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Abstract

Obtaining and annotating data can be expensive001
and time-consuming, especially in complex,002
low-resource domains. By comparing aug-003
mented data synthetically generated via Llama-004
2 and GPT-4 with human-labeled data, we ex-005
plore the impact of training data sizes on ten006
different computational social science classifi-007
cation tasks with varying complexity. We find008
that models trained on human-labeled data of-009
ten demonstrate superior or comparable per-010
formance over their synthetically augmented011
counterparts, although synthetic augmentation012
helps particularly on rare classes in multi-class013
tasks. We also use GPT-4 and Llama-2 for zero-014
shot classification and find that, despite their015
generally strong performance, they are often016
comparable or even inferior to specialized clas-017
sifiers trained on modest-sized training sets.018

1 Introduction019

Large Language Models (LLMs) such as Ope-020

nAI’s GPT-4 (OpenAI, 2023) have demonstrated021

impressive zero-shot performance across a range022

of tasks, including code generation, composition of023

human-like text, and various types of text classifi-024

cation (Bubeck et al., 2023; Zhang et al., 2022;025

Savelka, 2023; Gilardi et al., 2023). However,026

LLMs are not perfect generalists as they often un-027

derperform traditional fine-tuning methods, espe-028

cially in tasks involving commonsense and logi-029

cal reasoning (Qin et al., 2023) or concepts that030

go beyond their pre-training (Ziems et al., 2023).031

Additionally, the deployment of LLMs for down-032

stream tasks is hindered either by their massive size033

or by the cost and legal limitations of proprietary034

APIs. Recently, competitive open-source alterna-035

tives such as Llama (Touvron et al., 2023a,b), Mis-036

tral (Jiang et al., 2023), and Falcon (Penedo et al.,037

2023) have emerged, allowing their use at a sub-038

stantially lower cost compared to proprietary mod-039

els. However, the training dataset sizes of these040

open-source models do not match those of their 041

closed-source counterparts, and their performance 042

across tasks remains somewhat uncertain. 043

Alternatively to zero-shot approaches, re- 044

searchers have explored the use of LLMs for an- 045

notating data that can be later used for training 046

smaller, specialized models, aiming to improve 047

downstream performance while reducing the de- 048

pendency on LLMs and the notoriously high cost 049

of manual annotation (Wang et al., 2021). Previ- 050

ous work has primarily focused on using LLMs 051

for zero- or few-shot annotation tasks, reporting 052

that synthetic labels are often of higher quality 053

and cheaper than human annotations (Gilardi et al., 054

2023; He et al., 2023). However, zero-shot annota- 055

tions struggle with complex Computational Social 056

Science (CSS) concepts, exhibiting lower quality 057

and reliability compared to human labelers (Wang 058

et al., 2021; Ding et al., 2022; Zhu et al., 2023). 059

Other work has proposed to mitigate these 060

weaknesses by using LLMs to augment human- 061

generated training examples (Sahu et al., 2022) 062

either through text completion of partial exam- 063

ples (Feng et al., 2020; Bayer et al., 2023) or 064

through generation (Yoo et al., 2021; Meyer et al., 065

2022; Balkus and Yan, 2022; Dai et al., 2023; Guo 066

et al., 2023). Research on data augmentation with 067

LLMs is still in early stages, exhibiting two main 068

limitations. First, different classification experi- 069

ments with synthetic augmentation produced mixed 070

results; some demonstrated improvements in model 071

performance (Balkus and Yan, 2022) while oth- 072

ers observed minimal gains or even negative im- 073

pacts (Meyer et al., 2022). A recent review on the 074

topic contributes to the assessment of an unclear 075

landscape (Ollion et al., 2023), highlighting that 076

substantially smaller models fine-tuned on human- 077

annotated data often outperform the LLMs. Over- 078

all, the benefits of LLMs-based augmentation are 079

not conclusive, and a systematic framework es- 080

tablishing the relationship between augmentation 081
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strategies and the attributes of CSS tasks remains082

absent. Second, most previous work focuses on083

CSS benchmarks that tend to be homogeneous in084

terms of their nature and complexity (e.g., senti-085

ment classification), while disregarding more diffi-086

cult or low-resource tasks.087

Considering the prevailing uncertainty regard-088

ing the advantages of LLMs in classification tasks089

and the scarcity of real-world scenarios for eval-090

uating their effectiveness, we concentrate on two091

key objectives. First, with the aim to provide CSS092

practitioners with a set of actionable guidelines for093

using LLMs in classification, we focus on ten tasks094

of varying complexity typical of the domain of095

CSS. Second, we perform a comparative analysis096

of strategies that incorporate LLMs into classifi-097

cation tasks either as data augmentation tools or098

as direct predictors. Specifically, we assess how099

augmenting data with LLMs-generated examples100

fares compared to manual data annotation. We train101

our classifiers using incrementally larger datasets102

derived either from crowdsourced annotations or103

generated by GPT-4 or Llama-2 70B, one of the104

best-performing open-source alternatives against105

closed-source model. We then contrast their perfor-106

mance to the zero-shot abilities of both the LLMs107

considered.108

Overall, our work contributes to the current litera-109

ture with three findings:110

• Synthetic augmentation typically provides little111

or no improvement in performance compared112

to models trained on human-generated data for113

binary tasks or balanced multi-class tasks. Such a114

finding holds even with small amounts of training115

data and affirms the value of human labels.116

• More complex tasks benefit more from LLMs-117

generated data. In the most challenging tasks118

considered, both in terms of the number of119

classes and unbalanced data, we demonstrate that120

synthetic augmentation enhances model perfor-121

mance, substantially beating crowdsourced data.122

• Zero-shot classification is generally outper-123

formed by specialized models trained on hu-124

man or synthetic data, challenging the belief that125

LLMs’ strong zero-shot performance is the key126

to mastering complex classification tasks.127

2 Methods128

We address ten classification tasks within the do-129

main of CSS: (i) sentiment analysis (Rosenthal130

et al., 2017), (ii) offensive language detection131

Task Non-English Small size
Class

imbalance
Sensitive

num.
classes

Sentiment 2
Offensive ✓ ✓ ✓ 2

Social dimensions ✓ 9
Emotions ✓ 13
Empathy 2

Politeness ✓ 2
Hyperbole 2
Intimacy 6

Same side stance ✓ 2
Condescension ✓ 2

Table 1: Task properties. Characteristics of our
tasks in terms of complexity.

Figure 1: Experimental framework. For each dataset,
we start from a base set (10% crowdsourced samples)
and augment it either by adding manually labeled sam-
ples or synthetic samples obtained with LLMs. Aug-
mented training sets of different sizes are used to train
classifiers. Models are tested on a holdout set and com-
pared to zero-shot approaches.

in Danish (Sigurbergsson and Derczynski, 2023), 132

(iii) extraction of social dimensions of lan- 133

guage (Choi et al., 2020), (iv) emotions clas- 134

sification (CrowdFlower, 2016), (v) presence of 135

empathy in text (Buechel et al., 2018), (vi) identi- 136

fication of politeness (Hayati et al., 2021), (vii) 137

hyperbole retrieval (Zhang and Wan, 2022), (viii) 138

level of intimacy in online questions (Pei and Ju- 139

rgens, 2020), (ix) whether two stances are at the 140

same side of an argument (Körner et al., 2021), 141

and (x) detection of condescension on social me- 142

dia (Wang and Potts, 2019). Data for all tasks is 143

publicly available. Table 1 provides a summary of 144

task difficulties across multiple dimensions. 145

Our experimental setup simulates a scenario 146

where minimal manually-labeled data is available, 147

and additional labels are acquired either through 148

human annotations or synthetic augmentation (Fig- 149
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ure 1). If test data is already available as separate150

from the training one in the original sources, we151

consider such a set as the test set. Otherwise, we152

reserve 20% of the original data for testing. Given153

the various sizes of the datasets we consider and154

the time and economical constraints of using LLMs155

APIs, we fix a threshold of 5000 for the number156

of samples to be considered as the actual training157

set. We set aside a fixed base set of 10% samples158

from the actual training data, which we augment by159

generating 9 times the same amount of synthetic160

texts with GPT-4 and Llama-2 70B Chat (§2.1).161

Subsequently, we construct training sets of increas-162

ing sizes, starting from the base set and increment-163

ing by 10% sample size either from the original164

data (crowdsourced dataset) or the synthetic data165

(augmented dataset), until reaching a maximum of166

100% of the actual training data. For each dataset,167

we train a separate classifier (§2.2), validate it on168

10% randomly sampled data points from the actual169

training set for each training instance, and evaluate170

its performance on the holdout test set. To establish171

a baseline, we compare the trained models’ perfor-172

mance with zero-shot classification using GPT-4173

and Llama-2 70B Chat. We provide the models174

with a text and a set of possible labels, request-175

ing them to classify the text accordingly (see Ap-176

pendix). We use identical prompts for both LLMs,177

with minimal changes to the template of Llama-2178

to align it with its pre-training format.179

2.1 Data Augmentation180

We construct prompts consisting of an example181

from the original data along with its corresponding182

label. We instruct the LLMs to generate 9 similar183

examples with the same label. We adopt a balanced184

augmentation strategy: we first balance the class185

distribution in the base set by oversampling the mi-186

nority classes. Then, we augment this modified set187

by generating 9 examples for each data point. To188

ensure that the synthetic examples generated from189

the oversampled classes exhibit substantial differ-190

ences, we set the temperature to 1. We evaluate the191

diversity of generated data by examining the cosine192

similarity (computed with pytorch SentenceTrans-193

former) to the data sample used for the synthetic194

generation, as well as the fraction of overlapping195

tokens between the two texts.196

2.2 Classifier training197

We use the Huggingface Trainer interface to train198

intfloat/e5-base (Wang et al., 2022a), a 110M199

parameter model (Wang et al., 2022b) that achieves 200

state-of-the-art performance on tasks similar to 201

those we investigate (Muennighoff et al., 2023). 202

We train the model in several iterations on the dif- 203

ferent tasks and datasets. For each iteration, we run 204

the training for 10 epochs with a batch size of 32. 205

We use the AdamW (Loshchilov and Hutter, 2019) 206

optimizer with a learning rate of 2e− 5. We track 207

evaluation performance for every epoch iteration. 208

We select the checkpoint with the lowest validation 209

loss and use it to evaluate the test set via macro 210

F1 and accuracy. The runtime for each training 211

instance ranges from 1 to 31 minutes. The test per- 212

formance is overall comparable to the one on the 213

validation set (detail in Supplementary). The code 214

for training is made available under MIT license. 215

3 Results 216

Figure 2 illustrates the comparison between clas- 217

sification models trained on varying amounts of 218

human-labeled and synthetically augmented data. 219

Three key findings emerge. First, models trained 220

on human-annotated data generally outperform 221

those trained on synthetically augmented data 222

and zero-shot models in the cases of binary bal- 223

anced tasks (cf. hyperbole), sensitive tasks (cf. 224

condescension and offensiveness) and multi- 225

class balanced tasks (cf. intimacy), even with 226

limited sizes of training data. However, models 227

trained on synthetically augmented data perform 228

well on unbalanced multi-class tasks (cf. social 229

dimensions and emotions), most likely due to 230

the balanced data augmentation technique which 231

substantially increases the number of samples for 232

rare classes. In the specific case of emotions, the 233

classification model based on Llama-2 syntheti- 234

cally generated data outperforms all the other meth- 235

ods. Synthetic data created via Llama-2 is overall 236

more diverse from original data than that generated 237

via GPT-4 (see diversity analysis in the Appendix) 238

which might be beneficial for multi-class unbal- 239

anced tasks, particularly for emotions. 240

Second, zero-shot performance is strong only on 241

specific tasks. For GPT-4, this holds true partic- 242

ularly for sentiment, likely because of the abun- 243

dant data related to this task in GPT-4 training data, 244

and the same side stance tasks, likely because 245

of limited size of test data. GPT-4 also performs 246

well in the second smallest dataset considered: 247

politeness. In comparison, Llama-2 performs 248

substantially worse on sentiment, on-par on same 249
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Figure 2: Data augmentation experiment. We report the macro F1 score on the test set for the ten classification
tasks given various training data sizes and augmentation strategies. Each set of training samples contains 10%
crowdsourced samples (base set). The dashed line represents the zero-shot performance of LLMs. Each experiment
undergoes 5 runs of training with different data sampling seeds and confidence intervals around average metric
values are shown. Tasks are grouped by complexity levels (cf. icon tags) and sorted within each group by the
relative improvement in performance between crowdsourced-based and other types of training.

side stance, and even better on politeness. For250

other tasks, the performance of zero-shot models is251

comparable to or even worse than that of classifi-252

cation models trained on either human-annotated253

or synthetically augmented data, particularly for254

intimacy and condescension. Such tasks are255

characterized by a very nuanced difference be-256

tween classes and by a notion of social "power"257

that cannot be extracted easily as it goes the com-258

plex paradigm of social pragmatics. A similar259

case of negative imposition of "power" is that of260

offensive, which is also characterized by a low261

zero-shot performance likely due to the restrictions262

of LLMs on offensive language. Overall, only fo-263

cusing on the zero-shot setting, we observe GPT-4264

to be best on six tasks, equal in one task, and Llama-265

2 best on three tasks. Llama-2 was unable to pro-266

duce any Danish synthetically augmented text for267

the task of offensiveness, thus we decided not268

to run the zero-shot Llama classification for such a269

task.270

4 Discussion and Conclusion271

To enhance our limited understanding of the ability272

of LLMs to serve as substitutes or complements to273

human-generated labels in data annotation tasks,274

we investigated the effectiveness of generative data275

augmentation with LLMs on ten classification tasks276

with varying levels of complexity in the domain277

of Computational Social Science. Augmentation278

had minimal impact on classification performance279

for binary balanced tasks, but showed promising280

results in complex tasks with multiple and rare 281

classes. Our findings lead to three key conclu- 282

sions. First, the time to replace human annota- 283

tors with LLMs has yet to come—manual anno- 284

tation, despite its costliness (Williamson, 2016), 285

provides more valuable information during training 286

for common binary and balanced tasks compared 287

to the generation of synthetic data augmentations. 288

Second, artificial data augmentation can be valu- 289

able when encountering extremely rare classes in 290

multi-class scenarios, as finding new examples in 291

real-world data can be challenging. In such cases, 292

our study shows that class-balancing LLMs-based 293

augmentation can enhance the classification per- 294

formance on rare classes. Lastly, while zero-shot 295

approaches are appealing due to their ability to 296

achieve impressive performance without training, 297

they are often beaten by or comparable to models 298

trained on modest-sized training sets. Overall, our 299

study provides additional empirical evidence to in- 300

form the ongoing debate about the usefulness of 301

LLMs as annotators and suggests a set of guidelines 302

for CSS practitioners facing classification tasks. In 303

closing, to address the persistent inconsistency in 304

results on LLMs’ performance, we emphasize two 305

essential requirements: (i) the establishment of a 306

systematic approach for evaluating data quality in 307

the context of LLMs-based data augmentation, par- 308

ticularly when using synthetic samples and (ii), the 309

collaborative development of a standardized way 310

of developing prompts to guide the generation of 311

data using LLMs. 312
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Limitations313

Constructing a human-validated dataset necessi-314

tates meticulous evaluation of annotators’ out-315

puts, which can be a costly process and does316

not guarantee complete data fidelity, as crowd317

workers may leverage LLMs during annotation318

tasks (Veselovsky et al., 2023b). Synthetic data319

generation through LLMs has also raised concerns320

regarding its distribution often differing from real-321

world data (Veselovsky et al., 2023a). However, it322

is possible to incorporate real-world diversity into323

the output of LLMs by carefully designing prompts324

that enable these models to emulate specific de-325

mographics (Argyle et al., 2022). While we have326

minimally addressed such design considerations in327

our prompts, there is a pressing need for a deeper,328

systematic exploration of prompt design and its in-329

fluence on the resulting output’s quality, diversity,330

and label preservation. Rapid and iterative assess-331

ment of preliminary small-scale data generation332

is essential if such strategy is employed on larger333

scale. If augmented data is to be used on larger334

scale for task-specific fine-tuning, rapid and cyclic335

evaluations of initial small-scale data generation336

become imperative.337

Prompt engineering is a rapidly evolving field338

in LLM research, offering various design possibili-339

ties. Our choice of simple prompts was based on340

empirical best practices from diverse sources avail-341

able during our development phase (see https:342

//www.promptingguide.ai/) and from previous343

works exploring the same datasets (Choi et al.,344

2023). Although we attempted to ensure label345

preservation in the data augmentation prompts, pre-346

vious work leveraging large language models for347

data augmentation has explored different strategies.348

Regarding style, we speculate that the instruction349

to generate samples in the style of social media350

comments may negatively impact downstream per-351

formance, inadvertently skewing the conversational352

style towards an overly generic social media style.353

Future research on prompting could also explore354

even simpler prompt designs, instructing LLMs to355

rewrite example sentences and allowing the base356

example to implicitly encode all information about357

style and domain, as proposed in (Dai et al., 2023).358

The rapid and widespread adoption of LLMs359

and their increasing accessibility have raised con-360

cerns about their potential risks. Efforts by OpenAI361

and other organizations involved in LLM develop-362

ment to implement safety protocols and address363

biases have been significant (Perez et al., 2022; 364

Ganguli et al., 2022). LLMs undergo thorough 365

evaluation for safety metrics, such as toxicity and 366

bias (Gehman et al., 2020; Nangia et al., 2020). 367

However, to augment samples of offensive content, 368

our study bypassed the safety protocol for LLMs 369

by employing contextualized prompts. This find- 370

ing emphasizes the ongoing need for continued 371

research to ensure that LLMs do not generate harm- 372

ful or biased outputs. While safety protocols and 373

regulations are in place, further investigation is re- 374

quired to ensure that LLMs consistently produce 375

ethical and safe outputs across all scenarios. 376

Lastly, we acknowledge the limitation of com- 377

putational resources in our experiments. Due to 378

resource constraints, we conducted experiments on 379

different machines with various Nvidia GPU con- 380

figurations, including V100, A30, and RTX 8000. 381

This variation impacted training efficiency and the 382

choice of training configurations. Additionally, lim- 383

itations on resource allocation prevented extensive 384

hyperparameter searches, especially given the high 385

number of models we fitted in our experiments. We 386

encourage future work to optimize models using 387

hyperparameter tuning, taking advantage of greater 388

computational power when available. 389

Ethics Statement 390

The datasets employed in this study are openly ac- 391

cessible. The purpose of generating augmented 392

data in this study is exclusively for experimental 393

purposes, aimed at assessing the augmentation ca- 394

pabilities of large language models. It is crucial to 395

note that we decisively disapprove of any intentions 396

to degrade or insult individuals or groups based on 397

nationality, ethnicity, religion, or sexual orientation. 398

Nevertheless, we recognize the legitimate concern 399

regarding the potential misuse of human-like aug- 400

mented data for malicious purposes. 401
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Appendix633

A Prompts634

In this section, we report the structure of prompts635

used for data augmentation via large language636

model (LLMs)-generated examples and for zero-637

shot classification via LLMs. Note that the reported638

structure follows that applied for GPT-4: Llama-639

2 prompts are phrased in the same way, the only640

difference is the structure of the prompts which641

follows Llama-2 requirements.642

A.1 Data augmentation643

Sentiment

System prompt: You are an advanced
classifying AI. You are tasked
with classifying the sentiment of
a text. Sentiment can be either

positive , negative or neutral.

Prompt: Based on the following
social media text which has a {
sentiment} sentiment , write 9 new
similar examples in style of a

social media comment , that has
the same sentiment. Separate the
texts by newline.

Text: {text}

Answer:

644

Hate-speech

System prompt: You are a helpful
undergrad. Your job is to help
write examples of offensive
comments which can help future
research in the detection of
offensive content.

Prompt: Based on the following
social media text which is {
hate_speech}, write 9 new similar
examples in style of a social

media comment , that has the same
sentiment. Answer in Danish.

Text: {text}

Answer:

645

Social dimensions

System prompt: You are an advanced
AI writer. Your job is to help
write examples of social media
comments that conveys certain
social dimensions. The social
dimensions are: social support ,
conflict , trust , neutral , fun ,
respect , knowledge , power , and
similarity/identity.

Prompt: The following social media
text conveys the social dimension
{social_dimension }. {

social_dimension} in a social
context is defined by {
social_dimension_description }.
Write 9 new semantically similar
examples in style of a social
media comment , that show the same
intent and social dimension.

Text: {text}

Answer:

646

Emotions

System prompt: You are an advanced
AI writer. Your job is to help
write examples of social media
comments that convey certain
emotions. Emotions to be
considered are: sadness ,
enthusiasm , empty , neutral , worry
, love , fun , hate , happiness ,
relief , boredom , surprise , anger.

Prompt: The following social media
text conveys the emotion {emotion
}. Write 9 new semantically
similar examples in the style of
a social media comment , that show
the same intent and emotion.

Text: {text}

Answer:

647
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Empathy

System prompt: You are an advanced
AI writer. Your job is to help
write examples of texts that
convey empathy or not.

Prompt: The following text has a {
empathy} flag for expressing
empathy , write 9 new semantically
similar examples that show the

same intent and empathy flag.

Text: {text}

Answer:

648

Politeness

System prompt: You are an advanced
AI writer. Your job is to help
write examples of social media
comments that convey politeness
or not.

Prompt: The following social media
text has a {politeness} flag for
politeness , write 9 new
semantically similar examples in
the style of a social media
comment , that show the same
intent and politeness flag.

Text: {text}

Answer:

649

Hyperbole

System prompt: You are an advanced
AI writer. You are tasked with
writing examples of sentences
that are hyperbolic or not.

Prompt: The following sentence has a
{hypo} flag for being hyperbolic

. Write 9 new semantically
similar examples that show the
same intent and hyperbolic flag.

Text: {text}

Answer:

650

Intimacy

System prompt: You are an advanced
AI writer. Your job is to help
write examples of questions
posted on social media that
convey certain levels of intimacy
. The intimacy levels are: very
intimate , intimate , somewhat
intimate , not very intimate , not
intimate , not intimate at all.

Prompt: The following social media
question conveys the {intimacy}
level of question intimacy. Write
9 new semantically similar

examples in the style of a social
media question , that show the

same intent and intimacy level.

Text: {text}

Answer:

651

Same side stance

System prompt: You are an advanced
AI writer. Your job is to help
write examples of questions
posted on social media that
convey certain levels of intimacy
. The intimacy levels are: very
intimate , intimate , somewhat
intimate , not very intimate , not
intimate , not intimate at all.

Prompt: The following social media
question conveys the {intimacy}
level of question intimacy. Write
9 new semantically similar

examples in the style of a social
media question , that show the

same intent and intimacy level.

Text: {text}

Answer:

652
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Condescension

System prompt: You are an advanced
AI writer. Your job is to help
write examples of social media
comments that convey
condescendence or not.

Prompt: The following social media
text has a {talkdown} flag for
showing condescendence , write 9
new semantically similar examples
in the style of a social media

comment , that show the same
intent and condescendence flag.

Text: {text}

Answer:

653

A.2 Zero-shot classification654

Sentiment

System prompt: You are an advanced
classifying AI. You are tasked
with classifying the sentiment of
a text. Sentiment can be either

positive , negative or neutral.

Prompt: Classify the following
social media comment into either

negative , neutral or
positive . Your answer MUST

be either one of [" negative", "
neutral", "positive "]. Your
answer must be lowercase.

Text: {text}

Answer:

655

Hate-speech

System prompt: You are an advanced
classifying AI. You are tasked
with classifying whether a text
is offensive or not.

Prompt: The following is a comment
on a social media post. Classify
whether the post is offensive (
OFF) or not (NOT). Your answer
must be one of ["OFF", "NOT "].

Text: {text}

Answer:

656

Social dimensions

System prompt: You are an advanced
classifying AI. You are tasked
with classifying the social
dimension of a text. The social
dimensions are: social support ,
conflict , trust , neutral , fun ,
respect , knowledge , power , and
similarity/identity.

Prompt: Based on the following
social media text , classify the
social dimension of the text. You
answer MUST only be one of the

social dimensions. Your answer
MUST be exactly one of ["
social_support", "conflict", "
trust", "neutral", "fun", "
respect", "knowledge", "power", "
similarity_identity "]. The answer
must be lowercase.

Text: {text}

Answer:

657

Emotions

System prompt: You are an advanced
classifying AI. You are tasked
with classifying the emotion of a
text. The emotions are: sadness ,
enthusiasm , empty , neutral ,

worry , love , fun , hate , happiness
, relief , boredom , surprise ,
anger.

Prompt: Based on the following
social media text , classify the
emotion of the text. You answer
MUST only be one of the emotions.
Your answer MUST be exactly one

of [’sadness ’, ’enthusiasm ’, ’
empty ’, ’neutral ’, ’worry ’, ’love
’, ’fun ’, ’hate ’, ’happiness ’, ’
relief ’, ’boredom ’, ’surprise ’, ’
anger ’]. The answer must be
lowercased.

Text: {text}

Answer:

658

10



Empathy

System prompt: You are an advanced
classifying AI. You are tasked
with classifying whether the text
expresses empathy.

Prompt: Based on the following text ,
classify whether the text

expresses empathy or not. You
answer MUST only be one of the
two labels. Your answer MUST be
exactly one of [’empathy ’, ’not
empathy ’]. The answer must be
lowercased.

Text: {text}

Answer:

659

Politeness

System prompt: You are an advanced
classifying AI. You are tasked
with classifying the whether the
text is polite or impolite.

Prompt: Based on the following text ,
classify the politeness of the

text. You answer MUST only be one
of the two labels. Your answer

MUST be exactly one of [’impolite
’, ’polite ’]. The answer must be
lowercased.

Text: {text}

Answer:

660

Hyperbole

System prompt: You are an advanced
classifying AI. You are tasked
with classifying the whether the
text is a hyperbole or not a
hyperbole.

Prompt: Based on the following text ,
classify the text is a hyperbole

. You answer MUST only be one of
the two labels. Your answer MUST
be exactly one of [’hyperbole ’, ’
not hyperbole ’]. The answer must
be lowercased.

Text: {text}

Answer:

661

Intimacy

System prompt: You are an advanced
classifying AI. You are tasked
with classifying the intimacy of
the text. The different
intimacies are ’Very intimate ’, ’
Intimate ’, ’Somewhat intimate ’, ’
Not very intimate ’, ’Not intimate
’, and ’Not intimate at all ’.

Prompt: Based on the following text ,
classify how intimate the text

is. You answer MUST only be one
of the six labels. Your answer
MUST be exactly one of [’Very -
intimate ’, ’Intimate ’, ’Somewhat -
intimate ’, ’Not -very -intimate ’, ’
Not -intimate ’, ’Not -intimate -at-
all ’].

Text: {text}

Answer:

662

Same side stance

System prompt: You are an advanced
classifying AI. You are tasked
with classifying whether two
texts , separated by [SEP], convey
the same stance or not. The two

stances are ’not same side ’ and ’
same side ’.

Prompt: Based on the following text ,
classify the stance of the text.
You answer MUST only be one of

the stances. Your answer MUST be
exactly one of [’not same side ’,
’same side ’]. The answer must be
lowercased.

Text: {text}

Answer:

663
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Condescension

System prompt: You are an advanced
classifying AI. You are tasked
with classifying if the text is
condescending or not
condescending.

Prompt: Based on the following text ,
classify if it is condescending.
You answer MUST only be one of

the two labels. Your answer MUST
be exactly one of [’not
condescension ’, ’condescension ’].

Text: {text}

Answer:

664

B Performance reports665

This section includes a detailed performance report.666

Table 2 describes the performance of classification667

models trained on the full human-labeled dataset668

and the full LLMs-augmented datasets. We also669

report the zero-shot performance of GPT-4 and670

Llama-2 as a reference.671

Given the mentioned presence of class imbalance672

for some of the considered tasks, we provide a673

general overview of label distributions per class674

in the training data (cf. Figure 3). Detailed class-675

wise classification reports for all considered models676

for the ten tasks of references are reported in the677

Supplementary Material.678

C Diversity679

We have conducted an investigation into the di-680

versity between the primary dataset and the data681

generated synthetically by large language models682

(LLMs) for the 10 tasks of reference. We have683

employed token overlap as an indicator of lexical684

diversity and cosine similarity as a gauge of seman-685

tic diversity. Our findings reveal that the synthetic686

data, generated from both GPT-4 and Llama-2, ex-687

hibits substantial lexical differentiation from the688

original samples while preserving semantic similar-689

ity. Notably, Llama-2 displays a more pronounced690

level of diversity compared to GPT-4, as demon-691

strated by lower values in both token overlap and692

cosine similarity metrics (refer to Figure 4 for fur-693

ther details).694
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Figure 3: Class distribution per task.

Individual Zero-shot

Crowdsourced GPT-4 synthetic Llama-2 synthetic GPT-4 Llama-2

Sentiment 0.6901 0.6430 0.6020 0.7126 0.5998
Hyperbole 0.7163 0.6768 0.6570 0.6781 0.5894
Empathy 0.6268 0.6135 0.6157 0.6488 0.6233
Same side stance 0.3462 0.6443 0.4926 0.9403 0.9403
Politeness 0.8266 0.8970 0.7480 0.8982 0.9884
Condescension 0.8391 0.7295 0.7070 0.6362 0.4563
Offensiveness 0.7764 0.5698 - 0.7170 -
Intimacy 0.4864 0.4093 0.3738 0.0285 0.1445
Emotions 0.1452 0.1578 0.1911 0.1247 0.1681
Social dimensions 0.2551 0.3002 0.3038 0.3042 0.2765

Table 2: Macro F1 score of classification models trained on the full human-labeled dataset, the full LLMs-augmented
dataset (Individual datasets) for the three computational social science tasks of interest. Zero-shot performance of
GPT-4 and Llama-2 is also provided.
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Figure 4: Lexical and semantic diversity between original and synthetically generated data, in terms of GPT-4 and
Llama-2 models.
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