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Abstract

Finding interpretable factors for stock returns001
is the most vital issue in the empirical asset002
pricing domain. As data-driven methods, ex-003
isting factor mining models can be categorized004
into symbol-based and neural-based models.005
Symbol-based models are interpretable but in-006
efficient, while neural-based approaches are007
efficient but lack interpretability. Hence, min-008
ing interpretable factors effectively presents009
a significant challenge. Inspired by the suc-010
cess of Large Language Models (LLMs) in011
various tasks, we propose a FActor Mining012
Agent (FAMA) model that enables LLMs to013
integrate the strengths of both neural and sym-014
bolic models for factor mining. In this pa-015
per, FAMA consists of two main components:016
Cross-Sample Selection (CSS) and Chain-of-017
Experience (CoE). CSS addresses the homo-018
geneity challenges in LLMs during factor min-019
ing by assimilating diverse factors as in-context020
samples, whereas CoE enables LLMs to lever-021
age past successful mining experiences, expe-022
diting the mining of effective factors. Exper-023
imental evaluations on real-world stock mar-024
ket data demonstrate the effectiveness of our025
approach by surpassing the SOTA RankIC by026
0.006 and RankICIR by 0.105 in predicting027
S&P 500 returns. Furthermore, the investment028
simulation shows that our model can achieve029
superior performance with an annualized return030
of 39.0% and a Sharpe ratio of 667.6%.031

1 Introduction032

The task of predicting market trends in finance033

presents a formidable challenge, given the in-034

tricate interplay of various factors (Hou et al.,035

2011), such as the dynamics of demand and sup-036

ply (Hendricks and Singhal, 2009), market senti-037

ment (Verma and Soydemir, 2009) and government038

regulations (Ali Imran et al., 2020). In the field of039

quantitative trading, the conventional approaches040

often extract factors as indicative signals for mar-041

ket trends from raw historical stock data first, then042
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Figure 1: An illustration of three distinct factor mining
approaches: (a) symbolic factor model, (b) neural factor
model, and (c) our proposed neural-symbolic model.

serve them as input features for machine learning 043

models (Sharpe, 1964; Ross, 2013; Duan et al., 044

2022). A pivotal step in this process entails discern- 045

ing and extracting effective factors that demonstrate 046

robust predictive capabilities for market trends (Ng 047

et al., 1992). As an illustrative example, the Cap- 048

ital Asset Pricing Model (CAPM) (Sharpe, 1964) 049

employed the market’s excess return as a predictive 050

factor for the return of a financial asset, thereby 051

contributing a seminal factor to finance. 052

Hence discovering factors with high returns 053

has been a trendy topic among investors and re- 054

searchers. The prevailing methods for mining fac- 055

tors can be in general divided into two groups, 056

namely symbolic factor and neural factor models. 057

As illustrated in Figure 1(a), in symbolic factor 058

models, factors are represented as symbolic ex- 059

pressions, then symbolic regression (Makke and 060

Chawla, 2022) serves as a common technique 061
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for factor mining (Jin et al., 2019; Zhang et al.,062

2020; Chen et al., 2021; Cui et al., 2021). For063

instance, considering two factors, Factor1 =064

close/open and Factor2 = log(close), the fac-065

tor values are calculated by the opening and clos-066

ing price, then the two factors are inputted into067

a symbolic regression model to generate a novel068

factor, NewFactor = log(close/open). The inter-069

pretability of the symbolic factor model arises from070

the explicit representation of the calculation pro-071

cess for the factors. However, due to the vast search072

space of symbolic factors, mining with symbolic073

factor models often proves inefficient. Conversely,074

neural factor approaches, gaining recent popularity,075

transform factors into numerical features to opti-076

mize factor extraction. As depicted in Figure 1(b),077

neural factor models predict market trends by ex-078

tracting numerical factor features from stock data079

through feature extractors (Kelly et al., 2019; Gu080

et al., 2021; Duan et al., 2022). Compared with081

symbolic factor models, neural factor models ex-082

hibit proficiency in extracting effective numerical083

factors. However, the financial interpretability in084

neural factor models struggles with implicit fea-085

tures. The question we are facing is: Can an ef-086

fective approach be devised for mining financially087

interpretable factors conducive to predicting mar-088

ket trends?089

Recent advancements in LLMs have demon-090

strated success across financial tasks, including091

sentiment analysis (Guo et al., 2023) and finan-092

cial text generation (Yang et al., 2023). Thanks093

to its powerful In Context Learning (ICL) abil-094

ity (Brown et al., 2020), we conceptualize LLMs095

as a neuro-symbolic model illustrated in As de-096

picted in Figure 1(c), that bridges two distinct rep-097

resentations, i.e. numerical and symbolic factors,098

aiming to achieve efficient mining of interpretable099

ones. It is facile to consider utilizing the factors dis-100

closed (Kakushadze, 2016) as contextual examples101

to generate new factors through In-context Learn-102

ing. Since the disclosed factors are often limited103

in number, high correlation, and low complexity,104

direct mining factors using ICL encounter chal-105

lenges. These issues can be summarized in two106

aspects: (1) The heightened homogeneity observed107

among factors, characterized by the uniform struc-108

ture, culminates in the generation of the singular109

factor form through ICL. (2) The presence of a110

noteworthy proportion of ineffective factors acts111

as an impediment, hindering ICL from effectively112

exploring novel patterns. Therefore, the efficacy of 113

mining effective factors using LLMs is contingent 114

upon selecting diversity-guiding factors as contex- 115

tual samples to mitigate homogeneity. Additionally, 116

encouraging ICL to explore new patterns is key to 117

increasing the proportion of effective factors. 118

In this paper, we present the FActor Min- 119

ing Agent (FAMA), consisting of two main 120

parts: Cross-Sample Selection (CSS) and Chain- 121

of-Experience (CoE) methods. CSS is designed 122

to ensure the diversification of factor mining by 123

amalgamating low correlation classes of factors 124

as contextual samples, which empowers LLMs to 125

incorporate diversity-guiding factors and mitigate 126

the homogeneity of mined factors. CoE efficiently 127

encourages ICL to explore new paradigms by in- 128

corporating the paths of mining effective factors 129

as experiential prompts, which contributes to the 130

further optimization of factor mining in LLMs. Our 131

experimental results show better performance of 132

our model in predicting stock market returns com- 133

pared to previous approaches. Moreover, our model 134

also demonstrates a superior annualized return and 135

Sharpe ratio in the investment simulations. 136

Our contributions can be summarized as follows: 137

• To the best of our knowledge, we are the first 138

ones to use LLMs as a bridge between sym- 139

bolic and neural representations in the task of 140

factor mining. 141

• We propose a factor mining agent (FAMA) 142

to facilitate LLMs as factor miners, in which 143

its components CSS and CoE are designed to 144

tackle homogeneity issues and encourage ICL 145

in exploring new directions respectively. 146

• We expand the capabilities of LLMs to per- 147

form factor mining tasks and present a series 148

of experiments to demonstrate the effective- 149

ness of our proposed model. 150

2 Problem Formulation 151

2.1 Financial Factor 152

Consider a stock dataset for n stocks over T trad- 153

ing days. The features of all stocks are denoted 154

as X = [x1, x2, ..., xn]. Consider the m features, 155

such as open and close prices, pertaining to each 156

stock j, denoted as xj ∈ Rm×T . We define the 157

factor space as F , where each factor fi ∈ F is 158

defined as fi : Rm×T → RT . The value of fac- 159

tor fi on stock j is defined as fi(xj) ∈ RT . To 160
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conveniently represent the symbolic form of fac-161

tors, we employ the symbol function s(fi) to de-162

note the symbolic text of factor fi. For example,163

s(f101) = “((close− open)/(high− low))”.164

2.2 Factor Distance and Correlation165

In practice, factor categorization has traditionally166

depended on artificial classification rooted in fi-167

nancial principles, such as momentum (Carhart,168

1997) and trend (Han et al., 2016) factors. De-169

spite the demonstrated high accuracy associated170

with this approach, it involves a labor-intensive171

process. To enhance the efficiency of factor classi-172

fication, we advocate for a quantitative exploration173

of correlations among factors. We consider the174

factor space F is equipped with a distance map-175

ping d : F × F → R, thereby establishing it as a176

complete distance space (F , d), then correlations177

between factors can be defined within this space178

(F , d) as r : F × F → [−1, 1]. This approach en-179

ables a more efficient analysis of factor correlations180

without a labor-intensive process.181

2.3 Factor Mining182

The goal of factor mining is to produce a new set183

of factors F ⊂ F that will lead to better predic-184

tive performance of stocks in their portfolios. To185

evaluate the predictive performance of factors, we186

employ the Rank Information Coefficient (RankIC)187

(Chuan and Wu, 2019). RankIC measures the corre-188

lation between a factor’s ranking in equity exposure189

and its subsequent return ranking. The RankIC on190

period t and average RankIC γ is defined as fol-191

lows:192

RankICt(f) = Corr(orderft−1, order
r
t ),

γ(f) =
1

T

T∑
t=1

RankICt,
(1)193

where orderft−1 signifies the factor value ranking at194

time t−1, and orderrt represents the return ranking195

at time t, with Corr(x, y) denoting the correlation196

coefficient between vectors x and y. Given the197

initial factor set F = {f1, ..., fl}, its effectiveness198

is assessed by computing the average RankIC of199

the factors within the set, as described below:200

γ(F ) = Ei[γ(fi)], fi ∈ F. (2)201

We denote the combined model as g(X;F; I),202

where X is the stock feature matrix and I is the203

prompt entered into the LLMs. Our goal is that the204

new set of factors mined by the model g achieves 205

the optimal average RankIC, defined as follows: 206

g∗(X;F) = g(X;F; I∗)

I∗ = argmax
I

γ(g(X;F; I)). (3) 207

3 Factor Mining Agent 208

As illustrated in Figure 2, our proposed FActor 209

Mining Agent (FAMA) consists of two main parts: 210

(1) Cross-Sample Selection (CSS) and (2) Chain- 211

of-Experience (CoE). FAMA improves the mining 212

factor effectiveness through iterative mining. In 213

each iteration, FAMA generates diversity guiding 214

factors via CSS and empirical paths through CoE 215

as prompts fed into LLMs for mining factors. 216

3.1 Definitions 217

To measure the distance and correlation between 218

factors quantitatively mentioned in Section 2.2, we 219

start with calculating the weighted average price of 220

the stock pool. It is defined as: 221

p = wX, (4) 222

where w ∈ Rn denotes the total market value 223

weight corresponding to the company’s stock. Sub- 224

sequently, we calculate the factor exposure vi of 225

factor fi at the weighted average price p and em- 226

ploy z-score normalization as: 227

vi =
fi(p)−mean(fi(p))

std(fi(p))
. (5) 228

Consequently, we define the distance between two 229

factors as: 230

d(fi, fj) = ∥vi − vj∥2. (6) 231

Then, the correlation coefficient between the fac- 232

tors is defined as: 233

r(fi, fj) = Corr(vi,vj)

=

∑T
t=1(vit − vi)(vjt − vj)∑T

t=1(vit − vi)2(vjt − vj)2
.

(7) 234

3.2 Cross-Sample Selection 235

The CSS selects low-correlation guiding factors 236

as contexts thereby avoiding homogeneity of the 237

generated factors. It categorizes the factors into 238

different classes, sampling from the classes to get 239

a context sample of diversity factors. Here, we pro- 240

pose a clustering algorithm based on KMeans (Kr- 241

ishna and Murty, 1999) for factor clustering. The 242
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Figure 2: An overview of the FAMA model. FAMA(CI-n) denotes the nth iteration of the FAMA model. Initially,
(a) the input factors, stock data, and experience chain data are fed into the FAMA model. Subsequently, (b) the
CoE module utilizes the outcomes of FAMA(CI-(k − 1)) to produce a novel CoEk, and incorporates the diverse
guidance factors generated by the (c) CSS module to formulate a prompt. Lastly, the prompt is fed into the LLMs to
mine a new factor of FAMA(CI-k) as illustrated in (d), which is then stored in the factor database.

factor value vi of factor fi obtained from Equa-243

tion 5 is used for clustering. Initially, we ran-244

domly select k factor values as clustering centers245

{µ1,µ2, · · · ,µk}. For each factor value vi, its246

class is calculated as c(fi) = argminj ∥vi−µj∥2.247

Subsequently, we update the clustering center using248

the formula:249

µj =
1∑

c(fi)=j

1

∑
c(fi)=j

vi. (8)250

We define the loss of the factor cluster model as:251

J =

k∑
i=1

∑
c(fj)=i

∥vj − µi∥2. (9)252

The optimal classification is defined as:253

c∗ = argmin
c

J. (10)254

We denote the set of factors Ci belonging to the255

same class i as:256

Ci = {fj | c∗(fj) = i}. (11)257

Subsequently, we randomly draw a sample f i from258

each category Ci to get a factor combination:259

FC = [f1, f2, · · · , fk], f i ∈ Ci. (12)260

Finally, l(l ≤ k) factors in the factor combination 261

FC are selected as context samples: 262

S = [s(f i1), s(f i2), · · · , s(f il)], f ij ∈ FC.
(13) 263

3.3 Chain-of-Experience 264

This part aims to involve past successful mining 265

experiences in ICL to facilitate factor mining ef- 266

fectiveness. The generation of experience chains 267

is divided into two phases: the initial generation 268

phase and the enhanced generation phase. In the 269

initial phase, we employ the initial set of factors for 270

generation. Following the acquisition of the previ- 271

ous factor clustering results Ci through Equation 11 272

and with the size of Ci denoted as pi, the initial 273

experience chain for category Ci is generated. This 274

generation process relies on the ranking result of γ 275

as defined in Equation 1, which can be described 276

as follows: 277

CoE0
i = s(f

(i)
1 )→ s(f

(i)
2 )→ · · · → s(f (i)

pi ),

γ(f
(i)
1 ) ≤ γ(f

(i)
2 ) ≤ · · · ≤ γ(f (i)

pi ).
(14) 278

In the enhanced phase, the experience chain used 279

in the previous step is denoted as CoE
(k−1)
i . We 280

choose ICL-generated factor f∗(i) with CoE
(k−1)
i 281

having a higher γ than all chain factors. Then, we 282

4



compute the correlation r defined in Equation 7 for283

the new factor f∗(i) and factors on CoE
(k−1)
i to get284

the highest correlation factor f (i)
h . If the matched285

factor f (i)
h is at the end of the chain Ci, the new286

factor is treated as an extension of the experience.287

Otherwise, the new factor f∗(i) represents a new288

experience, and it is introduced into the chain sub-289

sequent to a split triggered by the matching factor290

f
(i)
h . This process can be defined uniformly as:291

CoEk
i = s(f

(i)
1 )→ · · · → s(f

(i)
h )→ s(f∗(i)),

r(f
(i)
h , f∗(i)) ≥ r(f

(i)
j , f∗(i)),∀0 ≤ j ≤ pi.

(15)292

Our proposed FAMA integrates Cross-Sample293

Selection (CSS) outlined in Section 3.2 and Chain-294

of-Experience (CoE) detailed in Section 3.3 to-295

gether to automatically generate diversity-guiding296

factor samples and experience chains for iterative297

factor mining. In each iteration, we utilize the298

sample generated through CSS as an in-context299

example and select the corresponding experience300

chain, then feed them into the LLMs. The output301

factor is added to the factor set and also contributes302

to a new experience chain. The specific algorithm303

is presented in Algorithm 1.304

Algorithm 1: Factor Mining Agent
Data: Initial factor set F = {f1, · · · , fn},

number of mining m.
Result: Final factor set F , experience chain

set CoEm.
1 Generate the initial experience chain set

CoE0 = {e1, · · · , ek};
// Equation 14

2 for i← 1 to m do
3 C ← Cluster(F);// Equation 11

4 S ← SelectSamples(C,CoE(i−1));
// Equation 13

5 foreach (s, e) ∈ S do
6 prompt← s+ e;
7 f ′← LLM(prompt);
8 if γ(f ′) > max(γ(f)),∀f ∈ e then
9 e′←GenChain(e,f ′);

// Equation 15

10 F ← F ∪ {f ′};
11 CoEi ← E ∪ {e′};

12 return F,CoEm;

4 Experiments 305

Our experimental investigation revolves around ad- 306

dressing three key questions: 307

• Q1: How does our proposed model compare 308

to prior factor mining methods? 309

• Q2: Which factors within the experience 310

chain contribute to the enhancement of the 311

RankIC&RankICIR? 312

• Q3: How does our model perform under a 313

more realistic investment situation? 314

4.1 Experiment Settings 315

We use 38 factors from Alpha101 (Kakushadze, 316

2016) as our initial factor set F , the number of 317

clusters m is chosen to be 7, and the number of 318

randomly sampled factors l is set to 2. We choose 319

text-davinci-002 1 as the LLM for factor mining. 320

The full factors and prompt examples are listed in 321

Appendix A and Appendix B. 322

4.2 Datasets 323

Given that these factors are specifically crafted for 324

the U.S. stock market, we opt for the correspond- 325

ing U.S. stock index, namely the S&P500 as the 326

stock set. Our dataset comprises all stocks from 327

the S&P500 index, with a focus on key fields in- 328

cluding closing price, opening price, low price, 329

high price, adjusted closing price, and total vol- 330

ume. The temporal scope of the stock data spans 331

from 2015/01/01 to 2022/01/01. The dataset is di- 332

vided into a training set (2015/01/01-2020/01/01), 333

a validation set (2020/01/01-2021/01/01) and a test 334

set (2021/01/01-2022/01/01). In our model, we 335

only use stock data for the time period 2020/06/01- 336

2021/01/01 as the training set, which is 10% 337

amount of the provided training set. 338

4.3 Baselines 339

We explored SOTA models in recent years for com- 340

parison, encompassing both symbolic factor mod- 341

els and neural factor models as follows: 342

• Alpha101 (Kakushadze, 2016) publicly dis- 343

closed by WorldQuant LLC 2, accompanied 344

by precise code-based definitions. It serves 345

as our initial set of factors from which our 346

factors are derived. 347

1https://platform.openai.com/docs/model-index-for-
researchers

2https://www.worldquant.com/
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Category Model Interpretability Training data usage Rank IC Rank ICIR

Symbolic
Alpha101 ! - 0.025(0.000) 0.365(0.000)

GP ! 100% 0.027(0.005) 0.149(0.034)
LLM ! 10% 0.015(0.008) 0.139(0.011)

Neural
DTransformer # 100% 0.025(0.005) 0.124(0.015)

ALSTM # 100% 0.028(0.006) 0.167(0.021)
FactorVAE # 100% 0.048(0.008) 0.379(0.042)

Neural
Symbolic

FAMA(C) ! 10% 0.023(0.006) 0.204(0.019)
FAMA(I-1) ! 10% 0.016(0.006) 0.149(0.017)

FAMA(CI-3) ! 10% 0.030(0.008) 0.372(0.031)
FAMA(CI-7) ! 10% 0.054(0.010) 0.485(0.051)

Table 1: The performance of the compared models in returns prediction on the test dataset. Higher values for Rank
IC and Rank ICIR indicate superior performance. Interpretability indicates that the mined factors are financially
interpretable. LLM is the result of directly mining factors using LLMs. The term FAMA(C) corresponds to the
CSS model. Additionally, FAMA(I-n) signifies the application of the COE iteration n. The bold part highlights
the best-performing model in the evaluation. The mean and standard deviation of results from 10 experiments are
reported.

• GP (Chen et al., 2021) Genetic programming348

algorithms create new factors through the mu-349

tation of factor expression trees, a widely cited350

model in factor mining.351

• ALSTM (Qin et al., 2017) proposes a frame-352

work based on attentional mechanisms and353

long and short-term memory to predict stock354

trends.355

• DTransformer (Wang et al., 2022) forecasts356

market indices by leveraging fundamental357

rules characterizing stock market dynamics358

through an encoder-decoder architecture and359

a full attention mechanism.360

• FactorVAE (Duan et al., 2022) generates a361

prior risk factor return rate within the Varia-362

tional Autoencoder (VAE) framework. It re-363

fines the prior factor return rate to approxi-364

mate the posterior factor return rate.365

4.4 Cross-Sectional Returns Prediction366

In this experiment, we employ both the neural and367

symbolic factor models to forecast future stock368

returns for answering Q1. The Average Rank IC is369

calculated between the forecasted and actual stock370

returns, as defined in Equation 2. To better illustrate371

the relationship between prediction effectiveness372

and risk, we introduce the Rank ICIR, defined as373

the ratio of the mean value of the Rank IC to the374

standard deviation:375

Rank ICIR = Ef [
γ(f)

σRankICt(f)
] (16) 376

As evidenced in Table 1, FAMA demonstrates 377

superior performance compared to the most recent 378

benchmark, FactorVAE. FAMA exhibits improve- 379

ments of 0.006 on RankIC and 0.106 on RankICIR. 380

In addition, it can be observed from Table 1, that 381

both CSS and CoE exhibit improvement in factor 382

mining effects. Achieving satisfactory prediction 383

results using CSS or CoE individually faces chal- 384

lenges. When CSS and CoE are employed together, 385

the predictive performance of the model improves 386

with an increasing number of mining iterations. 387
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Figure 3: The results of parameter effects. Subfigure
(a) illustrates RankIC and RankICIR in relation to the
number of CoE iterations. Meanwhile, Subfigure (b)
portrays the plot of RankIC and RankICIR with respect
to the number of CSS samples.
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To explore the impact of the number of CoE iter-388

ations on the model, we set the CoE iterations from389

1 to 7 and verify the effect of the corresponding iter-390

ations. Results in Figure 3(a) show that the model’s391

prediction effectiveness gradually improves with392

an increase in CoE iterations. The improvement393

effect of CoE largely depends on the generation394

effect of the previous round of factors.395

To explore the impact of sample number selec-396

tion on the model, we changed the number of cross-397

sample selections and conducted experiments. As398

shown in Figure 3(b), until the number of samples399

is 3, increasing the number of samples improves the400

performance of the model. When the quantity of401

samples surpasses a threshold of three, the efficacy402

of the model shows a decrement. This observation403

signifies that an excessive abundance of samples404

fails to enhance the performance.405

4.5 Randomized Modification of406

Chain-of-Experience407

0
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Rank IC

0
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0.2

0.3

0.4

0.5

Initial Head Middle Tail

Rank ICIR

Figure 4: Impact of randomly deleting CoE nodes at
different locations on model prediction. Initial is the
performance of factors generated by retaining the com-
plete experience chain of factors. Head, Middle, Tail
are the performance of factors generated after randomly
deleting the factors located at the head, middle, and tail
of the experience chain.

In the pursuit of unraveling the fundamental com-408

ponents of the Chain-of-Experience (CoE) func-409

tion, we conducted an experiment that entailed the410

random deletion of nodes within the CoE. The ob-411

jective of this endeavor is to address the inquiry412

encapsulated in Q2. Nodes are categorized into413

head nodes, middle nodes, and tail nodes. Given414

that intermediate nodes may consist of multiple415

nodes, we randomly select one among them as the416

middle node. In each round of CoEs, we systemat-417

ically delete the head node, middle node, and tail418

node, utilizing the modified CoEs for factor mining.419

The results, averaged over multiple rounds, are de-420

picted in Figure 4. We observed that the removal421

of initial nodes enhances the performance of factor422

mining. This observation suggests that the inclu-423

sion of an excessive number of low-performing424

nodes compromises the efficacy of factor mining in 425

the LLM. Thus, it becomes imperative to adjust the 426

length of the chain over time for optimal results. 427

4.6 Portfolio Investment Simulation 428

We intend to answer Q3 by designing an investment 429

simulation of the stock market. For our model, we 430

implement a multi-factor strategy to predict factors 431

using the following approach. We select factors 432

with positive average RankIC values during the 433

valid period from 2020/01/01-2021/01/01. Funds 434

for each factor are allocated based on weights given 435

by: 436

wi =
RankICpast

i∑n
i=0RankICpast

i

, (17) 437

where RankICpast
i represents the mean RankIC 438

value during the valid period. We choose stocks 439

with the top 20% factor value to buy and sell them 440

in next day. 441

We evaluate the portfolio investment perfor- 442

mance using standard metrics, including Annu- 443

alized Return (AR), Volatility (Vol), and Sharpe 444

Ratios (SR): 445

AR = (1 +R)252/N − 1, (18) 446

V ol = σp ∗
√
252, (19) 447

SR =
(Rp −Rf )

σp
∗
√
252, (20) 448

where R represents the cumulative return rate, N 449

is the total number of trading days, σp is the daily 450

standard deviation of the portfolio, Rp is the ex- 451

pected daily return rate of the portfolio, Rf is the 452

risk-free rate 3. 453

Models AR(↑) Vol(↓) SR(↑)
S&P500 28.7% 13.0% 201.5%

GP 11.2% 6.8% 159.2%
Alpha101 13.2% 3.6% 340.8%
ALSTM 18.5% 22.3% 87.8%

DTransformer 18.6% 25.0% 80.8%
FactorVAE 31.8% 22.8% 132.2%

FAMA 39.0% 4.9% 667.6%

Table 2: Portfolio performance of the compared models
on the test datasets; ↑ indicates a larger value is better,
↓ indicates a smaller value is better. The S&P500 repre-
sents a portfolio comprising all S&P500 stocks.

As depicted in Figure 5, the symbol-based ap- 454

proach exhibits lower volatility but yields com- 455

paratively lower returns. Conversely, neuro-based 456

3For simplicity, we set the risk-free rate to zero.
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Figure 5: Portfolio performance of factor mining mod-
els. Cumulative Return is defined as the ratio of the
model’s total return to the initial principal, calculated
from the first day of the testing period to the end of the
testing period.

approaches show higher returns, albeit accompa-457

nied by elevated volatility. It is noteworthy that458

our approach adeptly strikes a balance between459

returns and volatility, demonstrating a consistent460

performance throughout the investment simulation461

without experiencing significant fluctuations. This462

delicate equilibrium is achieved while concurrently463

realizing a commendable return, highlighting the464

robustness and stability inherent in our model.465

It is evident from Table 2 that FAMA surpasses466

current SOTA models, in the context of portfolio in-467

vestment simulation. Specifically, there is a notable468

increase of 7.2% in AR and a substantial improve-469

ment of 326.8% in the SR.470

5 Related Work471

Financial Factor Mining. The initial phase of fac-472

tor mining involves the manual mining of factors.473

The Capital Asset Pricing Model (CAPM) (Sharpe,474

1964), posits that the expected return of a financial475

asset primarily depends on the market’s excess re-476

turn. This contributed a groundbreaking factor to477

the financial field. To refine this conceptual frame-478

work, the Fama-French 3-factor model (Fama and479

French, 1993) extends the CAPM by introducing480

size and value risk factors alongside market risk481

factors. However, manual factor mining is con-482

sidered labor-intensive. To address this limitation483

and efficiently mine effective factors in the market,484

various symbolic factor-based models have been485

proposed. AutoAlpha (Zhang et al., 2020) expe-486

dites the identification of promising factor search487

spaces through the utilization of genetic algorithms. 488

Furthermore, AlphaEvolve (Cui et al., 2021) has 489

developed a factor mining framework grounded in 490

AutoML, facilitating the evolution of initial factors 491

into new factors characterized by excess returns 492

and correlations. Factors derived through symbolic 493

factor models exhibit clear factor calculation steps, 494

making them easily interpretable. However, con- 495

strained by the vast symbolic factor target space, 496

these models are generally challenging to optimize. 497

This has prompted increased interest in the easy-to- 498

optimize neural factor models. In a recent study, 499

AE (Gu et al., 2021) introduces a novel latent fac- 500

tor conditional asset pricing model employing an 501

autoencoder. Additionally, FactorVAE (Duan et al., 502

2022) integrates a dynamic factor model with a 503

variational autoencoder to approximate the optimal 504

factor model. The neural factor model, a method 505

for extracting numerical characteristic factors from 506

stock data through feature extraction, is known for 507

its heightened optimization efficiency. Despite this 508

advantage, factors constrained by implicit features 509

present challenges in terms of artificial identifica- 510

tion, resulting in a lack of interpretability in neural 511

factor models. In response to this, our proposed 512

model takes a strategic approach by combining 513

symbolic factors and leveraging neural factors for 514

feature extraction, achieving both financial inter- 515

pretability and high efficiency in the realm of factor 516

mining. 517

6 Conclusion 518

In this paper, we consider Large Language Mod- 519

els (LLMs) as a neural symbolic model for finan- 520

cial factor mining. To facilitate LLMs to pursue 521

our task, we proposed a model called Factor Min- 522

ing Agent (FAMA), which comprises two integral 523

components: Cross-Sample Selection (CSS) and 524

Chain-of-Experience (CoE). CSS mitigates the ho- 525

mogeneity in the mined factors by amalgamating di- 526

verse guidance factors. CoE encourages In-Context 527

Learning (ICL) to explore novel factor paradigms 528

by leveraging the paths leading to the mining of 529

effective factors as experiential prompts. Both CSS 530

and CoE components are integrated into our factor 531

mining agent to effectively mine financially inter- 532

pretable factors. Experimental results demonstrate 533

the effectiveness of our proposed approach. Our 534

future work includes exploring more avenues to 535

enhance the optimization of factor mining and ad- 536

dressing the illusionary effect of LLMs. 537
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Limitations538

When employing LLMs for factor mining, we ob-539

served the illusionary phenomenon of LLMs within540

the financial domain that introduces interference in541

the factor mining process. In future endeavors, our542

emphasis will be directed towards mitigating the543

illusionary effects of LLMs in the context of factor544

mining.545

Ethics Statement546

We utilize the OpenAI API in strict adherence to547

the OpenAI User Rules for the generation of finan-548

cial factors, ensuring the absence of harmful and549

unethical information. Our approach has under-550

gone validation in historical market scenarios and551

expressly does not offer any form of investment552

advice.553
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A Factor 657

Factor
0 " (-1 * correlation(rank(delta(log(volume), 2)), rank(((close - open) / open)), 6))"
1 " (-1 * correlation(rank(open), rank(volume), 10))"
2 " (-1 * Ts_Rank(rank(low), 9))"
3 " (rank((open - (sum(vwap, 10) / 10))) * (-1 * abs(rank((close - vwap)))))"
4 " (-1 * correlation(open, volume, 10))"
5 " (-1 * rank(((sum(open, 5) * sum(returns, 5)) - delay((sum(open, 5) * sum(returns, 5)),10))))"
6 " ((rank(ts_max((vwap - close), 3)) + rank(ts_min((vwap - close), 3))) *rank(delta(volume, 3)))"
7 " (sign(delta(volume, 1)) * (-1 * delta(close, 1)))"
8 " (-1 * rank(covariance(rank(close), rank(volume), 5)))"
9 " ((-1 * rank(delta(returns, 3))) * correlation(open, volume, 10))"
10 " (-1 * sum(rank(correlation(rank(high), rank(volume), 3)), 3))"
11 " (-1 * rank(covariance(rank(high), rank(volume), 5)))"
12 " (((-1 * rank(ts_rank(close, 10))) * rank(delta(delta(close, 1), 1))) *rank(ts_rank((volume / adv20),

5)))"
13 " (-1 * rank(((stddev(abs((close - open)), 5) + (close - open)) + correlation(close, open,10))))"
14 " (((-1 * rank((open - delay(high, 1)))) * rank((open - delay(close, 1)))) * rank((open -delay(low,

1))))"
15 " (-1 * (delta(correlation(high, volume, 5), 5) * rank(stddev(close, 20))))"
16 rank(((((-1 * returns) * adv20) * vwap) * (high - close)))
17 " (-1 * ts_max(correlation(ts_rank(volume, 5), ts_rank(high, 5), 5), 3))"
18 " scale(((correlation(adv20, low, 5) + ((high + low) / 2)) - close))"
19 " (((1.0 - rank(((sign((close - delay(close, 1))) + sign((delay(close, 1) - delay(close, 2))))

+sign((delay(close, 2) - delay(close, 3)))))) * sum(volume, 5)) / sum(volume, 20))"
20 rank((-1 * ((1 - (open / close))1̂)))
21 " rank(((1 - rank((stddev(returns, 2) / stddev(returns, 5)))) + (1 - rank(delta(close, 1)))))"
22 " ((Ts_Rank(volume, 32) * (1 - Ts_Rank(((close + high) - low), 16))) * (1 -Ts_Rank(returns, 32)))"
23 " ((-1 * rank(Ts_Rank(close, 10))) * rank((close / open)))"
24 " ((-1 * rank(stddev(high, 10))) * correlation(high, volume, 10))"
25 (((high * low)0̂.5) - vwap)
26 (rank((vwap - close)) / rank((vwap + close)))
27 " (ts_rank((volume / adv20), 20) * ts_rank((-1 * delta(close, 7)), 8))"
28 " (-1 * correlation(high, rank(volume), 5))"
29 " (-1 * ((rank((sum(delay(close, 5), 20) / 20)) * correlation(close, volume, 2))

*rank(correlation(sum(close, 5), sum(close, 20), 2))))"
30 " ((((rank((1 / close)) * volume) / adv20) * ((high * rank((high - close))) / (sum(high, 5) /5))) -

rank((vwap - delay(vwap, 5))))"
31 " (-1 * ts_max(rank(correlation(rank(volume), rank(vwap), 5)), 5))"
32 " (-1 * delta((((close - low) - (high - close)) / (close - low)), 9))"
33 ((-1 * ((low - close) * (open5̂))) / ((low - high) * (close5̂)))
34 " (-1 * correlation(rank(((close - ts_min(low, 12)) / (ts_max(high, 12) - ts_min(low,12)))),

rank(volume), 6))"
35 " (0 - (1 * ((2 * scale(rank(((((close - low) - (high - close)) / (high - low)) * volume)))) -

scale(rank(ts_argmax(close, 10))))))"
36 " ((rank(delay(((high - low) / (sum(close, 5) / 5)), 2)) * rank(rank(volume))) / (((high -low) /

(sum(close, 5) / 5)) / (vwap - close)))"
37 ((close - open) / ((high - low) + .001))
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B Prompt658

B.1 Factor Mining659

Instruction:660

### Instruction661

You are an alpha generator. You should follow the following codes:662

1. The inputs are the alpha factors that are currently performing well, and you are663

required to output a new alpha factor that is generated from the fusion of664

these factors, and your factor must be different from the input factor.665

2. Complete <fill_alpha_formula> with new alpha’s formula.666

3. Do not repeat example answer.667

4. The specific operator is defined as follows:668

rank(x) = cross-sectional rank669

delay(x, d) = value of x d days ago670

correlation(x, y, d) = time-serial correlation of x and y for the past d days671

covariance(x, y, d) = time-serial covariance of x and y for the past d days672

scale(x, a) = rescaled x such that sum(abs(x)) = a (the default is a = 1)673

delta(x, d) = todays value of x minus the value of x d days ago674

signedpower(x, a) = x^a675

decay_linear(x, d) = weighted moving average over the past d days with linearly676

decaying weights d, d 1, ..., 1 (rescaled to sum up to 1)677

indneutralize(x, g) = x cross-sectionally neutralized against groups g (678

subindustries, industries, sectors, etc.), i.e., x is cross-sectionally679

demeaned within each group g680

ts_{O}(x, d) = operator O applied across the time-series for the past d days; non-681

integer number of days d is converted to floor(d)682

ts_min(x, d) = time-series min over the past d days683

ts_max(x, d) = time-series max over the past d days684

max(x, d) = ts_max(x, d)685

sum(x, d) = time-series sum over the past d days686

product(x, d) = time-series product over the past d days687

stddev(x, d) = moving time-series standard deviation over the past d days688

5. Follow the path in "improve_path". -> Indicates that the following factors have689

better performance than the previous factors. You should refer it to build new690

alpha.691

Input Example:692

### Input693

alphas: (-1 * correlation(open, volume, 10))694

generate_factor_num: 1695

improve_path: close/open -> rank(close)/rank(open)696

Output Example:697

### Answer:698

["(-1 * correlation(rank(open), rank(volume), 10))"]699
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