
Under review as a conference paper at ICLR 2022

GATING MECHANISMS UNDERLYING SEQUENCE-TO-
SEQUENCE WORKING MEMORY

Anonymous authors
Paper under double-blind review

ABSTRACT

Working memory is the process by which a system temporarily stores informa-
tion across a necessary duration. Memory retention and manipulation of discrete
sequences are fundamental building blocks for the underlying computation re-
quired to perform working memory tasks. Recurrent neural networks (RNNs)
have proven themselves to be powerful tools for such problems, as they, through
training, bring rise to the dynamical behavior necessary to enact these computa-
tions over many time-steps; a feat not obtainable using a finite memory system,
such as transformer networks and reservoir computing. As of yet, the means by
which these learned internal structures of the RNN result in a desired set of out-
puts remains broadly elusive. Furthermore, what is known is often difficult to
extrapolate from due to a task specific formalism. In this work, we analyze an
RNN, trained perfectly on a discrete sequence working memory task, in fine de-
tail. We explain the learned mechanisms by which this network holds memory
and extracts information from memory, and how gating is a natural architectural
component to achieve these structures. A synthetic solution to a simplified variant
of the working memory task is realized. We then explore how these results can be
extrapolated to alternative tasks.

1 INTRODUCTION

Recurrent neural networks (RNNs) transform stimuli across multiple time-points to produce non-
linear working memory representations that can be used to solve complex tasks (Elman, 1990;
Hochreiter & Schmidhuber, 1997; Mante et al., 2013). Memorization and manipulation of dis-
crete sequences of elements are a common low level requirement to many broad families of such
problems (Hochreiter & Schmidhuber, 1997; Jordan et al., 2021; Yang et al., 2019). However, a
full understanding of how the underlying dynamics learned by these networks accurately bring rise
to the necessary computations remains an open area of research (Sussillo & Barak, 2013). That is,
from a dynamical system’s point of view (Guckenheimer & Holmes, 1983; Jordan et al., 2021), how
does the network’s internal phase-flow and attractor structures, brought forth by training, play a part
in the found solution to the desired task? Furthermore, many of the known properties of trained
RNNs’ learned dynamical mechanisms are specific to individual problems (Henaff et al., 2016;
Jarne, 2020; Ichikawa & Kaneko, 2021). Therefore, due to their narrow formalism, such attributes
are often difficult to extrapolate to alternative tasks of the same family. It has been demonstrated

#82

#83

#84

Time

N
e
u

ro
n

 I
n

d
e

x

Encoding Variable Length Delay Decoding

Figure 1: Superimposed trajectories for neurons 82−84 across one thousand trials of VDCM, from
a perfectly trained GRU. Neurons 82 and 83 demonstrate slow manifold dynamics during the delay
period of each trial. These three neurons represent the qualitative behavior across all 250 neurons.

1

Under review as a conference paper at ICLR 2022

that the underlying attractor structures of RNNs successfully trained on an individual task are often
similar, if not topologically equivalent, across networks, regardless of architecture, initialization,
and hyper-parameters (Maheswaranathan et al., 2019). However, one would also expect commonal-
ities between the underlying structures of RNNs trained on similar, but none the less, different tasks
(Flesch et al., 2021; Yang et al., 2019) – a research feat not yet well explored.

To better train and interpret the solutions found by RNN models we require a finer grain analy-
sis, where results can be broadened to very general classes of problems. (Karpathy et al., 2016)
demonstrated a more in depth empirical exploration of GRU and LSTM architectures computing
with sequential data, and identified different failure cases that can arise when training these models.
However, this work studied the existence of underlying dynamical mechanisms indirectly from their
effects on network output and single-neuron behavior, leaving out details on the functionality of each
mechanism at the population level. If done, found mechanisms can be further studied and synthet-
ically recreated to be made more understandable. Moreover, the synthetic realization of dynamical
mechanisms, inspired by those obtained through gradient based optimization, can be combined and
extrapolated from to form synthetic RNN solutions to related tasks.

We surgically analyze a single RNN trained on a discrete sequence working memory task. The
network performs with no mistakes on a sufficiently sized validation set of trials. Inspired by the
behavior discovered in the network, we design and experimentally validate a synthetic solution to
a simplified version of the same task, realizable in relatively low dimensions. We then discuss how
such findings apply to networks trained on different but mechanistically similar tasks, including a
sequence-to-sequence translation task.

2 VARIABLE DELAY COPY MEMORY TASK AND RNN MODEL

In choosing an appropriate task, we look at copy memory; a standard benchmark to evaluate a neural
network’s ability to accurately recall information seen many time-steps in the past (Hochreiter &
Schmidhuber, 1997; Henaff et al., 2016; Arjovsky et al., 2016). Let A = {ai}Ki=1 be a set of K
symbols. We then pick S, T ∈ N. The input is a vector of categories, length T+2S, where each entry
is one-hot encoded. Each trial of the task consists of three phases, of length S, T , and S respectively.
During the first phase (encoding), the network is presented with with S entries uniformly sampled
from {ai}Ki=1, to be remembered sequentially. During the second phase (delay period), the network
is fed T − 1 inputs of aK+1, a blank category, indicating no important information is entering the
network. At the final time-step of the second phase S+T , a delimiter aK+2 is input to the network,
indicating that the RNN should output the original S entries of input in the same order by which
they appeared in the first phase of the trial beginning at the next time-step (third phase – decoding).
During these last S time-steps, the inputs are all set to the blank category aK+1. During the first
T + S time-steps (encoding and delay period), the network should output aK+1. The task is to
minimize the average cross-entropy of the outputs at every time-step. As such, the networks should
remember a sequence of S elements for T time-steps.

Henaff, Szlam, and LeCun developed and experimentally verified a synthetic solution to this task
(Henaff et al., 2016). However, if we allow T to vary from trial to trial, the underlying dynamical
mechanisms allowing the RNN to properly enact the computation remains elusive. We will refer
to this task as variable delay copy memory (VDCM), as coined by (Henaff et al., 2016). We suc-
cessfully trained a GRU network (Cho et al., 2014), by novel means (Anonymous), with a linear
readout on VDCM, such that it performs perfectly on all the test trials. We were unable to train
other network architectures on VDCM, including LSTM. For each trial we set K = 8, S = 10, and
T ∼ U(100, 101, ..., 120). The model used is represented as follows:

zt = σ(Wzxt + biz +Uzht−1 + bhz) (1)
rt = σ(Wrxt + bir +Urht−1 + bhr) (2)
ht = (1− zt)� tanh(Whxt + bih + rt(Uhht−1 + bhh)) + zt � ht−1 (3)
yt = Voutht + bout (4)

ychoice = argmax([yt]m),m ∈ [0, 1, ...,K] ⊂ N ∪ {0} (5)

where ht ∈ Rd, d = 250, xt ∈ RK+2, Wz,Wr,Wh ∈ Rd×S and Uz,Ur,Uh ∈ Rd×d are the
parameter matrices, biz, bir, bih, bhz, bhr, bhh ∈ Rd are bias vectors, � represents element-wise

2

Under review as a conference paper at ICLR 2022

multiplication, and σ(z) = 1/(1 + e−z) is the element-wise logistic sigmoid function. For the
linear readout yt ∈ RK+1, bout ∈ RS−1 and Vout ∈ R(S−1)×d. ychoice is taken as the largest
element of yt at each time-step, and represents the chosen class readout.

3 ENCODING ON SLOW MANIFOLDS

The computations required for VDCM fall into two main parts. The first is the memory structure.
How does the GRU retain information about the elements presented to the network at each of the
ten encoding time-steps? The second is memory recall. How does the GRU pull stored information
from memory in the correct order? In this section we will focus on the former, and explain the
structure by which our trained RNN uses to properly encode inputted information.

Fig. 1 demonstrates the behavior of hidden-state neurons 82 − 84 (i.e. [ht]j for index j ∈
[82, 83, 84]) of the trained network, while performing VDCM. Let neuron refer to hidden-state neu-
ron unless otherwise specified. The trajectory of these selected neurons across one thousand trials
are superimposed, clearly indicating the three segments of the task. If we look at the delay period,
beginning at t = 11, we notice that the neural activity appears to be near constant across each trial.
The selection of neurons shown in Fig. 1 are representative of the behavior of across most neurons
in the network, with the exception of several oscillatory modes that are rare and inconsistent across
trials. A complete collection of neurons across trials can be found in the appendix E. What is of
primary interest are the neurons that significantly vary trial to trail during the delay period, such as
neurons 82 and 83. These varying neurons indicate the existence of a slow manifold, an observation
in line with recent research (Ghazizadeh & Ching, 2021). A slow manifold is similar to an attractor
(i.e. a fixed point, an attracting line, an attracting ring, etc.), where if the state of the system ht lies
on the attractor it will not change unless perturbed. However, the manifold is not entirely made up
of fixed points, rather the speed of the phase flow in these regions is arbitrarily slow in a subset of
directions. In the GRU architecture, such behavior results from either a pseudo-line attractor (Jor-
dan et al., 2021), or from the influence of the update-gate zt (Cho et al., 2014). If we look at the
update-gate for dimensions with analogous behavior to 82 and 83, what we find is that, during the
delay period, most demonstrate a value close to 1 for zt. Such activity simplifies equation 3 to the
following approximate form:

[ht]i ≈ [ht−1]i (6)

where i indexes the neurons with a high update-gate during the delay period. As such, the network
retains near perfect memory of the past in these directions. We assume that the neurons’ update-
gates are the primary mechanism to enact slow-manifolds in our trained network. In the case of
pseudo-line attractors, such slow flow is the result of the nullclines of the underlying continuous-
time dynamical system, by which the network can be interpreted as a numerical approximation of,
existing sufficiently close together in the hidden state-space (Jordan et al., 2021). However, the null-
clines of this system cannot be oriented such that they form a pseudo-line attractor in any canonical
direction (in the direction of a single neuron). We will see in the next section that the means by
which our network is decoding are canonical in nature, and so we disregard this mechanism.

Given that this is the most likely mechanism used to encode information, how exactly this computa-
tion enacted? We trained this network to be able to encode 810 possible sequences, K = 8 elements
to choose from at each time-step, across S = 10 time-steps. If such a computation is implemented
by carefully placing each trajectory on a slow manifold, the manifold can be segmented into regions
where each individual readout element is outputted. Due to the implementation of the argmax func-
tion for VCDM, the largest element in the readout vector will be chosen as the class. A cartoon
representation of such a regime is depicted in Fig. 2.

To empirically show that a slow manifold is the dynamical feature used and to determine how it
is organized, we implement a perturbation based experiment. The low level details can be found
in appendix A. We can assume an encoding time-step q ∈ [1, ..., 10], and an element p ∈ [0, ...7].
If across two trials, we input a sequence where at time-step q the element to be encoded is p, and
an identical sequence where at time-step q the element is not p, we can determine how the neuron
representation differs after the encoding phase of each trial (t = 11). By comparing this difference
over many sessions, we can determine which neurons are used to encode for this q − p pair, how
often each neuron is used, and approximate the expected value each neuron takes. We can then test
the accuracy of our q − p representation by inputting many sequences through the network, where

3

Under review as a conference paper at ICLR 2022

“y3”

Value

Superimposed Readouts

Projection to hyperplanes from hidden state

y4y1 y2 y3 y5 y6 y7 y8

System State

Readout Projection

Largest Element is Chosen

Figure 2: Left: the system state is on a slow manifold (blue). The output projection yt(h), can
ensure that the a specified dimension in the output space has the largest value (green circle), Due to
the argmax function, this dimension will be chosen as the class. Right: we can express each element
of yt as a linear combination of the values of each neuron (defined by the learned output weights),
which can be interpreted as a hyperplane, where our position on this hyperplane is determined by
ht. The hyperplanes can be arranged such that regions in the hidden-state space exists, where each
possible readout takes on a higher value than the others. The white points indicate the class decision
boundaries, and the blue points indicate each element of yt from an example ht.

the elements at t = q are not p, but we set, at t = 11, the n most frequently used neurons in the
representation to their approximate expected values for the representation. If the network output
remains unaltered, but at decoding time-step q the readout is incorrectly changed to p, we consider
the trial a success. The results of this method are displayed in Fig. 3.

2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

2 4 6 8 10
Encoding Time-Step

4
6
8

10
12
14
16

Ne
ur

on
s U

se
d

Figure 3: Results of our method to map out the
structure of the slow-manifold in our trained
RNN. Top: probability of a successful per-
turbation at the beginning of the delay period
(t = 11) for each possible element, indicated
by color, across each encoding time-step. Suc-
cess indicates that the neurons perturbed suc-
cessfully altered the appropriate decoding time-
step readout to the desired element without al-
tering the readouts at any other time-step. Bot-
tom: number of neurons used for each per-
turbation. All pairs of time-steps and elements
required at least 5 neurons.

Only 73 of the 250 neurons in the network may be used to encode memory. We can reorder these
73 neurons by their center of mass with respect to the 80 possible combinations of q and p, where
we sweep through all values p can take on for q = 1, then q = 2, etc. Fig. 4 (Left) depicts such
a reordering, revealing a block-like structure. We see that a nonempty set of neurons account for
every element at each specific time-step q. The plot is colored by the expected value that neuron
(row) takes when presented with a specific element at a given time-step (column).

To analyze the finer details of the manifold’s structure, let’s consider the neurons primarily tuned to a
single time-step; those tuned to encode information at time-step 9, for example. We can use principal
component analysis (PCA) to visualize the activity of these selected neurons in low dimensions
(Bishop, 2006). We project down the state of the set of neurons tuned to time-step 9 at t = 11,
across the set of test trials as demonstrated in Fig. 4 (Right). Data points are colored by which
element K was presented to the network at t = 9, and form eight separable clusters, one for each
element. The points in each cluster vary in a single direction, indicated by the blue arrow. Since
VDCM is a deterministic task, the only source for this variability is the influence of the input to the
network at all time-steps preceding t = 9. This suggests that the neurons primarily tuned to encode
information at t = 9 are not fully decoupled from the neurons tuned to other time-steps.

4

Under review as a conference paper at ICLR 2022

Time-Step / Element Pair

N
eu

ro
n

#

PC1

PC
2

Figure 4: Left: the 73 neurons exhibiting slow manifold dynamics during the delay period.
Every eight columns corresponds to the different elements that can be given at a specific encoding
time-step. Matrix elements displayed in white indicate that the corresponding neuron (row) do not
respond to changes in these element / time-step pairs. Further color indicates the expected value that
neuron takes when a given element is input at the corresponding time-step. Right: PCA projection
of the activity of the neurons tuned to encode information from t = 9 (shaded region on the left
plot) at the beginning of the delay period (t = 11). The activity at t = 11 for each trial is plotted
as a data point colored by which element was presented to the network at t = 9. The background
coloring indicates what class is most likely to be readout at the ninth step of decoding, if that point
in PC space was projected back up to the hidden subspace of neurons tuned to time-step 9 at t = 11,
replacing them.

However, this observation brings about an important point regarding the neurons in our trained
network that are primarily tuned to input presented at t = 9. While PCA brings about the dimensions
with the highest variability across trials, it does not indicate which dimensions are most crucial for
enacting the computation. While insightful in understanding how training brought forth various
sub-mechanisms that make up the finer memory structures in the network, this direction allocated
to previous inputs may not be used to indicate class during the ninth step of decoding. In the
following section, we will dive into the second major computation required for VDCM, decoding.
It will be shown that analysis of decoding will enable us to better understand the mechanism used
for encoding. For all other encoding time-steps, plots analogous to Fig. 4 (right) can be found in
appendix B.

4 DECODING AND THE ROLE OF GATING

How does information from memory get readout in the desired order? The readout at each time-step
is determined by equation 4 and equation 5. The linear readout matrix Vout and readout bias vector
bout separate the hidden-state space ht into classification regions with linear decision boundaries.
Prior to receiving the readout signal, the network remains in a regime where only the delimiter
symbol ”8” is outputted. The readout signal perturbs the hidden-state of the network into a decoding
subspace, where some mechanism for determining which decoding time-step the network is on must
activate (i.e a clock). Decoding the first element of the sequence is easy enough, as the network needs
only to perturb the hidden-state to a region where the neurons tuned to encoding the first time-step
of each trial are dominant in readout (Fig. 2). But then how does the network properly output the
remaining elements of the input sequence? The most natural means to enact this behavior is built
into the GRU architecture, as the added gates, zt and rt, act to forget or reset information stored
in the hidden-state. If some neuron, of index ρ, in the network has corresponding update-gate and
reset-gate values close to zero, the evolution of that neuron can be approximated as follows:

[ht]ρ ≈ tanh([Wh]ρ · xt + [bih]ρ) (7)

where [Wh]ρ indicates row ρ of Wh. Therefore, the network loses all information previously
stored in this neuron of the system (direction of the hidden state-space). Moreover, the neuron is
overwritten by the input xt.

We want to analyze our trained GRU network to see if the decoding regime exploits this behavior.
Prior to doing this, it is important to define what exactly is meant for a neuron to be ”reset.” We

5

Under review as a conference paper at ICLR 2022

will define the metric κ = (1− [zt]ρ)(1− [rt]ρ) ∈ [0, 1], where the overhead bar represents a
sample mean. At a given time-step, if a neuron ρ is to forget all previous information held within it
(1 − [zt]ρ)(1 − [rt]ρ) ≈ 1. The closer to zero this term is, the more prior information is retained.
We run 1000 randomly generated input sequences through the network and determine κ for every
neuron at each decoding time-step. We then determine a threshold ζ, where neurons with κ > ζ at
a given time-step are ”reset.” We chose ζ = 0.255, and detail our reasoning in appendix C.

Using this threshold, we reorder the neurons of the network by which decoding time-step each is
reset after for the first time (i.e. the first time that the expression κ > ζ is true after the readout
signal is presented). Fig. 5 (Left) depicts this reordering, allowing us to visualize κ for each neuron
using our choice of ζ. We notice a clear staircase pattern, indicating the existence of a non-empty
set of neurons that reset for the first time after every time-step of decoding. Furthermore, due to the
methods used to obtain our value of ζ, it is assured that at least one neuron in each of these sets is
tuned to the equivalent time-step during the encoding phase of each trial.

�

Time-Step / Element PairDecoding Time-Step

N
eu

ro
n

#

N
eu

ro
n

#

Figure 5: Left: mean activity of our defined metric κ = (1− [zt]ρ)(1− [rt]ρ) for each neuron
when we line up the decoding phases across trials. We reordered the neurons such that those which
”reset” at time-step 1 of decoding are on top, followed by those which ”reset” for the first time at
time-step 2, etc. Doing so reveals the demonstrated staircase pattern, indicating that there exists a
distinct set of neurons which are reset at each step of the decoding phase. Right: a recoloring of Fig.
4, indicating at what time-step each neuron active in memory retention during the delay period is
reset in the decoding phase. We note that every time-step of encoding has at least one corresponding
neuron that is appropriately reset at the equivalent step of decoding, with the exception of those
tuned to t = 3.

We recolor Fig. 4 (left) by which time-step of decoding each of the 73 neurons involved in encoding
are reset after. This is demonstrated in Fig. 5 (Right). For the set of neurons tuned to each time-step
of the encoding phase, at least one neuron is reset after its corresponding decoding time-step. This
isn’t a surprise, as we ensured this was the case when choosing ζ. However, what is surprising is that
for each set of neurons, with the exception of t = 3*, at least one neuron exists that is tuned to every
element of its corresponding time-step. Therefore, this regime demonstrates a near complete picture
of the most important neurons responsible for performing VDCM. We say important to indicate
that these neurons are the primary carriers of information (i.e. hold memory) throughout each trial
of the task, while the others play a more supporting role; either managing internal mechanisms for
telling time during the encoding/decoding phases of the task or fine tuning the discussed dynamical
mechanisms, such as the direction allocated for noise demonstrated in Fig. 4 (right). Furthermore,
our analysis suggests that the system is primarily canonical in its encoding and decoding mecha-
nisms. This is a result of the GRU architecture, as both gates are canonical in their functionality,
meaning information is maintained or reset in the directions of individual neurons (Cho et al., 2014).
Furthermore, the internal clock is finely tuned to ten time-steps. We have tested if the network can
generalize to different values of S. If we vary S, not a single trial’s readout is entirely correct. If
S < 10, the first S elements are properly encoded/decoded. If S > 10, the first 10 elements are
properly encoded/decoded.

*Information from t = 3 is reset after the fourth time-step of decoding, for some values of K, suggesting
possible intersection between the regions of the slow manifold, and or that the geometry of theses regions are
more complex, requiring the neurons tuned to additional time-steps to aid in enacting the computation.

6

Under review as a conference paper at ICLR 2022

5 SOLUTION TO THE K = 2 CASE OF VDCM

Given what we know about the inner functionality of our trained network, we’d like to develop a
complete solution for performing VDCM based off of found behavior. The solution should layout
a specific set of parameters for the GRU network. No training will be required and the internal
dynamical behavior must be interpretable. We will incorporate a slow manifold to encode the input
sequence. Furthermore, we will design an appropriate readout projection and sequentially reset the
neurons allocated to memory as to output each element of the sequence in the desired order. This
will be done with a separately designed clock mechanism, which will be used for determining the
number of time-steps which have passed during both the encoding and decoding phases of each trial.

We restrict our solution to the K = 2 case of VDCM, such that each sequence to be encoded is a
binary string of length S. Any information expressible as a binary string of elements can be encoded
and later decoded in this context, with 2S different states achievable with a single network of 2(S+1)
neurons, as we shall demonstrate below. Furthermore, this allows for a more pedagogical approach
in our presentation, as our goal is to build a deep intuition for these mechanisms and demonstrate a
proof of concept in extrapolation. As we’ll see, only one neuron is needed to hold memory from a
given time-step in the K = 2 case of this problem. Fig. 6 (left) depicts a schematic representation
of our solution. For easy visualization, Fig. 6 (right) illustrates the decoding mechanism for the
S = K = 2 case.

START STOP1 2 3 S-1 S

h1

h2

A

B

ENCODE

DECODE

SYSTEM

MODE

Reset h1

h3

hS

SLOW

MANIFOLD

Encoded

Sequence

h1

h2

A

B

Reset h1

{A, A}

{A, B}

{B, A}

{B, B}

Figure 6: Left: Schematic representation of the synthetic solution to VDCM for arbitrary S and
K = 2, where elements are notated as either A or B. The system acts in one of two modes, either
encoding or decoding. During the encoding phase of each trial, elements to be remembered are
presented to the network, setting the values of the first S neurons (a slow manifold) sequentially, as
dictated by an internal clock. After the first S time-steps, the system switches out of the encoding
mode into decoding. The clock is not reactivated until the readout signal is given, which will begin
reseting the values of the S neurons allocated to memory to zero, again sequentially. Done properly,
the network will readout the encoded elements in their original order. Right: An example of the
memory structure for the S = K = 2 case of our solution. The decision boundary separates the
h1 − h2 plane into regions associated with each element. Four subregions exist, where information
can be encoded such that each of the four possible sequences can be readout.

We begin by reiterating what each dimension of our input xt ∈ R4 describes. x1 and x2 are the
two possible sequence elements, A and B respectively, x3 is the blank symbol and x4 is the readout
signal. All unspecified parameter matrices and bias vectors only contain zeros in their entries. Fig.
7 depicts a complete picture of all nonzero parameter matrices and bias vectors used in our synthetic
solution. From this, we can further define each subcomponent. We allocate S neurons initialized
at zero to memory, and S + 1 neurons, all initialized at −1 except for the second to last, which is
initialized at 1, to the clock. Furthermore we allocate one neuron initialized at −1 to a switch. The
switch will determine if the system is finished encoding or not, by saturating near −1 (low) or 1
(high). We also choose two parameters, α and β, such that α � β � 0. α = 10 and β = 3 has
worked well for us. All unspecified subcomponent entries are considered to be zero.

Starting from the upper left, λ11 encodes information directly into memory. Each row i of λ11 is[
r−i −(r−i)

]
. We chose r = 3. The larger r is, the greater in value S can be while maintaining

perfect accuracy on the task. λ21 ensures the clock doesn’t indicate two simultaneous time-steps

7

Under review as a conference paper at ICLR 2022

Wh =

λ11 λ12

λ22λ21

λ31 λ32

S×2 S×2

(S+1)×2 (S+1)×2

1×2 1×2

Uh =

H11 H12

H22H21

H31 H32

S×S S×(S+1)

(S+1)×2 (S+1)×(S+1)

1×S 1×(S+1)

H13

H23

H33

S×1

(S+1)×1

1×1

Ur =

G11 G12

G22G21

G31 G32

S×S S×(S+1)

(S+1)×2 (S+1)×(S+1)

1×S 1×(S+1)

G13

G23

G33

S×1

(S+1)×1

1×1

Vout =

J11 J12

J22J21

2×S 2×(S+1)

1×S 1×(S+1)

J13

J23

2×1

1×1

bout =

C1

C2

2×1

1×1

br =

F1

F2

S×1

(S+1)×1

Input

Internal Dynamics

Readout Projection

M
e

m
o

ry
C

lo
c

k
S

w
itc

h

M
e

m
o

ry
C

lo
c

k
S

w
itc

h

M
e

m
o

ry
C

lo
c

k
S

w
itc

h

{A
,B

}
B

la
n

k

{A
,B

}
B

la
n

k
M

e
m

o
ry

F3
1×1

C
lo

c
k

S
w

itc
h

The ‘clock’ determines which

neurons are reset in memory

Output from memory only

when ‘switch’ and ‘clock’

are activated

Memory Clock Switch Memory Clock Switch

Memory Clock Switch{A,B} Blank/Readout

Figure 7: Nonzero parameter matrices
and bias vectors used in our synthetic
solution to VDCM. Each is broken
up into subcomponents, where nonzero
subcomponents are denoted in gray.
The dimensions of each subcomponent
are depicted in blue. The functional
connectivity of each block matrix can
be obtained by the purple and red la-
beling. For example, consider Vout,
which takes part in the readout projec-
tion from the hidden-state. Whether
an A or a B is outputted is dependent
only on the hidden-state dimensions al-
located to memory.

during the encoding phase. Every element in the last two rows of λ21 are −α. The submatrix
λ31 = [−α −α] holds the switch low during the encoding phase. The last row of λ22 is [−α α],
ensuring the clock remains deactivated during the delay period and reactivates upon receiving the
readout signal. λ32 = [α α] keeps the switch high after the encoding phase.

In regards to the hidden-state dynamics, H22 has α for every entry along the super-diagonal. This is
the clock mechanism, which works in isolation, causing the clock neurons to sequentially rise from
a low to a high value. Every entry of the bias sub-blocks F2 and F3 are set to −β. F2 ensures that
after a neuron allocated to the clock takes on a high value, it will be brought back to a low value
at the next time-step. We chose β � α to ensure that neurons multiplied by α can overcome the
functional effects of those multiplied by β. Similarly, F3 keeps the neuron allocated to the switch
low during the encoding phase. The entries

∑S−1
j=0 (S − j) for each j column of G12 are all α, and

act to sequentially reset each of the S neurons allocated to memory after each time-step dictated by
the clock during the decoding phase. Every entry of F1 is β, as to ensure the reset-gate for each
neuron in memory is kept high prior to decoding, thereby retaining memory.

The primary component to readout from memory is J11. The first row of J11 is [1 0 1 0 . . .],
always alternating. The second row takes a similar structure and is [0 −1 0 −1 . . .], again
alternating. In conjunction with the placement of the encoded information on the slow manifold, as
defined by the two geometric series which make up the columns of λ11, this ensures that information
encoded at earlier time-steps takes precedence until reset. Fig. 6 (right) depicts the resultant decision
boundary when S = 2. All but the far right entry of J22 is−α, J23 = −α, and C2 = 3−2S

2 α. These
ensure that, unless both the switch is high and the clock is activated, only the blank symbol will
be outputted. Thus completes our synthetic solution to the K = 2 case for VDCM. We validated
this solution on the same test set of trials used for our traditionally trained network, and it performs
with perfect accuracy. Examples of the hidden-state dynamics for the S = 2 and S = 10 cases are
depicted in Fig. 8, and the code to generate these plots are in the supplementary material.

6 DISCUSSION

We’ve identified and analyzed a set of underlying dynamical mechanisms which enact the compu-
tations necessary to perfectly perform VDCM, a sequence-to-sequence working memory task, with
a GRU network architecture. The internal dynamical behavior of the RNN constitutes the execution
of both an encoding mechanism, where information can then be held indefinitely in memory, and
a decoding mechanism, which makes use of and deletes information held in memory for accurate
readout. The encoding regime stores information on a slow manifold, which makes up a subspace of
the hidden-state space of the system. Regions of this manifold are tuned to specific time-steps of the
encoding period, where subregions within each region are structured to differentiate between what
input was presented to the network at the time-step the region was tuned to. The decoding mecha-
nism deletes information sequentially from memory, allowing data stored at later time-steps to take
precedence in the readout. Both of these mechanisms take advantage of gating to behave properly.
We then detailed out a synthetic solution to the K = 2 case of VDCM and demonstrated its func-

8

Under review as a conference paper at ICLR 2022

Switch

Clock

Memory

Figure 8: Hidden-state trajectories for 1000 superimposed trials of VDCM using our synthetic
solution, for both the S = 2 case (left) and the S = 10 case (right). Neurons fall into one of three
functional categories. S neurons are allocated to holding memory. S + 1 neurons create the clock,
which indicates what time-step of encoding or decoding is present, and one neuron is allocated to a
switch. When low, the switch indicates the trial is in its encoding phase. When high, the trial has
finished encoding. A high switch in conjunction with the readout signal begins the decoding phase.

tionality. In this section, we want to convince the reader that this analysis does not so narrowly apply
only to RNNs trained on VDCM, but on alternative tasks as well.

The mechanisms realized in our synthetic solution can be applied in a variety of different contexts,
so long as the mechanistic function required of each is retained across tasks. Consider the parity
bit problem (Wegener & Pruim, 2005). The RNN is given a binary string of length S and has to
simultaneously output a binary string, indicating if the number of 1’s presented to the network is
even or odd. Unaltered, this task only requires an XOR operation between the input and output
at the previous time-step. This suggests the need of a memory structure (or buffer) that holds one
piece of information – the last element outputted. However, if we change the task so that the RNN
needs to readout the desired binary sequence arbitrarily long after then entire input sequence has
been presented, then the task is nearly identical to VDCM (Fig. 9 (middle)). The one caveat is that
the information encoded in memory is not the input itself, but the output from the XOR operation of
the input and information about the last element stored in memory. Let’s construct another task; a

Input

Memory

Output

D
e

c
o

d
e

E
n

c
o

d
e

Input

Memory

Output

D
e

c
o

d
e

E
n

c
o

d
e

XOR Input

Memory

Output
Decode

E
n

c
o

d
e

Computation

VDCM Parity Bit Translation Figure 9: Schematic representation of the
mechanistic connectivity of the processes and
structures used to accurately perform VDCM,
modified parity bit, and a binary character
translation task. Left: input is encoded in
memory, which is self sustaining, and is later
decoded and outputted. Middle: nearly iden-
tical to VDCM, but what is encoded is the out-
put of an XOR operation between the input and
the previous encoded value in memory. Right:
same as VDCM, but memory must undergo a
nonlinear computation prior to decoding.

sequence-to-sequence translation task with a binary character language and a variable delay between
receiving the input binary sequence and needing to output a desired binary sequence. Suppose that
if the input sequence ends in a 1, the desired output sequence is the input sequence in reverse order,
beginning with the last element seen. Furthermore, if the sequence ends in a 0, the desired output
sequence is the input sequence with all the bits flipped – every 0 becomes a 1 and vice versa. Such
a task is also nearly identical to VDCM. The memory structure can be made the same, but must
undergo some nonlinear computation prior or during each decoding time-step (Fig. 9 (right)). We
were unable to train an RNN on this latter task by any conventional means (appendix D), suggesting
a need for more sophisticated training methods which leverage the dynamical behavior required of
the RNN to complete the task. We leave this to future work, and note this result as an important
example of why the work done in this manuscript is important for RNNs when performing more
sophisticated tasks.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks.
In Proceedings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, ICML’16, pp. 1120–1128, New York, NY, USA, June 2016. JMLR.org.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statis-
tics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning Phrase Representations using RNN En-
coder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734, Doha, Qatar,
2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL http:
//aclweb.org/anthology/D14-1179.

Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, April 1990. ISSN
0364-0213. doi: 10.1016/0364-0213(90)90002-E. URL https://www.sciencedirect.
com/science/article/pii/036402139090002E.

Timo Flesch, Keno Juechems, Tsvetomira Dumbalska, Andrew Saxe, and Christopher Summerfield.
Rich and lazy learning of task representations in brains and neural networks. bioRxiv, 2021.
doi: 10.1101/2021.04.23.441128. URL https://www.biorxiv.org/content/early/
2021/04/23/2021.04.23.441128.

Elham Ghazizadeh and ShiNung Ching. Slow manifolds within network dynamics encode
working memory efficiently and robustly. PLOS Computational Biology, 17(9):1–20, 09
2021. doi: 10.1371/journal.pcbi.1009366. URL https://doi.org/10.1371/journal.
pcbi.1009366.

John Guckenheimer and P. J. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations
of Vector Fields. Applied Mathematical Sciences. Springer-Verlag, New York, 1983. ISBN 978-
0-387-90819-9. doi: 10.1007/978-1-4612-1140-2. URL https://www.springer.com/
gp/book/9780387908199.

Mikael Henaff, Arthur Szlam, and Yann LeCun. Recurrent Orthogonal Networks and Long-Memory
Tasks. In International Conference on Machine Learning, pp. 2034–2042. PMLR, June 2016.
URL https://proceedings.mlr.press/v48/henaff16.html. ISSN: 1938-7228.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9
(8):1735–1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL
https://doi.org/10.1162/neco.1997.9.8.1735.

Kohei Ichikawa and Kunihiko Kaneko. Short term memory by transient oscillatory dynamics in
recurrent neural networks. arXiv:2010.15308, August 2021. URL http://arxiv.org/abs/
2010.15308. arXiv: 2010.15308.

Cecilia Jarne. The dynamics of Recurrent Neural Networks trained for temporal tasks and the
eigenvalue spectrum. arXiv:2005.13074, June 2020. URL http://arxiv.org/abs/2005.
13074. arXiv: 2005.13074.

Ian D. Jordan, Piotr Aleksander Sokół, and Il Memming Park. Gated Recurrent Units Viewed
Through the Lens of Continuous Time Dynamical Systems. Frontiers in Computational Neu-
roscience, 15:67, 2021. ISSN 1662-5188. doi: 10.3389/fncom.2021.678158. URL https:
//www.frontiersin.org/article/10.3389/fncom.2021.678158.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and Understanding Recurrent Net-
works. pp. 11, 2016.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion Sto-
ica. Tune: A research platform for distributed model selection and training. arXiv preprint
arXiv:1807.05118, 2018.

10

http://aclweb.org/anthology/D14-1179
http://aclweb.org/anthology/D14-1179
https://www.sciencedirect.com/science/article/pii/036402139090002E
https://www.sciencedirect.com/science/article/pii/036402139090002E
https://www.biorxiv.org/content/early/2021/04/23/2021.04.23.441128
https://www.biorxiv.org/content/early/2021/04/23/2021.04.23.441128
https://doi.org/10.1371/journal.pcbi.1009366
https://doi.org/10.1371/journal.pcbi.1009366
https://www.springer.com/gp/book/9780387908199
https://www.springer.com/gp/book/9780387908199
https://proceedings.mlr.press/v48/henaff16.html
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/2010.15308
http://arxiv.org/abs/2010.15308
http://arxiv.org/abs/2005.13074
http://arxiv.org/abs/2005.13074
https://www.frontiersin.org/article/10.3389/fncom.2021.678158
https://www.frontiersin.org/article/10.3389/fncom.2021.678158

Under review as a conference paper at ICLR 2022

Niru Maheswaranathan, Alex Williams, Matthew Golub, Surya Ganguli, and David Sussillo.
Universality and individuality in neural dynamics across large populations of recurrent net-
works. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
5f5d472067f77b5c88f69f1bcfda1e08-Paper.pdf.

Valerio Mante, David Sussillo, Krishna V. Shenoy, and William T. Newsome. Context-dependent
computation by recurrent dynamics in prefrontal cortex. Nature, 503(7474):78–84, November
2013. ISSN 1476-4687. doi: 10.1038/nature12742. URL https://www.nature.com/
articles/nature12742.

David Sussillo and Omri Barak. Opening the black box: low-dimensional dynamics in high-
dimensional recurrent neural networks. Neural Computation, 25(3):626–649, March 2013. ISSN
1530-888X. doi: 10.1162/NECO a 00409.

Anonymous. Quasi-periodic attractors carry stable gradients.

Ingo Wegener and R. Pruim. Complexity Theory: Exploring the Limits of Efficient Algorithms.
Springer-Verlag, Berlin, Heidelberg, 2005. ISBN 3540210458.

Guangyu Robert Yang, Madhura R. Joglekar, H. Francis Song, William T. Newsome, and
Xiao-Jing Wang. Task representations in neural networks trained to perform many cogni-
tive tasks. Nature Neuroscience, 22(2):297–306, February 2019. ISSN 1097-6256, 1546-
1726. doi: 10.1038/s41593-018-0310-2. URL http://www.nature.com/articles/
s41593-018-0310-2.

11

https://proceedings.neurips.cc/paper/2019/file/5f5d472067f77b5c88f69f1bcfda1e08-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5f5d472067f77b5c88f69f1bcfda1e08-Paper.pdf
https://www.nature.com/articles/nature12742
https://www.nature.com/articles/nature12742
http://www.nature.com/articles/s41593-018-0310-2
http://www.nature.com/articles/s41593-018-0310-2

Under review as a conference paper at ICLR 2022

A SLOW MANIFOLD MAPPING

Algorithm 1: Slow Manifold Map

1: procedure MAP(S,K)
2: Q← {0, 1, ..., S − 1} . time-steps
3: P ← {0, 1, ...,K − 1} . available symbols
4: for each element i of Q do
5: for each element j of P do
6: q ← Qi
7: p← Pi
8: for N iterations do . we chose N ← 1000
9: Generate γ . random input sequence to the RNN where γq 6= p

10: ν ← γ
11: νq ← p
12: Run both γ and ν through the RNN and save the hidden-states of each at t = S
13: Record which k neurons are sufficiently different . threshold of 10−3 was used
14: Approximate E[hk] when ν is inputted to the RNN ∀k
15: for M iteration do . we chose M ← 1000 and n← 4
16: Generate γ̃ . random input sequence to the RNN where γ̃q 6= p
17: Run γ̃ through the RNN, but alter hk = E[hk] for the nmost frequently recorded

neurons at t = S during the forward pass
18: if ychoice = p at step q of decoding and all other outputs are correct then
19: record that this iteration was a success
20: if number of successes is less than M and n ≤ nmax then . we chose nmax ← 15
21: n← n+ 1
22: go to 15
23: else if n > nmax then
24: Disregard all but the n recorded neurons for n which gave the most successes
25: else
26: Disregard all but the n recorded neurons

return The remaining values for each set of recorded neurons for all qp-pairs

12

Under review as a conference paper at ICLR 2022

B ALL PCA PLOTS

PC1

PC
2

Figure 10: Equivalent plots to Fig. 4 (Right), for each set of neurons used to encode each additional
time-step during the encoding phase of VDCM.

C RESET THRESHOLD

We’d like our threshold ζ to be relatively low (i.e close to zero), where κ exhibits little variance
about ζ. Furthermore, we need to ensure that a nonempty set of neurons exists for each set of
neurons tuned to each encoding time-step, such that each is reset for the first time during the correct
decoding time-step. For example, if a neuron is tuned to encode information presented at t = 5,
then when the decoding period of the trial begins, the neuron should remain ”not-reset” up until the
fifth time-step of readout, where it will then properly reset. This will also indicate which neurons
described in section 3 are most important for holding onto memory at each encoding time-step. Fig.
11 further details our reasoning for a choice of ζ, which we set to 0.255.

13

Under review as a conference paper at ICLR 2022

0

2

4

6

8

Ti
m

e-
St

ep
s

 D
en

sit
y

0.05

0.10

0.15

0.20

0.0 0.2 0.4 0.6 0.8 1.0
(1 zt)(1 rt)

Figure 11: Plot indicating how we chose a threshold ζ on κ, where values under this threshold are
considered ”not-reset”, and those above are considered ”reset.” Top: histogram showing the sample
mean values of κ each neuron takes across all steps of the decoding phase, over one thousand trials.
Notice the bimodal distribution, as this metric for most neurons is usually close to zero or one.
The green curve represents the standard deviation of the average values of κ for each bin of the
histogram. We want to pick a ζ with relatively low variance to ensure that individual neurons do not
cross back and forth over the threshold trial to trial. Bottom: For varying κ, white indicates values
of ζ where no neurons tuned to a given time-step in the encoding phase are shown to reset by our
analysis. We want our threshold to not only be small, but to contain at least one neuron for each
encoding time-step to be reset appropriately.

D TRAINING RESULTS

Hyper-parameters were chosen using Bayesian optimization (Ax https://ax.dev/ from the Ray Tune
library) (Liaw et al., 2018) with validation likelihood used as the decision criterion. Specific values
for the learning rate, learning rate scheduler, learning rate decay factor and gradient clipping were
chosen over 100 iterations of the tuning algorithm All models were trained using Adam, with a batch
size of 200; models used for hyper parameter optimization were trained for at most 100 epochs,
while the models that were ultimately chosen were trained for a fixed 200 epochs. Standard cross-
entropy loss was used as the loss functional. Unless implied otherwise by the name, models were
initialized using the default method in PyTorch, which internally samples from a uniform distribution
U(− 1√

N
, 1√

N
) with N being the number of hidden units.

14

Under review as a conference paper at ICLR 2022

0 50 100 150 200
0.00

0.25

0.50

0.75

1.00

1.25

1.50
Loss

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0
Acc. per timestep

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0
Acc. per sequence

RNN ortho init.

GRU

RNN

Orthogonal RNN

LSTM

Test Performance on VDCM Task

Training Epochs

Figure 12: Test performance for trained RNNs on VDCM. Colors indicate mean activity of each
architecture and initialization strategy used (10 networks each). The shaded region about each curve
depicts the variance across networks. Left: cross-entropy loss across epochs. Middle: traditional
network accuracy. Right: depicts what fraction of test trials the network outputted the sequence
with no mistakes. Notice that no network other than GRU got close to learning VDCM.

0 50 100 150 200
0.00

0.25

0.50

0.75

1.00

1.25

1.50
Loss

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0
Acc. per timestep

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0
Acc. per sequence

RNN ortho init.

GRU

RNN

Orthogonal RNN

LSTM

Test Performance on Parity Task

Training Epochs

Figure 13: Test performance for trained RNNs on a modified parity bit task. Colors indicate mean
activity of each architecture and initialization strategy used (10 networks each). The shaded region
about each curve depicts the variance across networks. Left: cross-entropy loss across epochs.
Middle: traditional network accuracy. Right: depicts what fraction of test trials the network
outputted the sequence with no mistakes. LSTM does manage to learn this task.

0 50 100 150 200
0.00

0.25

0.50

0.75

1.00

1.25

1.50
Loss

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0
Acc. per timestep

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0
Acc. per sequence

RNN ortho init.

GRU

RNN

Orthogonal RNN

LSTM

Test Performance on Translation Task

Training Epochs

Figure 14: Test performance for trained RNNs on a binary character translation task. Colors
indicate mean activity of each architecture and initialization strategy used (10 networks each). The
shaded region about each curve depicts the variance across networks. Left: cross-entropy loss
across epochs. Middle: traditional network accuracy. Right: depicts what fraction of test trials
the network outputted the sequence with no mistakes. LSTM learns this task the best, but is still
unable to consistently output entire the desired sequences with no mistakes.

15

Under review as a conference paper at ICLR 2022

E TRAINED NETWORK HIDDEN-STATES ACROSS TRIALS OF THE TEST SET

Figure 15: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

Figure 16: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

16

Under review as a conference paper at ICLR 2022

Figure 17: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

Figure 18: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

17

Under review as a conference paper at ICLR 2022

Figure 19: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

Figure 20: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

18

Under review as a conference paper at ICLR 2022

Figure 21: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

Figure 22: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

19

Under review as a conference paper at ICLR 2022

Figure 23: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

Figure 24: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

20

Under review as a conference paper at ICLR 2022

Figure 25: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

Figure 26: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

21

Under review as a conference paper at ICLR 2022

Figure 27: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

Figure 28: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

22

Under review as a conference paper at ICLR 2022

Figure 29: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

Figure 30: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

23

Under review as a conference paper at ICLR 2022

Figure 31: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

Figure 32: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

24

Under review as a conference paper at ICLR 2022

Figure 33: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

Figure 34: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

25

Under review as a conference paper at ICLR 2022

Figure 35: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

Figure 36: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

26

Under review as a conference paper at ICLR 2022

Figure 37: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

Figure 38: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

27

Under review as a conference paper at ICLR 2022

Figure 39: Superimposed trajectories one thousand trials of VDCM, from a perfectly trained GRU.

28

	Introduction
	Variable Delay Copy Memory Task and RNN Model
	Encoding on Slow Manifolds
	Decoding and the Role of Gating
	Solution to the K=2 Case of VDCM
	Discussion
	Slow Manifold Mapping
	ALL PCA plots
	Reset Threshold
	Training Results
	Trained network hidden-states across trials of the test set

