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Abstract

We train a bilingual Arabic-Hebrew language001
model in this study, using a transliterated ver-002
sion of Arabic texts to ensure representation003
by the same script. Given the morphological004
and structural similarities and large number of005
cognates in Arabic and Hebrew, we evaluate006
the performance of a language model that uses007
the same script for both languages on down-008
stream tasks that require cross-lingual knowl-009
edge, such as machine translation. Promising010
results are obtained; our model outperforms all011
other PLMs on machine translation and outper-012
forms other multilingual models in sentiment013
analysis for both languages.014

1 Introduction015

Pre-trained language models (PLMs) have be-016

come essential for state-of-the-art performance in017

mono- and multilingual natural language process-018

ing (NLP) tasks. PLMs generalize better in mul-019

tilingual settings when languages share structural020

similarity, possibly due to script similarity (K et al.,021

2020). Typically, PLMs are trained on sequences of022

tokens that often correspond to words and subword023

components.024

Arabic and Hebrew are two Semitic languages025

that share similar morphological structures in the026

composition of their words, using distinct scripts027

for their written forms. The Hebrew script pri-028

marily serves Hebrew, but is also employed in029

various other languages used by the Jewish pop-030

ulation. These languages include Yiddish (or031

“Judeo-German”), Ladino (or “Judeo-Spanish”),032

and Judeo-Arabic, which comprises a cluster of033

Arabic dialects spoken and written by Jewish com-034

munities residing in Arab nations. To some extent,035

Judeo-Arabic can be perceived as an Arabic lan-036

guage variant written in Hebrew script. Most of037

the vocabulary in Judeo-Arabic consists of Arabic038

words that have been transliterated into Hebrew.039

Words in two languages that share similar mean- 040

ings, spellings, and pronunciations are known as 041

cognates. Arabic and Hebrew cognates share simi- 042

lar meanings and spellings despite different scripts. 043

The pronunciation of such cognates are not nec- 044

essarily the same. Numerous lexicons have been 045

created to record these cognates. One of those lexi- 046

cons1 lists a total of 915 Hebrew-Arabic spelling 047

equivalents, of which 435 have been identified as 048

authentic cognates, signifying that they possess 049

identical meanings. Analyzing a parallel Hebrew- 050

Arabic corpus, named Kol Zchut2 using this lexi- 051

con, we found instances of those cognates in about 052

50% of the sentences. The purpose of this work is 053

to take advantage of the potentially high frequency 054

of cognates in Arabic and Hebrew in building a 055

bilingual language model. Subsequently, the model 056

will be fine-tuned on NLP tasks, such as machine 057

translation, which can benefit from the innate bilin- 058

gual proficiency to achieve better results. To ensure 059

that cognates are mapped onto a consistent char- 060

acter space, the model uses Arabic texts that are 061

transliterated into the Hebrew script, which mim- 062

ics the writing system used in Judeo-Arabic. This 063

model is denoted as HeArBERT. 064

We test our new model on downstream tasks 065

requiring knowledge in two languages, such as ma- 066

chine translation and cross-lingual transfer learning 067

for sentiment analysis, and report on some promis- 068

ing results. In summary, the primary contribu- 069

tions of our work are: (1) building a new bilingual 070

Arabic-Hebrew PLM; and, (2) using transliterated 071

texts for pre-training a PLM, as a way for aligning 072

tokens onto the same character space. 073

2 Related Work 074

K et al. (2020) have suggested that structural sim- 075

ilarity of languages is essential for PLM’s multi- 076

1https://seveleu.com/pages/
semitic-syntax-morpho/comparative-sem

2https://releases.iahlt.org/
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lingual generalization capabilities. Their sugges-077

tion was further discussed by Dufter and Schütze078

(2020), who highlighted the essential components079

for a model to possess “multilinguality”, and show080

that the order of the words in the sentence is key081

to the model’s cross-lingual generalization capa-082

bilities. mBERT Devlin et al. (2019), was the083

first PLM to incorporate both Arabic and Hebrew.084

However, both Arabic and Hebrew are significantly085

under-represented in the pre-training data, resulting086

in inferior performance compared to the equivalent087

monolingual models on various downstream tasks088

(Antoun et al., 2020; Lan et al., 2020; Chriqui and089

Yahav, 2022; Seker et al., 2022). GigaBERT (Lan090

et al., 2020) is another multilingual model, trained091

for English and Arabic. The best results for most092

of the known NLP tasks, are typically achieved093

by one of the large monolingual models in both094

Arabic and Hebrew. Currently, the best results are095

achieved using CAMeLBERT (Inoue et al., 2021),096

which combines texts written in Modern Standard097

Arabic (MSA), Classical Arabic, as well as dialecti-098

cal variants. For Hebrew, AlephBERT(Seker et al.,099

2022) is the top-performing known PLM for most100

NLP tasks, surpassing HeBERT (Chriqui and Ya-101

hav, 2022). Among other datasets, the monolin-102

gual models mentioned above, are using the rele-103

vant parts of the OSCAR dataset for training. Our104

model relies solely on the OSCAR data for both105

Hebrew and Arabic, resulting in a considerably106

smaller total number of words for each language in107

comparison to the monolingual PLMs.108

3 Methodology109

We pre-train a new PLM using texts from both110

languages, Arabic and Hebrew. The new model,111

named HeArBERT is then used to improve perfor-112

mance on machine translation between Arabic and113

Hebrew, and sentiment analysis. For pre-training,114

we use the de-duplicated Arabic and Hebrew ver-115

sions of the OSCAR dataset (Ortiz Suárez et al.,116

2020), corresponding to 3B and 1B words, respec-117

tively. We transliterate the Arabic version into He-118

brew before training and testing. Our transliteration119

procedure is designed following most of the guide-120

lines published by The Academy of the Hebrew Lan-121

guage who has defined a Hebrew mapping for every122

Arabic letter3, and the mapping provided in (Terner123

et al., 2020). Only Arabic letters are converted to124

3hebrew-academy.org.il/wp-content/
uploads/taatik-aravit-ivrit-1.pdf

their Hebrew equivalents, while non-Arabic char- 125

acters remain unchanged. Our implementation is 126

based on a simple lookup table, executed letter by 127

letter, as shown in Appendix A. 128

Our model is based on the original BERT-base 129

architecture combining Hebrew and transliterated 130

Arabic. We train a WordPiece tokenizer on a vo- 131

cabulary of size 30, 000 and limit its accepted al- 132

phabet size to 100, which promotes learning of 133

tokens that are common to both languages and al- 134

lows the tokenizer to focus on the content, rather 135

than on special characters which are not naturally 136

part of the two languages. We choose to use only 137

the masked language model (MLM) methodology 138

employed originally in BERT, ignoring the next- 139

sentence-prediction component, as it has previously 140

been proven less effective (Liu et al., 2019). Over- 141

all, we trained our model for the duration of 10 142

epochs, over the course of approximately 3 weeks, 143

using 4 Nvidia RTX 3090 GPUs. 144

Fine-tuning HeArBERT is done similar to fine- 145

tuning the original BERT model, except the addi- 146

tion of the transliteration step that takes place prior 147

to tokenization. In this pre-processing step, all non- 148

Arabic letters remain intact, while Arabic letters 149

are transliterated into their Hebrew equivalents, as 150

described above. 151

4 Experimental Settings 152

Machine Translation. Our MT architecture is 153

based on a simple encoder-decoder framework, 154

which we initialize using weights of the models 155

in focus.4 To fine-tune the model, we use the new 156

“Kol Zchut” (in English, “All Rights”) Hebrew- 157

Arabic parallel corpus5 which contains over 4,000 158

parallel articles in the civil-legal domain, corre- 159

sponding to 140,000 sentence-pairs in Arabic and 160

Hebrew containing 2.13M and 1.8M words respec- 161

tively. To the best of our knowledge, our work is the 162

first to report on MT results using this resource. As 163

the corpus is provided without an official train/test 164

split, we apply a random split with 80% of the data 165

being allocated for training and the remaining 20% 166

for testing, using the train_test_split func- 167

tion of scikit-Learn with a random seed of 168

42. We compare our HeArBERT-based translation 169

results against the same system, initialized using 170

other models. We use the standard BLEU metric 171

(Papineni et al., 2002) to compare between the sys- 172

4We use HuggingFace’s EncoderDecoderModel.
5https://releases.iahlt.org/
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tem’s generated translation and the single reference173

translation provided in the corpus. We fine-tune174

each system for the duration of ten epochs, and175

report on the best performance among all epochs.176

Sentiment Analysis. We fine-tune our model on177

SA for Hebrew and Arabic, individually, and com-178

pare its accuracy score with some known PLMs.179

Additionally, we perform a series of cross-lingual180

transfer-learning experiments. In each experiment,181

we begin by fine-tuning HeArBERT (or the corre-182

sponding baseline model under consideration) on183

the complete training set for SA in Hebrew. Then,184

we continue with fine-tuning the model on SA us-185

ing only a small number of instances of Arabic.186

We use a growing number of instances, randomly187

chosen; we run each experiment five times with188

each using a pre-specified, distinct random seed.189

We refer to this procedure as cross-lingual few-shot190

transfer learning from Hebrew to Arabic. We run191

the same experiments for Arabic to Hebrew.192

We are using two SA datasets, one for Hebrew193

and one for Arabic. For Hebrew, we use the cor-194

rected version of the corpus of (Amram et al.,195

2018), which was used by (Seker et al., 2022). For196

Arabic, we use the most recent NADI 2022 (Abdul-197

Mageed et al., 2022) SA subtask.198

Same as before, we train models for the duration199

of ten epochs, and report on the best performance200

among all epochs.201

Baseline Language Models. We compare our202

model with a number of baseline models. The first203

is mBERT, which was originally pre-trained on204

both Arabic and Hebrew and has the same model205

size as ours. Additionally, we select a number of206

monolingual Arabic and Hebrew PLMs (the Hug-207

ging Face’s model version is provided in a foot-208

note). For Arabic we use CAMeLBERT6 and Gi-209

gaBERT7. Both are similar in size to our model.210

Similarly for Hebrew, the models that have the211

same number of parameters are AlephBERT8 and212

HeBERT9. For some of the experiments we explore213

another technique, following (Rom and Bar, 2021),214

in which we extend the vocabulary of an existing215

Arabic LM by including a Hebrew-transliterated216

version of each Arabic token, mapped to the same217

token identifier. We denote such extended models218

by adding “ET” to the model name.219

6CAMeL-Lab/bert-base-arabic-camelbert-mix
7lanwuwei/GigaBERT-v4-Arabic-and-English
8onlplab/alephbert-base
9avichr/heBERT

5 Results 220

Machine Translation. The results are summarized 221

in Table 1. We train multiple baseline systems, 222

based on the same MT architecture, initialized with 223

different PLMs. We allocate different combinations 224

of PLMs to the encoder and decoder components, 225

while ensuring that the PLMs were matched by 226

the source and target language. Since mBERT and 227

CAMeLBERTET can potentially handle both lan- 228

guages, we experiment with combinations where 229

each of them is assigned to both, the encoder and 230

decoder components at the same time. 231

We see that the combination of GigaBERT and 232

HeArBERT (ours) outperforms all other combina- 233

tions in both directions. However, the improve- 234

ment over the second-best combination seems in- 235

significant. In the Arabic-to-Hebrew direction, the 236

second-best system uses HeArBERT for both, the 237

encoder and decoder components. Conversely, in 238

the opposite direction, initializing the encoder with 239

either HeBERT or AlephBERT appears to result in 240

nearly comparable performance. Generally speak- 241

ing, it appears that only HeArBERT and mBERT 242

are capable of adequately decoding Hebrew as a 243

target language. Employing any other models for 244

this task leads to a complete failure (they collapse 245

to predicting the [CLS] token most of the time). 246

Using the extended (ET) version of CAMeLBERT 247

is reasonable but it performs much worse than the 248

best result in both directions, suggesting that ex- 249

tending the vocabulary with transliterated Arabic 250

tokens does contribute to better capturing the mean- 251

ing of Hebrew tokens in context. 252

Sentiment Analysis. The results for SA are pro- 253

vided in Appendix C. For Hebrew it seems like 254

HeArBERT performs within range of HeBERT, 255

and slightly worse than AlephBERT. On the other 256

hand, for Arabic HeArBERT performs better than 257

mBERT but slightly worse than GigaBERT. 258

Consistent with prior research employing the 259

same datasets, we utilize accuracy as the evalua- 260

tion metric for Hebrew and F1-PN (the average 261

of F1 scores for positive and negative instances, 262

excluding neutrals) as the evaluation metric for 263

Arabic. The results for the cross-lingual few-shot 264

transfer learning for Hebrew and Arabic are visual- 265

ized in Figures 1 and 2, respectively. Full results 266

are provided in Appendix B. We observe that for 267

Hebrew, HeArBERT performs slightly worse than 268

AlephBERT. In Arabic it seems like HeArBERT 269

performs significantly better than all other models, 270
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Arabic-to-Hebrew Hebrew-to-Arabic
Encoder Decoder BLEU Encoder Decoder BLEU
mBERT mBERT 15.59 mBERT mBERT 11.48
CAMeLBERT AlephBERT 0.0041 AlephBERT CAMeLBERT 19.38
GigaBERT AlephBERT 1.02 AlephBERT GigaBERT 20.79
CAMeLBERT HeBERT 0 HeBERT CAMeLBERT 19.57
GigaBERT HeBERT 0.0002 HeBERT GigaBERT 21.04
CAMeLBERT CAMeLBERTET 12.47 CAMeLBERTET CAMeLBERT 16.86
CAMeLBERTET CAMeLBERTET 12.66 CAMeLBERTET CAMeLBERTET 17.15
HeArBERT (ours) HeArBERT (ours) 24.97 HeArBERT HeArBERT 18.92
GigaBERT HeArBERT 25.28 HeArBERT GigaBERT 21.17
CAMeLBERT HeArBERT 23.69 HeArBERT CAMeLBERT 19.41
HeArBERT AlephBERT 1.70 AlephBERT HeArBERT 18.78
HeArBERT HeBERT 0 HeBERT HeArBERT 18.77

Table 1: Machine translation performance (BLEU scores on the Kol Zchut test set).
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Figure 1: Cross-lingual few-shot transfer learning from Arabic to Hebrew, evaluated on Hebrew sentiment analysis.
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Figure 2: Cross-lingual few-shot transfer learning from Hebrew to Arabic, evaluated on Arabic sentiment analysis.
AlephBERT + Transliterated Arabic refers to using AlephBERT which receives Arabic texts only after they have
been transliterated to the Hebrew script. The same definition works for HeBERT + Transliterated Arabic.

even with a single Arabic training instance. HeAr-271

BERT is better at leveraging the fine-tuning step272

on the full Hebrew dataset prior to the few-shot273

learning step on Arabic. It seems like most other274

models fail to do so, except maybe GigaBERTET ,275

and AlephBERT for which we transliterate the in-276

put Arabic texts into Hebrew.277

6 Conclusion278

Arabic and Hebrew are Semitic languages that ex-279

hibit certain structural similarities and share some280

cognate words. To enable a bilingual PLM to take281

these cognates into account, we proposed a new 282

LM for Arabic and Hebrew, for which we translit- 283

erated the Arabic text into the Hebrew script be- 284

fore training and testing We fine-tuned our model 285

on machine translation and cross-lingual transfer 286

learning for sentiment analysis, and showed some 287

promising results. While our results do not estab- 288

lish a new state-of-the-art in any of the downstream 289

tasks, we regard the relatively close performance 290

to other models that do as a success, given that the 291

training data we utilized for pre-training the model 292

is approximately 60% smaller than theirs. 293
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A Transliteration Table 393

In Table 2 we provide the transliteration table 394

that we use for transliterating Arabic texts into 395

the Hebrew script as a pre-processing step in 396

HeArBERT and in the tokenizer extension for 397

CAMeLBERTET . 398

B Full Results for the Cross-Lingual 399

Transfer Learning Experiments 400

In Tables 3, 4 we provide the full results of our set 401

of cross-lingual few-shot transfer learning experi- 402

ments from Arabic to Hebrew, and from Hebrew to 403
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Arabic Hebrew Arabic Hebrew

ا א م מ

ب ב ن נ

ج ג׳ س ס

غ ג ع ע

د ד ف פ

ذ דֿ ص צ

ه ה ض צ׳

ة ה׳ ق ק

و ו ر ר

ز ז ش ש

ح ח ت ת

ط ט ث ת׳

ظ ט׳ ء א

ي י ئ י

ك כ ؤ ו

خ כ׳ ى א

ل ל ؟ ?

إ א أ א
آ א

Table 2: Character mapping used for Arabic-to-Hebrew transliteration.
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Arabic, respectively, evaluated on sentiment analy-404

sis. The results are the exact numbers of Figures 1405

and 2, respectively.406

C Sentiment Analysis Results407

Tables 6 and 5, respectively. Consistent with prior408

research employing these datasets, we utilize ac-409

curacy as the evaluation metric for Hebrew and410

F1-PN (the average of F1 scores for positive and411

negative instances, excluding neutrals) as the eval-412

uation metric for Arabic. We run every experiment413

three times with different random seeds; results are414

reported as the average of the three executions.415
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Number of Hebrew training instances
Model 1 2 4 8 16 32 64
HeArBERT 70.76(0.19) 70.73(0.41) 70.88(0.75) 71.52(0.96) 72.88(0.75) 74.77(1.12) 78.45(0.61)
CAMeLBERT-mix 3.02(0.02) 3.02(0.02) 3.07(0.00) 3.07(0.00) 3.10(0.03) 6.17(3.62) 13.91(6.45)
CAMeLBERT-mixET 4.47(0.04) 4.58(0.05) 4.74(0.11) 5.11(0.11) 5.58(0.21) 6.53(0.16) 11.48(3.82)
mBERT 55.89(0.13) 55.95(0.20) 56.17(0.57) 56.66(0.73) 57.60(0.68) 59.76(1.78) 63.47(2.11)
GigaBERT-v4 39.50(1.14) 41.78(1.17) 46.17(1.66) 55.07(1.81) 67.89(2.25) 74.43(1.43) 76.60(0.95)
GigaBERT-v4ET 59.40(0.31) 59.48(0.39) 59.62(0.80) 60.39(1.23) 61.31(1.05) 63.61(0.98) 66.10(1.35)
HeBERT 70.40(0.11) 70.43(0.19) 70.55(0.36) 70.60(0.33) 70.73(0.16) 71.30(0.23) 72.12(0.17)
AlephBERT 75.40(0.22) 75.43(0.23) 75.41(0.37) 75.76(0.80) 76.18(0.89) 77.10(0.56) 79.01(0.74)

Table 3: Cross-lingual few-shot transfer learning from Arabic to Hebrew, evaluated on Hebrew sentiment analysis.
Results are provided as Accuracy scores.

Number of Arabic training instances
Model 1 2 4 8 16 32 64
HeArBERT 55.61(0.14) 55.78(0.10) 55.58(0.34) 55.58(0.47) 55.36(0.33) 55.81(0.26) 56.13(0.48)
mBERT 50.39(0.47) 50.38(0.47) 49.74(0.20) 49.82(0.60) 49.47(0.26) 49.84(0.64) 49.51(0.55)
CAMeLBERT-mix 31.12(0.01) 31.10(0.02) 31.18(0.14) 31.31(0.11) 31.38(0.22) 31.35(0.34) 31.37(0.43)
CAMeLBERT-mixET 33.44(0.00) 33.47(0.15) 33.41(0.06) 33.41(0.06) 33.70(0.35) 34.22(0.32) 34.38(0.19)
GigaBERT-v4ET 51.81(0.44) 51.85(0.74) 52.00(0.95) 52.03(0.85) 52.02(0.93) 52.13(0.89) 52.02(0.93)
AlephBERT 41.61(0.23) 41.92(0.44) 42.44(0.69) 43.51(0.66) 44.88(1.14) 47.88(1.10) 48.76(0.68)
HeBERT 30.52(0.26) 30.39(0.34) 30.42(0.39) 30.26(0.58) 30.43(0.34) 30.69(0.28) 30.99(0.66)

Table 4: Cross-lingual few-shot transfer learning from Hebrew to Arabic, evaluated on Arabic sentiment analysis.
Results are provided as F1-PN scores.

Base Model F1-PN±STD
HeArBERT 60.36± 0.63
mBERT 52.46± 0.18
GigaBERT 62.78± 1.08
CAMeLBERT 66.73± 1.19

Table 5: Results on Arabic SA (NADI 2022).

Base Model Accuracy± STD
HeArBERT 88.17± 0.35
mBERT 86.09± 0.22
HeBERT 88.20± 0.39
AlephBERT 89.55± 0.17

Table 6: Hebrew SA results.
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