5))"

29 | " (-1 * ((rank((sum(delay(close, 5), 20) / 20)) * correlation(close, volume, 2))
*rank(correlation(sum(close, 5), sum(close, 20), 2))))"

30 | " ((((rank((1 / close)) * volume) / adv20) * ((high * rank((high - close))) / (sum(high, 5) /5))) -
rank((vwap - delay(vwap, 5))))"

31 | " (-1 * ts_max(rank(correlation(rank(volume), rank(vwap), 5)), 5))"

32 | " (-1 * delta((((close - low) - (high - close)) / (close - low)), 9))"

33 | ((-1 * ((low - close) * (openY))) / ((low - high) * (close))))

34 | " (-1 * correlation(rank(((close - ts_min(low, 12)) / (ts_max(high, 12) - ts_min(low,12)))),
rank(volume), 6))"

35 " (0 - (1 * (2 * scale(rank(((((close - low) - (high - close)) / (high - low)) * volume)))) -
scale(rank(ts_argmax(close, 10))))))"

36 | " ((rank(delay(((high - low) / (sum(close, 5) / 5)), 2)) * rank(rank(volume))) / (((high -low) /
(sum(close, 5) / 5)) / (vwap - close)))"

37 | ((close - open) / ((high - low) + .001))
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B Prompt
B.1 Factor Mining

Instruction:

### Instruction

You are an alpha generator. You should follow the following codes:

1. The inputs are the alpha factors that are currently performing well, and you are

required to output a new alpha factor that is generated from the fusion of

these factors, and your factor must be different from the input factor.

2. Complete <fill_alpha_formula> with new alpha’s formula.

3. Do not repeat example answer.

4. The specific operator is defined as follows:

rank(x) = cross-sectional rank

delay(x, d) = value of x d days ago

correlation(x, y, d) = time-serial correlation of x and y for the past d days

covariance(x, y, d) = time-serial covariance of x and y for the past d days

scale(x, a) = rescaled x such that sum(abs(x)) = a (the default is a = 1)

delta(x, d) todays value of x minus the value of x d days ago

signedpower(x, a) = x"a

decay_linear(x, d) = weighted moving average over the past d days with linearly
decaying weights d, d 1, ..., 1 (rescaled to sum up to 1)

indneutralize(x, g) = x cross-sectionally neutralized against groups g (
subindustries, industries, sectors, etc.), i.e., x is cross-sectionally
demeaned within each group g

ts_{0}(x, d) = operator O applied across the time-series for the past d days; non-
integer number of days d is converted to floor(d)

ts_min(x, d) = time-series min over the past d days

ts_max(x, d) = time-series max over the past d days

max(x, d) = ts_max(x, d)

sum(x, d) = time-series sum over the past d days

product(x, d) = time-series product over the past d days

stddev(x, d) = moving time-series standard deviation over the past d days

5. Follow the path in "improve_path”. -> Indicates that the following factors have
better performance than the previous factors. You should refer it to build new
alpha.

Input Example:

### Input

alphas: (-1 * correlation(open, volume, 10))
generate_factor_num: 1

improve_path: close/open -> rank(close)/rank(open)

Output Example:

#i## Answer:
["(-1 * correlation(rank(open), rank(volume), 10))"]
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