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Abstract
Normalizing flows are a class of flexible deep gen-
erative models that offer easy likelihood computa-
tion. Despite their empirical success, there is little
theoretical understanding of their expressiveness.
In this work, we study residual flows, a class of
normalizing flows composed of Lipschitz residual
blocks. We prove residual flows are universal ap-
proximators in maximum mean discrepancy. We
provide upper bounds on the number of residual
blocks to achieve approximation under different
assumptions.

1. Introduction
Normalizing flows are a class of generative models that learn
an invertible function to transform a predefined source distri-
bution into a complex target distribution (Tabak et al., 2010;
Tabak and Turner, 2013; Rezende and Mohamed, 2015).
One category of normalizing flows called residual flows use
residual networks (He et al., 2016) to construct the transfor-
mation (Rezende and Mohamed, 2015; Van Den Berg et al.,
2018; Behrmann et al., 2019; Chen et al., 2019). These
models have shown great success in complicated real-world
tasks.

However, to ensure invertibility, these models apply addi-
tional Lipschitz constraints to each residual block. Under
these strong constraints, how expressive these models are
remains an open question. Formally, can they approximate
certain target distributions to within any small error?

In this paper, we carry out a theoretical analysis on the
expressive power of residual flows. We prove there exists a
residual flow F that achieves universal approximation in the
mean maximum discrepancy (MMD, (Gretton et al., 2012))
metric. Formally, given a target distribution, we provide
upper bounds on the number of residual blocks in F such
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that applying F over the source distribution can approximate
the target distribution in squared MMD (see (4)).

Although residual networks are universal approximators
(Lin and Jegelka, 2018), the proof of approximation uses a
non-invertible construction and therefore does not apply to
residual flows. This reflects the main difficulty in analyz-
ing residual flows: under strong Lipschitz and invertibility
constraints, they become a very restricted function class.
As an illustration, take the set of piecewise constant func-
tions. Classical real analysis shows that piecewise constant
functions can approximate any Lebesgue-integrable func-
tion and therefore any probability density. However, the
invertible subset of all piecewise constant functions is the
empty set! Consequently, this universal approximation re-
sult does not apply to normalizing flows. This difficulty
leads to many negative results for normalizing flows: they
are either unable to express or find it hard to approximate
certain functions (Zhang et al., 2019; Koehler et al., 2020;
Kong and Chaudhuri, 2020).

To tackle this problem, we adopt a new construction that
satisfies the strong Lipschitz constraints in Behrmann et al.
(2019). Specifically, we construct the residual blocks by
multiplying a small ε to a pre-specified Lipschitz function.
Therefore, as long as ε is small enough, the strong Lipschitz
constraints are satisfied. We then analyze the following
quantity: how much can the MMD be reduced if a new
residual block is appended? Since this quantity is a function
of ε, we can analyze its Taylor expansion. With a first-order
analysis and under mild conditions, we show there is an
F with Θ

(
1
δ

(
log 1

δ

)2)
residual blocks that achieves (4)

(see Theorem 1), where δ is the ratio between the final
squared MMD and the initial squared MMD. With a second-
order analysis and under more conditions, we show there
is a shallower F with only Θ

(
log 1

δ

)
residual blocks that

achieves (4) (see Theorem 2).

To sum up, we show residual flows are universal approxima-
tors in MMD under certain assumptions and provide explicit
bounds on the number of residual blocks.

2. Related Work
The classic universal approximation theory for fully con-
nected or residual neural networks in the function space are
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widely studied (Cybenko, 1989; Hornik et al., 1989; Hornik,
1991; Montufar et al., 2014; Telgarsky, 2015; Lu et al., 2017;
Hanin, 2017; Raghu et al., 2017; Lin and Jegelka, 2018).
However, these results do not generalize to residual flows
(Rezende and Mohamed, 2015; Van Den Berg et al., 2018;
Behrmann et al., 2019; Chen et al., 2019) for two reasons.
First, the approximation theory for normalizing flows ana-
lyzes how well they can transform between distributions,
rather than their ability to approximate a target function
in the function space. Despite that Lp universality in the
function space may lead to distributional universality for
triangular flows (Teshima et al., 2020), there is no simi-
lar results for non-triangular flows including residual flows.
Second, the classic results do not consider the invertibility
or the Lipschitz constraints of the neural networks, which
greatly restrict the expressive power.

There are also universal approximation results for Lipschitz
networks (Anil et al., 2019; Cohen et al., 2019; Tanielian
et al., 2020). These results are related because in this work,
we assume the expressive power of each Lipschitz residual
block is large. However, these results only apply to functions
defined on compact sets. Because compact sets are bounded,
it is “easier” to satisfy the Lipschitz constraints. It is not
trivial to extend their results to functions defined on Rd.

Concerning the expressive power of generative networks,
there are prior works showing feed-forward generator net-
works can approximate certain distributions (Lee et al.,
2017; Bailey and Telgarsky, 2018; Lu and Lu, 2020;
Perekrestenko et al., 2020). However, the results are again
based on non-invertible constructions, so they do not apply
to normalizing flows.

In the literature of normalizing flows, there are universal
approximation results for several models including autore-
gressive flows (Germain et al., 2015; Kingma et al., 2016;
Papamakarios et al., 2017; Huang et al., 2018; Jaini et al.,
2019), coupling flows (Teshima et al., 2020; Koehler et al.,
2020), and augmented normalizing flows (Zhang et al.,
2019; Huang et al., 2020) 1. There is also a continuous-time
generalization of normalizing flows called neural ODEs
(Chen et al., 2018; Dupont et al., 2019) with a universal
approximation result (Zhang et al., 2019). We do not con-
sider these flows in this paper. In addition, (Müller, 2020)
suggests residual networks can approximate neural ODEs,
but the invertibility is again not considered in this case.

On the expressive power of residual flows, all existing the-
oretical analysis present negative results for these models
(Zhang et al., 2019; Koehler et al., 2020; Kong and Chaud-
huri, 2020). These results indicate residual flows are either
unable to express certain functions, or unable to approx-

1In an augmented normalizing flow, there is an auxiliary ran-
dom variable concatenated with the data, so the transformations
operate on a higher dimensional space.

imate certain distributions even with large depths. Com-
pared to these results, our paper presents positive results for
standard residual flows: given a source distribution q, they
can approximate a target distribution p in the MMD metric
(Gretton et al., 2012) under certain conditions. We provide
explicit upper bounds on the number of residual blocks (see
Theorem 1 and Theorem 2).

3. Preliminaries
We first define the maximum mean discrepancy (MMD)
metric between distributions below.

Definition 1 (MMD, (Gretton et al., 2012)). Let q, p be two
distributions on Rd. Then,

MMD(q, p)2 = Ez,z′∼qK(z, z′) + Ex,x′∼pK(x, x′)
−2 · Ez∼q,x∼pK(z, x)

(1)
for some kernel function K(·, ·). Let φ : Rd → Rdφ be
the feature map associated with K: K(x, z) = φ(x)>φ(z),
where we assume dφ <∞. Then, the squared MMD can be
simplified as

MMD(q, p)2 = ‖Ez∼qφ(z)− Ex∼pφ(x)‖22. (2)

Next, we define a residual flow as a composition of in-
vertible layers parameterized as Id + f , where Id is the
identity map and f is 1

2 -Lipschitz2. The class of residual
flows include planar flows (Rezende and Mohamed, 2015),
Sylvester flows (Van Den Berg et al., 2018), and the more
general invertible residual networks (Behrmann et al., 2019;
Chen et al., 2019). In these models every fi is parameterized
as a certain kind of fully-connected neural network. Since
the expressive power of ( 1

2 -)Lipschitz neural networks on
Rd remains an open problem, in this paper we assume every
fi can be selected as any 1

2 -Lipschitz function. Formally,
we make the following definition.

Definition 2 (Residual flows). The set of N -block residual
flows is defined as

FN = {(Id + fN ) ◦ · · · ◦ (Id + f1) :
each fi is 1

2 -Lipschitz
}
.

(3)

Now we state the main problem. Let qsource and ptarget be
two distributions on Rd, where qsource is the source distribu-
tion and ptarget is the target distribution. We aim to answer
the following problem in this paper.

Problem Statement. Let δ > 0 be a small number. For
any pair of distributions qsource and ptarget on Rd satisfying

2According to the fixed-point theorem, Id + f is invertible
as long as the Lipschitz constant of f is strictly less than 1. For
algebraic convenience, we restrict the Lipschitz constant to be at
most 1

2
.
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MMD(qsource, ptarget) < ∞, does there exist an N and
F ∈ FN such that

MMD(F#qsource, ptarget)
2 ≤ δ ·MMD(qsource, ptarget)

2,
(4)

where F#q refers to the distribution obtained by applying
F over q?

In this paper, we prove existence of such F with a loose
bound on N using first-order analysis under mild assump-
tions (see Section 4), and provide a tighter bound on N
using second-order analysis under more assumptions (see
Section 5).

4. A Bound with First-Order Analysis
In this section, we show under mild conditions, there ex-
ists a residual flow F with N = Θ

(
1
δ

(
log 1

δ

)2)
residual

blocks that achieves (4). The idea is to show that a single
residual block can reduce the squared MMD by a certain
fraction, so F is obtained by stacking an enough number of
these residual blocks. To begin with, we make the follow
definition.

Definition 3. For distributions q, p, and a 1
2 -Lipschitz func-

tion f , we define the improvement of the squared MMD by
Id + f as

∆(q, p; f) = MMD(q, p)2−MMD((Id+f)#q, p)2. (5)

Then, if ∆(q, p; f) > 0, the residual block Id+ f is helpful
for reducing the squared MMD. It is straightforward to
see that sup{∆(q, p; f): f is 1

2 -Lipschitz} ≥ 0. In order to
construct an f that has a large ∆(q, p; f), we choose f = f̂ε
defined below.

Definition 4. Define ψ(p, q) = (Ex∼p − Ex∼q)φ(x),
g(z) = ψ(p, q)>φ(z), and f̂ε = ε · ∇g, where ε > 0.
Then, MMD(q, p) = ‖ψ(p, q)‖. In addition, f̂ε(z) =
εJφ(z)ψ(p, q), where Jφ is the Jacobian matrix of φ.

Then, according to (2) and (5),

∆(q, p; f̂ε) = Ez∼q,x∼qφ(z)>φ(x)

−Ez∼q,x∼qφ(z + f̂ε(z))
>φ(x+ f̂ε(x))

+2 · Ez∼q,x∼pφ(z + f̂ε(z))
>φ(x)

−2 · Ez∼q,x∼pφ(z)>φ(x).
(6)

Note that ∆(q, p; f̂ε) is a function of ε. We then analyze
the first-order Taylor expansion of ∆(q, p; f̂ε) at ε = 0+,
denoted as ∆1(q, p; f̂ε). Then, ∆(q, p; f̂ε) = ∆1(q, p; f̂ε) +
O
(
ε2
)
. With some arithmetic, we have

∆1(q, p; f̂ε) = 2ψ(p, q)>Ez∼qφ(z + f̂ε(z)). (7)

We have the following bound on ∆1(q, p; f̂ε).

Lemma 1. If dφ < ∞, and the minimum singular value
σmin(Jφ(z)) ≥

√
b > 0 holds for any z ∈ Rd, then

∆1(q, p; f̂ε) ≥ 2εb ·MMD(q, p)2. (8)

Since ∆(q, p; f̂ε) = ∆1(q, p; f̂ε) +O
(
ε2
)
, when ε is small,

the residual block Id + f̂ε can indeed reduce the squared
MMD by a certain fraction (≥ 2εb). Next, as we require
f = f̂ε to be 1

2 -Lipschitz, we show under certain conditions
the Lipschitz constant of f̂ε isO (ε) in the following lemma.
Lemma 2. If for any z ∈ Rd, the Lipschitz constant of each
element in Jφ(z) is no more than a universal constant LJac,
then

Lip(f̂ε) ≤
√
d · dφLJacMMD(q, p) · ε. (9)

With these tools, we can construct an F ∈ FN that achieves
(4) in the following theorem.
Theorem 1. Under the conditions of Lemma 1 and Lemma
2, there exists an F ∈ FN with N = Θ

(
1
δ

(
log 1

δ

)2)
that

achieves (4).

The proof is deferred to Section A.3. The main idea in
the proof is to construct each fi iteratively based on f1

through fi−1, so that adding this residual block can re-
duce the squared MMD by a certain fraction as indicated in
Lemma 1. The bound is obtained by carefully balancing ε,
δ, and N .

5. A Tighter Bound with Second-Order
Analysis

In this section, we show under a few additional assumptions,
there exists a much smaller N = O

(
log 1

δ

)
and F ∈ FN

such that F achieves (4). The idea is to bound the second-
order remainder of the Taylor expansion of ∆(q, p; f̂ε):
∆2(q, p; f̂ε) = ∆(q, p; f̂ε) −∆1(q, p; f̂ε) = O

(
ε2
)
. Once

∆2(q, p; f̂ε) is explicitly bounded we can pick a small con-
stant ε for every residual block 3 so ∆(q, p; f̂ε) is lower
bounded by a universal constant times MMD(q, p)2. This
then yields the O

(
log 1

δ

)
bound for N . Now, we provide

an explicit bound on ∆2(q, p; f̂ε) in the following lemma.
Lemma 3. Let B,C,Lfeat be positive constants. If for any
z ∈ Rd, the maximum singular value σmax(Jφ(z)) ≤

√
B,

the absolute value of any eigenvalue |λ(∇2φi(z))| ≤ C for
any 1 ≤ i ≤ dφ, and φ is Lfeat-Lipschitz, then

|∆2(q, p; f̂ε)| ≤ ε2 ·MMD(q, p)2 ·B ·
(
B + 0

‖ψ(p, q)‖
√
dφC(1 + εLfeat

√
B)
)
.

(10)
3In Theorem 1, the ε for each residual block is related to δ in

order to eliminate the effect by the unknown second-order terms.
Here ε is independent with δ.



Universal Approximation of Residual Flows in Maximum Mean Discrepancy

Given this explicit bound on ∆2(q, p; f̂ε), we can pick a
small ε such that |∆2(q, p; f̂ε)| ≤ 1

2∆1(q, p; f̂ε) so that
∆(q, p; f̂ε) ≥ 1

2∆1(q, p; f̂ε). Once this lower bound on
∆(q, p; f̂ε) is achieved, the squared MMD is multiplied by at
most a universal constant less than 1 when the new residual
block Id + f̂ε is added. We formalize the result in the
following theorem.

Theorem 2. Under the conditions of Lemma 1, Lemma 2,
and Lemma 3, there exists an F ∈ FN withN = Θ

(
log 1

δ

)
that achieves (4).

The proof is deferred to Section A.5. The main idea in the
proof is to construct each fi in a similar way as in Theorem
1, but ε is selected as a universal constant according to
Lemma 3.

6. Conclusions
Normalizing flows are a class of flexible deep generative
models that offers easy likelihood computation. Despite
their empirical success, there is little theoretical understand-
ing on whether they are universal approximators in trans-
forming between probability distributions. In this work, we
prove residual flows are indeed universal approximators in
maximum mean discrepancy. Upper bounds on the number
of residual blocks to achieve approximation are provided.
Under mild conditions, we show Θ

(
1
δ

(
log 1

δ

)2)
residual

blocks can achieve (4) (see Theorem 1). Under more con-
ditions, we show as few as Θ

(
log 1

δ

)
residual blocks can

achieve (4) (see Theorem 2).

There are a large number of open problems. One extension
is to build universal approximation theory for residual flows
in more general probability metrics such as the integral
probability metrics (Müller, 1997) and the f -divergences
(Csiszár and Shields, 2004). Another direction is to ex-
tend the proposed universal approximation theory to other
classes of normalizing flows such as autoregressive flows.
A final open problem is to look at normalizing flows in
real-world applications, and analyze their expressive power
under practical assumptions.
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A. Omitted Proofs
A.1. Proof of Lemma 1

Proof. According to (7) and the chain rule,

∆1(q, p; f̂ε) = 2 · Ez∼q
(
ψ(p, q)>Jφ(z)>f̂ε(z)

)
= 2ε · Ez∼q

(
ψ(p, q)>Jφ(z)>∇g(z)

)
= 2ε · Ez∼q

(
ψ(p, q)>Jφ(z)>Jφ(z)ψ(p, q)

)
≥ 2ε · min

z∈Rd

(
ψ(p, q)>Jφ(z)>Jφ(z)ψ(p, q)

)(
MMD(q, p)2 = ‖ψ(p, q)‖2

)
≥ 2ε ·MMD(q, p)2 min

z∈Rd
λmin

(
Jφ(z)>Jφ(z)

)
≥ 2ε ·MMD(q, p)2 min

z∈Rd
σ2

min(Jφ(z))

≥ 2εb ·MMD(q, p)2.

A.2. Proof of Lemma 2

Proof. For any x, y ∈ Rd,

‖f̂ε(y)− f̂ε(x)‖
‖y − x‖

=
ε

√∑d
i=1

(∑dφ
j=1(Jφ(y)− Jφ(x))ijψ(p, q)j

)2

‖y − x‖

≤
ε

√∑d
i=1

(∑dφ
j=1 LJac‖y − x‖ψ(p, q)j

)2

‖y − x‖
≤ ε
√
dLJac‖ψ(p, q)‖1

≤ ε
√
d · dφLJac‖ψ(p, q)‖2

= ε
√
d · dφLJacMMD(q, p).

Therefore, by taking the supreme over the left-hand-side, we have the Lipschitz constant of f̂ε is upper bounded by the
right-hand-side.

A.3. Proof of Theorem 1

Proof. Let r > 0 and ε = r/N . Define

Dn(r) = MMD((Id + fn) ◦ · · · ◦ (Id + f1)#qsource, ptarget)
2

where each
fi(z) = εJφ(z)ψ(ptarget, (Id + fi−1) ◦ · · · ◦ (Id + f1)#qsource).

Note that each fi is exactly the f̂ε in Definition 4 for q = (Id + fi−1) ◦ · · · ◦ (Id + f1)#qsource and p = ptarget.

By Lemma 1,

Dn(r) ≤
(

1− 2b
r

N
+O

(
r2

N2

))
Dn−1(r).

Therefore,

DN (r) ≤
N∏
n=1

(
1− 2b

r

N
+O

(
r2

N2

))
MMD(qsource, ptarget)

2

≤
(
e−2br +O

(
r2

N

))
MMD(qsource, ptarget)

2.

For small δ > 0, we choose

r =
1

2b
log

2

δ
, N = Θ

(
r2

δ

)
= Θ

(
1

δ

(
log

1

δ

)2
)
.
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Then, we have
DN (r) ≤ δ ·MMD(qsource, ptarget)

2.

Note that

ε =
r

N
= Θ

(
δ

r

)
= Θ

(
δ

log 1
δ

)
.

Therefore, by Lemma 2, when δ is small enough, the Lipschitz constant of each fn is less than 1
2 .

A.4. Proof of Lemma 3

Proof. According to (1) and (5),

∆(q, p; f̂ε) = Ez∼q,x∼q(K(z, x)−K(z + f̂ε(z), x+ f̂ε(x))) + 2Ez∼q,x∼p(K(z + f̂ε(z), x)−K(z, x))

There is a closed-form expression for ∆2(q, p; f̂ε). According to the remainder of multivariate Taylor polynomials, there
exist two maps ξ1, ξ2 : Rd → (0, 1) such that

∆2(q, p; f̂ε) = Ez∼qEx∼pf̂ε(z)>[∇2
zzK(z + ξ1(z)f̂ε(z), x+ ξ1(x)f̂ε(x))]f̂ε(z) (=: ∆

(1)
2 )

−Ez∼qEx∼q f̂ε(z)>[∇2
zzK(z + ξ1(z)f̂ε(z), x+ ξ1(x)f̂ε(x))]f̂ε(z) (=: −∆

(2)
2 )

−Ez∼qEx∼q f̂ε(z)>[∇2
zxK(z + ξ2(z)f̂ε(z), x+ ξ2(x)f̂ε(x))]f̂ε(x) (=: −∆

(3)
2 )

= ∆
(1)
2 −∆

(2)
2 −∆

(3)
2 .

First, we bound |∆(1)
2 −∆

(2)
2 |. Define

ψ′ := (Ex∼p − Ex∼q)φ(x+ ξ1(x)f̂ε(x)) = ψ(p, q) + ψ̂ε.

Since φ is Lfeat-Lipschitz and 0 < ξ1(x) < 1, we have

‖ψ̂ε‖ ≤ sup
x∈Rd

Lfeatξ1(x)‖f̂ε(x)‖

≤ sup
x∈Rd

Lfeatε‖Jφ(x)ψ(p, q)‖

≤ sup
x∈Rd

Lfeatεσmax(Jφ(x))‖ψ(p, q)‖

≤ εLfeat

√
B‖ψ(p, q)‖.

Therefore,
‖ψ′‖ ≤ (1 + εLfeat

√
B)‖ψ(p, q)‖.

For any z′, v ∈ Rd, ∣∣v>[∇2
zz(φ(z′)>ψ′)]v

∣∣ =

∣∣∣∣∣∣
dφ∑
i=1

ψ′iv
>∇2φi(z

′)v

∣∣∣∣∣∣
≤ ‖ψ′‖‖v‖2

√√√√ dφ∑
i=1

maxλ(∇2φi(z′))2

≤
√
dφC‖ψ′‖‖v‖2.

By letting z′ = z + ξ1(z)f̂ε(z) and v = f̂ε(z), we have

|∆(1)
2 −∆

(2)
2 | =

∣∣Ez∼qv>[∇2
zz(φ(z′)>ψ′)]v

∣∣
≤ ε2‖ψ(p, q)‖2σ2

max(Jφ)
√
dφC‖ψ′‖

≤ ε2‖ψ(p, q)‖3
√
dφBC(1 + εLfeat

√
B).

Next, we bound ∆3
2. Observe that

∆
(3)
2 = −Ez∼qEx∼q f̂ε(z)>Jφ(z + ξ2(z)f̂ε(z))Jφ(x+ ξ2(x)f̂ε(x))>f̂ε(x).
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Therefore,
|∆(3)

2 | ≤ max
z∈Rd

‖f̂ε(z)‖2 max
z∈Rd

‖Jφ(z)‖2

≤ ε2‖ψ(p, q)‖2 max
z∈Rd

σ4
max(Jφ(z))

≤ ε2‖ψ(p, q)‖2B2.

Combining these bounds, we have

|∆2(q, p; f̂ε)| ≤ ε2 ·MMD(q, p)2
(
‖ψ(p, q)‖

√
dφBC(1 + εLfeat

√
B) +B2

)
.

A.5. Proof of Theorem 2

Proof. Let
q0 = qsource and qm = (Id + fm) ◦ · · · ◦ (Id + f1)#qsource,

where each
fi(z) = εJφ(z)ψ(ptarget, qi−1).

Define ψ0 = ψ(ptarget, q0) and assume ‖ψ(ptarget, qm)‖ ≤ ‖ψ0‖ (which we will prove by induction). Note that

∆(qm, ptarget; fm) = MMD(qm, ptarget)
2 −MMD(qm+1, ptarget)

2.

According to Lemma 1 and Lemma 3, we have

∆(qm, ptarget; fm)

MMD(qm, ptarget)2
≥ 2bε−

(
‖ψ(ptarget, qm)‖

√
dφBC +B2

)
ε2 − ‖ψ(ptarget, qm)‖

√
dφB

3
2CLfeatε

3

≥ 2bε−
(
‖ψ0‖

√
dφBC +B2

)
ε2 − ‖ψ0‖

√
dφB

3
2CLfeatε

3

When

ε ≤ ε∆ = min

(
b

2
(
‖ψ0‖

√
dφBC +B2

) ,√ b

2‖ψ0‖
√
dφB

3
2CLfeat

)
,

we have
∆(qm, ptarget; fm)

MMD(qm, ptarget)2
≥ bε.

Next, by Lemma 2, in order to satisfy the Lipschitz condition, we require

ε ≤ 1

2
√
d · dφLJac‖ψ(ptarget, qm)‖

.

This is satisfied when we assign

ε ≤ εLip :=
1

2
√
d · dφLJac‖ψ0‖

.

Now, we set
ε = ε̂ := min(ε∆, εLip).

Then, we have
MMD(qm+1, ptarget)

2 ≤ (1− bε̂) ·MMD(qm, ptarget)
2,

which also implies ‖ψ(ptarget, qm+1)‖ ≤
√

1− bε̂‖ψ0‖ ≤ ‖ψ0‖. Finally, in order to satisfy (4), we only need to take the
number of residual blocks as

N =
log 1

δ

log 1
1−bε̂

.


