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ABSTRACT

Vision transformers (ViTs) have achieved remarkable successes across a broad
range of computer vision applications. As a consequence there has been increas-
ing interest in extending continual learning theory and techniques to ViT architec-
tures. In this paper, we propose a new method for exemplar-free class incremental
training of ViTs. The main challenge of exemplar-free continual learning is main-
taining plasticity of the learner without causing catastrophic forgetting of pre-
viously learned tasks. This is often achieved via exemplar replay which can help
recalibrate previous task classifiers to the feature drift which occurs when learning
new tasks. Exemplar replay, however, comes at the cost of retaining samples from
previous tasks which for some applications may not be possible. To address the
problem of continual ViT training, we first propose gated class-attention to mini-
mize the drift in the final ViT transformer block. This mask-based gating is applied
to class-attention mechanism of the last transformer block and strongly regulates
the weights crucial for previous tasks. Secondly, we propose a new method of
feature drift compensation that accommodates feature drift in the backbone when
learning new tasks. The combination of gated class-attention and cascaded fea-
ture drift compensation allows for plasticity towards new tasks while limiting for-
getting of previous ones. Extensive experiments performed on CIFAR-100 and
Tiny-ImageNet demonstrate that our method outperforms existing exemplar-free
state-of-the-art methods without the need to store any representative exemplars of
past tasks.

1 INTRODUCTION

The initial excellent results of transformers for language tasks (Vaswani et al., 2017) have encour-
aged its application also for vision applications (Dosovitskiy et al., 2020). Vision Transformers
(ViTs) currently achieve excellent results for many applications (Strudel et al., 2021; Liu et al.,
2021; Caron et al., 2021). Most existing work on ViT training assumes that all training data is
jointly available, an assumption which does not hold for real-world applications in which data ar-
rives in a sequence of non-overlapping tasks. Continual learning considers learning from a non-IID
stream of data. Applying a naive finetuning approach to such data results in a phenomenon called
catastrophic forgetting which results in a drastic drop in performance on previous tasks (Goodfellow
et al., 2014). The main goal of continual learning algorithms is to maximize the stability-plasticity
trade-off (Mermillod et al., 2013), i.e. to mitigate forgetting of previously learned classes while
maintaining the plasticity required to learn new ones.

One of the most successful approaches to preventing forgetting of previous tasks is exemplar re-
hearsal in which a subset of images from previous tasks is stored and then rehearsed when learning
new ones (Rebuffi et al., 2017; Riemer et al., 2018; Chaudhry et al., 2018b; Lopez-Paz & Ranzato,
2017; Buzzega et al., 2020; 2021; Bang et al., 2021). Because of its success, the rehearsal technique
has also been adopted by the initial works on continual learning for ViTs (Douillard et al., 2022;
Wang et al., 2022a). However, for many applications the storage of previous task data might not
be possible. This is especially true for applications with strict memory constraints and those where
privacy or data use legislation prevents the long-term storage of data. In order to overcome this lim-
itation, exemplar-free methods have been investigated (Kirkpatrick et al., 2017; Li & Hoiem, 2017;
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Yu et al., 2020; Yan et al., 2021). These methods do not store any data from previous tasks, however
their application to continual learning of ViTs has not been fully explored.

In this paper we propose one of the first exemplar-free methods for class-incremental learning (CIL).
One of the challenges of exemplar-free continual learning is that these models tend to forget previ-
ously learned features while they are learning features for new tasks. The architecture we propose is
based on a gated class-attention mechanism applied to the ViT decoder in order to mitigate the for-
getting of learned features. As proposed by Serra et al. (2018), mask-based gating mechanisms are
usually associated with the task-incremental scenario (i.e. scenarios in which a task id is known at
inference time). We propose a solution to overcome this limitation by applying the masking mech-
anism only on the transformer decoder via multiple forward passes. This solution allows us to use
mask-based gating in a class-incremental setup.

Mask-based gating prevents the drift of weights in the decoder, however it does not mitigate the
drift in the transformer encoder. In fact, learning a stable backbone in the exemplar-free scenario
is very difficult due to the drift in encoder weights that occurs during the learning of new tasks. To
address this, we propose a method for backbone regularization in combination with a feature drift
compensation mechanism that uses a cascade of projection networks that map the current backbone
features to those of the previous backbone. This allows increased plasticity while maintaining sta-
bility across tasks, incurring a small computational cost due to the feature projection cascade. We
also show, however, that knowledge distillation can be used to alleviate the computational burden of
the projection cascade and the need for multiple forward passes at inference time.

The main contribution of this work are:

• a gated class-attention mechanism, called GCAB, that mitigates weight drift in the trans-
former decoder while also overcoming the need for a task id at inference time;

• a novel method for backbone regularization and feature drift compensation applied to the
transformer encoder that increases plasticity towards new classes while maintaining stabil-
ity in the previously learned ones;

• a method for GCAB distillation that reduces the computational overhead due to multiple
forward passes and the memory overhead of storing projection networks for each task;

• experiments on mutiple CIL benchmarks that demonstrate that our approach achieves state-
of-the-art performance when compared to other exemplar-free methods.

2 METHOD

In this section, we propose our approach to exemplar-free ViT-based class-incremental learning. We
begin by introducing the problem setup for class-incremental learning and the transformer architec-
ture used in subsequent sections to perform exemplar-free class-incremental learning with Vision
Transformers.

2.1 PROBLEM SETUP

Here we define the class-incremental learning setup and the specific Vision Transformer architecture
we use.

Class-incremental learning setup. In class-incremental learning the model must learn a sequence
of T tasks, where each task t introduces a number of new classes Ct. The data Dt of task t contains
samples (xi, yi), where xi is input data labeled by yi ∈ Ct. Note that we consider the case in which
that there is no overlap between different task label sets: Ci∩Cj = ∅ if i ̸= j, as is commonly as-
sumed (Masana et al., 2020). The model is evaluated on all previously seen classes C≤t = ∪t′≤tC

t′ .
Class-incremental learning differs from task-incremental learning in that it has no access to the task
label t at inference time, and is therefore considered a more challenging setting (van de Ven & To-
lias, 2018; Delange et al., 2021). Furthermore, in this paper, we consider the more restrictive setup
of exemplar-free class-incremental learning in which no data from previous tasks is saved.

Transformer architecture. We use a vision transformer based on the one proposed by Dosovitskiy
et al. (2020) and the recent improvements of Touvron et al. (2021). It consists of transformer en-
coder and decoder, each built with several multi-head attention blocks. In Figure 2 (left) we give a
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Figure 1: Overview of the architecture. Our main contributions are the gated class-attention block
(GCAB) to prevent forgetting in the final ViT block (Section 2.2) and the cascaded feature drift
compensation to compensate for feature drift of the backbone network (Section 2.5).

schematic diagram of our architecture. Formally, the input image x ∈ RH×W×C is passed through
a patch tokenizer that splits x into N patches and projects them using a 2D convolutional layer to
obtain a set of N patch tokens x0 ∈ RN×D. A learnable position embedding is added to the patch
tokens as in (Gehring et al., 2017). The patch tokens x0 are passed as input to a sequence of M
transformer encoder blocks, each yielding tensors of the same dimensions. Each block is composed
of a multi-head self-attention (SA) mechanism (Vaswani et al., 2017), layer normalization and a
Multi-layer Perceptron (MLP), each with residual connections:

x′
l = xl + SA(xl)

xl+1 = x′
l + MLP(x′

l)
(1)

We follow the design of CaiT (Touvron et al., 2021), and only insert a class token in combination
with a class-attention layer in the last block of the decoder. In our solution, the transformer decoder is
composed of one single block. To distinguish the various parts of the transformer network, we define
the image output prediction ŷ = c(f(b(x; Ψ))), where the backbone features b(x; Ψ) ∈ R(N+1)×D

parameterized by Ψ are the output of the self-attention blocks , and f(b(x; Ψ)) refers to the feature
output of the decoder before classifier c.

2.2 GATED CLASS-ATTENTION

The main idea behind parameter isolation methods is to isolate a limited set of parameters after
learning each task (Delange et al., 2021; Mallya & Lazebnik, 2018; Rusu et al., 2016). We build
upon the work of Hard Attention to the Task (HAT) (Serra et al., 2018) in which attention masks
are learned for each task. The masks operate on the activations of the network. Parameters of
the network used by previous tasks can be exploited by new tasks, thereby allowing for forward
transfer, but their update is restricted to prevent forgetting. The main strengths of this approach are
the good forward transfer with little or no forgetting of previous tasks, together with the ability to
automatically learn which neurons to dedicate to each task within the capacity limit of the neural
network.

The forward pass of parameter isolation methods is usually conditioned on the task, and is therefore
restricted to task-incremental learning. A possible way to extend these methods to class-incremental
learning would be to run one forward pass for each task and then combine the task predictions (e.g.,
by simple concatenation). However, this would increase the run time linearly in the number of tasks.
To limit computational overhead, we propose to only apply attention masks to the last block of the
ViT. In Section 2.5, we investigate a distillation procedure to further reduce computational overhead.

Mask-based class-attention gating. We apply the attention-gating in the last transformer block, i.e.
the decoder, which contains class-attention (Touvron et al., 2021). This block combines the patch
tokens from previous blocks with a learnable class token θ. In Figure 2 (left) we give a schematic
diagram of the gated class-attention block. We define a number of learnable masks m for task t as:

mt = σ(sAtT), (2)
where, slightly abusing notation, t represents both a task index and a one-hot vector identifying the
current task, A is an embedding matrix, σ is the sigmoid activation function, and s is a positive
scaling parameter. Here mt refers to the neurons that have been selected for task t.
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We can now define the gated forward pass through the final class-attention block by introducing a
mask for all the activations contributing to the final class token output. These masks correspond
to: the input tokens (mt

i), queries and keys (mt
QK), values (mt

V ), the MLP (m1 and m2), and the
class-attention output (mo). We can then compute the query (Q), key (K), value (V ), attention (A)
and self attention output (O) given the block token inputs Ot and these masks:

p = [θ, b] ∈ R(N+1)×D

Qt = Wq(θ ⊙mt
i) , K

t = Wk(p⊙mt
i) , V

t = Wv(p⊙mt
i)

At = softmax
{((

Qt ⊙mt
QK

) (
Kt ⊙mt

QK

)T)
/
√

d/h
}

Ot = WoA
t(V t ⊙mt

V ).

(3)

The gating mechanism is also applied to the MLP (see Eq. 1) according to:

b′t = Ot + θ

ut = W1(b
′t⊙mt

1), vt = W2(u
t ⊙mt

2)

f t = vt +Ot

(4)

We call this the Gated Class-Attention Block (GCAB). The masks are learned during the train-
ing of task t and their role is twofold: they select those activations that are used to compute the
task-conditioned output and they restrict the backpropagation of future tasks, preventing changes to
weights that used by previous tasks. Given that both mt

i and mt
1 operate on the class token embed-

ding θ, we set mt
1 = mt

i. In the experimental section, we show that good results are obtained when
sharing the weights and setting mQK = mV = m1 = mo = mi, resulting in only two learnable
masks mi and m2. In Figure 2 (left) we show the interaction between the masks mi and m2 and the
class-attention block.

For each task a dedicated classifier ct is added which produces predictions ŷt = Wclf (f
t⊙mt

o) using
the vector f t output from the GCAB. We perform multiple forward passes of patches extracted from
the backbone bt through the decoder f t (i.e. we pass it t times). For each pass s, the obtained vectors
ls are then passed to the corresponding classifier cs. The classifier outputs are then concatenated
C = [c1, · · · , ct] and the binary cross entropy loss LBCE is computed using the target vector.

Training. During the training of the current task t the scaling parameter s from equation 2, is scaled
with the batch index: s = 1

smax
+ (smax − 1

smax
) i−1
I−1 , where i current batch index and I is the total

number of batches in an epoch. This was found to be beneficial in (Serra et al., 2018).

At the end of the current task, the learned masks are accumulated as m<t
∗ = max(mt−1

∗ ,m<t−1
∗ ),

where ’∗’ stands for any of the specific mask subscripts introduced above. Accumulated masks m<t
∗

are used during backpropagation to prevent updating weights considered important for the tasks
observed so far. The masks are learned by minimizing the following loss function:

LGCAB = λGCAB

∑
x m

t
x(1−m<t

x )∑
x 1−m<t

x

, (5)

where mt
x is the mask learned at the current task t for component x of the GCAB, x ranges over

the mask subscripts described above, and m<t
x is the cumulative mask. λGCAB is a tunable hyper-

parameter controlling the capacity of the masks learned during the tasks. This equation encourages
new task mask mt

x to be sparse, however it permits use of activations already used by previous tasks
m<t

x at no cost.

The cumulative masks also play a pivotal role during the training of new tasks. Consider, for exam-
ple, weights Wq that map from the input tokens (masked by mt

i) to the queries (masked by mt
QK).

We then define the elements of the weight mask according to M<t
q,kl = 1−min(m<t

i,k,m
<t
QK,l) where

m<t
i,k refers to the k-th element of m<t

i . The update rule for the backpropagation of the gradient is
then: Wq = Wq − λM<t

q ⊙ ∂L
∂Wq

. This update rule prevents the updating of part of the weights
learned for previous tasks. The input mask also influeces the updating of the class token embedding
which is given by Wθ = Wθ − λ(1−m<t

i )⊙ ∂L
∂Wθ

. In Appendix A.2we show the update rules for
all weight matrices in the class-attention block.

4



Under review as a conference paper at ICLR 2023

To
ke

ns

So
ftm

ax

MLP

element-wise product dot product

MLP

MLP

MLP

Figure 2: (left) GCAB applies masks to the activations of the class-attention block. This allows
prevention of forgetting of previous tasks. (right) The cascade of feature projection networks maps
the current backbone features to previous task features to compensate for feature drift.

2.3 BACKBONE REGULARIZATION AND CASCADED FEATURE DRIFT COMPENSATION

In the previous section we applied gating only to the last transformer block to limit computational
overhead. Gating ensures that only minimal changes occur to the weights relevant to previous tasks,
however the network can still suffer from forgetting due to backbone feature drift. To mitigate
forgetting in the backbone, we apply regularization to these features.

A straightforward way to prevent forgetting in the backbone network via regularization is feature
distillation (Hou et al., 2019). Feature distillation encourages backbone features at task t to re-
main close to those at task t-1), however this was found to limit plasticity (Douillard et al., 2020).
To ensure stability without sacrificing plasticity, some recent works in continual learning of self-
supervised representations have proposed to learn a projector between feature extractors (Fini et al.,
2022; Gomez-Villa et al., 2022). This approach, called Projected Functional Regularization (PFR),
introduces a projection network pt that maps the current backbone features to those of the previous
backbone. PFR allows the new backbone to learn new features without imposing a high regulariza-
tion penalty as long as the new features can still be projected back to those of the previous backbone.
The PFR loss function is:

Lpfr = λpfrEx∼Dt

[
S
(
pt

(
b
(
x; Ψt

))
, b

(
x; Ψt−1

))]
(6)

where S is the cosine distance, λpfr is a trade-off parameter, and Ψt refers to the parameters of the
backbone after learning task t.

The gained plasticity induced by PFR leads to a misalignment of the current backbone with previous
class-attention layers and classifiers. Consider the predictions of the system after training t tasks
on data of task s ≤ t: ŷ = ct(f t(bt(x)). The gating mechanism described above ensures that
ct(f t(·)) ≈ cs(fs(·)), however bt ̸= bs. That is, the backbone feature representation at task t has
drifted away from the representation at previous task s. To address this we perform feature drift
compensation (see Fig. 2 (right)) and exploit the learned projection networks pt in a cascade to
align the current backbone with the learned class-attention block at any previous task s:

ŷs = ct(f t(ps+1(p···(pt−1(pt(bt(x)))))) (7)

All projection networks pt must be saved in this formulation in order to compute the projection cas-
cade that compensates for backbone feature drift. In Section 2.5 we show how knowledge distillation
can be used to eliminate the need for projection networks pt at inference time,

2.4 TRAINING OBJECTIVE AND INFERENCE

The final objective we use for incremental training of the model is the sum of the three loss functions:

L = LBCE + Lpfr + LGCAB (8)

After training the current task, an evaluation phase is performed over all classes seen so far. At task
t, the model is tested for the tasks t′ ≤ t. All images are passed through the backbone to obtain
tokens b. The tokens are passed t times through the Gated Class-Attention Block. Based on the task
index of the forward pass t′, the composition of the previously stored projection networks is used
as in Equation 7 to align the current backbone features to those of previous task t′. In Figure 2 we
give a schematic diagram of the Feature Drift Compensation mechanism during inference. During
inference the parameter s of Equation 2 is equal to smax.
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2.5 GCAB DISTILLATION
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Figure 3: GCAB distillation.

To overcome the increased computational cost due to multiple
forward passes for all tasks and the cascaded projection lay-
ers, we perform knowledge distillation (Hinton et al., 2015)
to transfer the class-conditioned GCAB (the teacher) into a
single class-attention block (CAB) with the same architecture
as the GCAB but without masks, and an aggregated classi-
fier cAt (student). This reduces the number of parameters,
since the task projection networks are no longer needed, and
eliminates the need for multiple forward passes. As shown
in Fig. 3, the CAB and cAt trained by minimizing the Kull-
back–Leibler (KL) divergence between the logits output by
the teacher and student models. Note that this distillation is conducted only with the data from task
t, while the transformer backbone b and teacher hyper-classifier are frozen during training. We also
investigate the use of static masks in the CAB to leave unused capacity in the student network in
order to accommodate potential future tasks (see Section 4.4 for details).

3 RELATED WORK

Continual Learning. Continual learning algorithms can be grouped in three categories (Masana
et al., 2020): regularization approaches, parameter based regularization (Kirkpatrick et al., 2017;
Liu et al., 2018; Lee et al., 2020; Zenke et al., 2017), and data based regularization (Li & Hoiem,
2017; Hou et al., 2019; Wu et al., 2019; Castro et al., 2018; Jung et al., 2016; Dhar et al., 2019;
Zhang et al., 2020); rehearsal approaches, which store (Rebuffi et al., 2017; Chaudhry et al., 2018a)
or generate exemplars (Wang et al., 2021; Zhai et al., 2021); and bias-correction approaches (Castro
et al., 2018; Wu et al., 2019; Hou et al., 2019).

Continual Learning with VITs. Visual Transformers recently outperforms convolutional neural
networks and in particular resnet(He et al., 2016) in several tasks like classification (Dosovitskiy
et al., 2020) or segmentation (Zheng et al., 2021). Although ViTs are considered state-of-the-art
models, their application in continual learning has not been fully explored. Douillard et al. (2022)
proposed a transformer-based architecture, called DyTox, with a dynamic task-token expansion for
mitigating catastrophic forgetting.Wang et al. (2022a) proposed an inter-task attention mechanism
for ViTs. Wang et al. (2022b) described a prompting method for continually learning a classifier
using a pretrained, frozen ViT backbone. Even if the performances showed in these work are very re-
markable, the challenge of continually learning the parameters of a ViT without storing exemplars or
using a pretrained model, is still open. Differently from previous work, we propose an exemplar-free
ViT approach to class-incremental learning. Our work is inspired by DyToX (Douillard et al., 2022),
which applies a task conditioned class-attention block. However, DyToX shares the class-attention
block parameters between tasks which leads to forgetting, and it therefore requires exemplars to
counter this. Instead, we replace the task token with a task-specific gating function that prevents
forgetting and does not require exemplars. In addition, we introduce feature drift compensation,
which allows for more plasticity in the backbone.

Parameter Isolation in Continual Learning. In this family of algorithms, learnable masks are
applied to the weights of the model in order to reduce forgetting.Mallya et al. (2018) proposed
Piggyback, a masked-based method able to learn the weight masks while training a backbone. The
same group proposed Packnet (Mallya & Lazebnik, 2018) which, via iterative pruning and sequential
re-training, is able to add multiple tasks to a single network. Serra et al. (2018) proposed to apply
masks to layer activations in order to limit the update of the parameters more relevant to a specific
task. Masana et al. (2021) proposed a system of ternary-masks applied on to layer activations for
preventing catastrophic forgetting and backward transfer.Yan et al. (2021) proposed a Dynamical
Expandable Representation (DER) for continual learning. In this work, channel-level masks are
used for pruning the feature extractor. Rajasegaran et al. (2019) proposed Random Path Selection
(RPS). This approach uses a parameter isolation mechanism, distillation, and a replay-buffer to learn
different paths for each task without the need for a task id during inference.

Exemplar-Free Continual Learning. This is one of the most challenging scenario in continual
learning. In this paradigm, it is not possible to store any exemplars from the previously observed
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Method # Params Exemplar-Free CIFAR-100 5 Tasks CIFAR-100 10 Tasks Tiny-ImageNet
Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL

ER (Riemer et al., 2018) 11.2 ✗ 21.94 62.41 14.23 67.57 8.79 39.16
AGEM (Chaudhry et al., 2018b) 11.2 ✗ 17.97 53.55 9.44 55.04 8.28 23.79
iCaRL (Rebuffi et al., 2017) 11.2 ✗ 30.12 55.70 22.38 60.81 8.64 28.41
FDR (Benjamin et al., 2018) 11.2 ✗ 22.84 63.57 14.85 65.88 8.77 40.15
DER++ (Buzzega et al., 2020) 11.2 ✗ 27.46 62.55 21.76 59.54 11.16 40.91
ERT (Buzzega et al., 2021) 11.2 ✗ 21.61 54.75 12.91 58.49 10.85 39.54
RM (Bang et al., 2021) 11.2 ✗ 32.23 62.05 22.71 66.28 13.58 41.96
LVT (Wang et al., 2022a) 8.9 ✗ 39.68 66.92 35.41 72.80 17.34 46.15
DyToX (Douillard et al., 2022) 10.7 ✗ 49.10 - 34.83 - 13.14 -
Ours 12.4 ✓ 49.36 81.01 35.57 82.08 26.82 65.92
Ours (dis-80) 10.7 ✓ 48.85 79.75 35.42 81.97 26.44 65.02

Table 1: Comparison on CIFAR-100 and Tiny-ImageNet. All methods except ours use a memory
buffer of 200 exemplars. The accuracies reported here are the ACCTAG and ACCTAW computed
after the training the last task. Ours (dis-80) indicates using GCAB distillation with 80% capacity
usage in the distilled CAB.

classes. Li & Hoiem (2017) proposed an exemplar-free data regularization approach to mitigate
forgetting. This method distills knowledge of the previous model into the new one in order to prevent
weight drift while learning the new task data. Kirkpatrick et al. (2017) described an exemplar-free
weight regularization approach called Elastic Weight Consolidation (EWC) for preventing weight
drift. Similarly, Aljundi et al. (2018) proposed a method that accumulates the importance of each
model parameter by analyzing the effect of their change to the predicted output. Yu et al. (2020)
proposed a semantic drift compensation mechanism to compensate for feature drift in previous tasks
by approximating it with the drift estimated with current task data. Toldo & Ozay (2022) presented
a framework for modeling the semantic drift of model weights of and estimating feature drift in the
representation of previously learned classes. Pelosin et al. (2022) proposed an attention distillation
mechanism for exemplar-free visual transformer in task-incremental learning.

4 EXPERIMENTAL RESULTS

For our experiments we consider two datasets: CIFAR-100 (Krizhevsky et al., 2009) and Tiny-
ImageNet (Le & Yang, 2015) (for details see Section A.1). We set the number of transformer encoder
blocks to M = 5, each one with H = 12 heads for the multi-head self-attention mechanism. The
dimension of the embeddings is set to D = 384. We train on each task for 500 epochs using Adam
with lr = 1e−4 and a batch size of 128. We set hyperparameters λpfr = 0.001, λGCAB = 0.05 and
smax = 800.

4.1 COMPARISON WITH THE STATE-OF-THE-ART

Equal task split scenarios. We consider two different CIL scenarios: 5 tasks and 10 tasks equally
split among all classes. For CIFAR-100, tasks contain 20 classes for the 5 task scenario and 10 for
the 10 task scenario. For the Tiny-ImageNet we consider only the 10-task scenario, with 20 classes
in each task. For CIFAR-100 and Tiny-ImageNet the images are split in N = 64 patches. We
use the task-agnostic top-1 accuracy over all the classes of the dataset after training the last task:
ACCTAG = 1

N

∑N
t=1 at, where N is the total number of classes in the dataset. For the task-aware

scenario we report the mean accuracy over all the tasks after training the last task: ACCTAW =
1
T

∑T
t=1 at, where T is the total number of tasks. We compare our approach with several continual

learning methods: ER (Riemer et al., 2018), AGEM(Chaudhry et al., 2018b), iCarl(Rebuffi et al.,
2017), FDR(Benjamin et al., 2018), DER++ (Buzzega et al., 2020), ERT(Buzzega et al., 2021),
RM(Bang et al., 2021), LVT(Wang et al., 2022a) and DyToX (Douillard et al., 2022). The memory
buffer for these methods is limited to 200 images, which is the setting proposed in (Wang et al.,
2022a)).

From Table 1, we see that our method outperforms all methods in both class-incremental and task-
incremental scenarios. Note that our approach outperforms the two other ViT-based methods, Dytox
and LVT. For the Tiny-ImageNet, we observed that our method was able of outperforming all the
compared methods by a large margin. Especially, we obtain a significant improvement of almost
10% with respect to LVT, while LVT uses exemplars and we do not.
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Method CIFAR-100 Tiny-ImageNet
5 splits 5 splits

EWC (Kirkpatrick et al., 2017) 26.26 14.63
LWF (Li & Hoiem, 2017) 39.51 40.62
LWM (Dhar et al., 2019) 40.49 28.39
PASS (Zhu et al., 2021) 56.53 47.00
SDC (Yu et al., 2020) 57.62 47.89
Evanescent (Toldo & Ozay, 2022) 59.37 48.56
Ours 60.85 46.35

Table 2: Comparison of exemplar-free methods on
CIFAR-100 and Tiny-ImageNet on the larger first
task scenario. The accuracies reported here are the
average incremental accuracies ACCAVG.

Gated
Class

Attention

Backbone
Regularization

Feature
Drift

Compensation
Avg Acc

28.30
✓ 51.56
✓ FD 50.93
✓ PFR (2) 25.66
✓ PFR (1) ✓ 52.98
✓ PFR (2) ✓ 55.30

Table 3: Ablation study on the components
of our architecture. Results are on the 10
task scenario on CIFAR-100. We report the
average incremental accuracy ACCAVG. In
parentheses are the number of layers of the
MLP used for PFR.

Larger first task scenarios. In this setting, the number of classes involved in the training of the
architecture during the first task is 40 for CIFAR-100 and 100 for TinyImagenet. The remaining
classes (60 and 100 respectively) are then split in 5 task respectively. This scenario is often used in
exemplar-free CIL because it allows to train a high-quality backbone on the first tasks which does
not need much training on the subsequent tasks.

We compare our model with several methods from the state-of-the-art. For this scenario, we con-
sidered as metric the average incremental accuracy defined as: ACCAVG = 1

T

∑T
t=1 at, where at

is the task-agnostic accuracy computed over the classes observed up to task t (as used by (Toldo
& Ozay, 2022) for this experiment). In Table 4.1, we observe that our method obtains the best
performance on the CIFAR-100 dataset. For the TinyImagenet instead, we obtained a competitive
performance compared to different method as (Yu et al., 2020; Toldo & Ozay, 2022; Zhu et al.,
2021)1.

4.2 ABLATION STUDY
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Figure 4: Ablation on the CIFAR-
100 dataset in the larger first task
scenario. The two curves show dif-
ferent choices for the Gated Class-
Attention Block.

We ablate on the importance of the different components of
our approach. In Table 3 we report 6 possible configurations
on the 10-task split of CIFAR-100. First, we consider fine-
tuning our architecture without applying any continual learn-
ing strategy to the base architecture (28.3%). Then we apply
the gated class-attention mechanism to the transformer de-
coder. This solution increases the average accuracy by 23%,
showing the importance of preventing forgetting in the final
block. As explained in Section 2.2, we use only two masks
for gating the transformer decoder. This does not prevent
backbone weight drift when passin from one task to the next.
Therefore, we apply a simple backbone regularization based
on feature distillation (Hou et al., 2019) which does not in-
crease overall performance (50.93%). When we replace fea-
ture distillation with the projected function regularization in
combination with feature drift compensation, we obtain better
performance – notably, a more than 4% increase when using
a 2-layer MLP. These results confirm the importance of pro-
jecting the learned backbone features to the previous features
space.

We additionally analyze the design of the masks considered in the Gated Class-Attention Block. We
consider the larger first task scenario, 40 classes in the first task, and the remaining are split equally
split in 5 tasks. As reported in Figure 4, we plot the results obtained with two different choices for
the masks: 1) For the orange curve mQK ̸= mV ̸= m1 ̸= mo ̸= mi ̸= m2; 2) For the blue curve
mQK = mV = m1 = mo = mi. From the figure we see that using the two masks for the gated
class-attention block provides the best results.

1We hypothesize that the LGCAB is sensitive to non-uniform splitting of data, and that tailored hyperparam-
eters would improve the results of our method (as in Table 1). We keep this, however, for future research.
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Stage 1 w/o PN
Stage 2

Training w PN, Inference w/o PN Training and inference w PN

Figure 5: t-SNE visualization after learning the first task (output of f(·)) after the first task (stage 1)
and second task (stage 2). In stage 2, we show the models learned without the Projection network
(PN), with only PN during training, and with PN during both training and inference.
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Figure 6: Average accuracy after the last task with and without GCAB distillation.

4.3 EMBEDDING VISUALIZATION

To verify the effectiveness of Cascaded Feature Drift Compensation, we analyzed the embeddings
produced by the GCAB. In Figure 5 we show the the embedding produced by the GCAB in a two
dimension using the t-SNE (Van der Maaten & Hinton, 2008). These visualizations are based on
the task-agnostic embeddings in the 10 task scenario on CIFAR-100. The embedding of the images
from the test set of the first task are shown after the training of the second task. These visualizations
show that after training the second task, the cascaded projection network preserves clusters of first
task classes.

4.4 DISTILLATION RESULTS

We conduct the experiments with GCAB distillation in four scenarios: CIFAR-100 with 5
and 10 tasks, and Tiny-ImageNet with 5 and 10 tasks. We freeze the transformer encoder,
projection network, GCAB, and classifiers after the last task and train the student CAB (as
shown in Figure 3) with an Adam optimizer and a learning rate 5e−3 for 200 epochs with
only data from the last task. When performing GCAB distillation we use static binary masks
at the same position as the masks in GCAB (see Fig.2 (right)) to control the capacity us-
age in the student CAB (this potentially allows us to continue training on further tasks).

Time (ms) GFLOPs
GCAB ∼ 30 1.648

Distilled GCAB ∼ 21 0.606

Table 4: Run time and computa-
tional cost with and without GCAB
distillation after the last task on the
CIFAR-100 10 task scenario.

From the results in Figure 6 we see that GCAB distillation
obtains almost the same performance as the model before dis-
tillation when the capacity usage is higher than 80%, and only
a small performance drop at 60% capacity usage. As shown in
Table 4, GCAB distillation can overcome the increased com-
putational cost from multiple forward passes for all tasks dur-
ing inference.

5 CONCLUSION

In this paper we presented a new exemplar-free approach to class-incremental Visual Transformer
training. Our method, through the Gated Class-Attention Mechanism, achieves low forgetting by
learning and masking important neurons for each task. High plasticity is ensured via the Back-
bone Regularization and Feature Drift Compensation using a cascade of feature projection networks.
Through classifier distillation, we are able to overcome the limitations due to the multiple forward
passes and computational overhead required by multiple forward passes through a task-conditioned
network. Ours is one of the first effective approaches to exemplar-free, class-incremental training of
ViTs.

9



Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

The code of our method, written in PyTorch 1.11.0, will be released in case of acceptance of the
paper. All the datasets used in this work are publicly available online
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A APPENDICES

A.1 DATASETS

The CIFAR-100 dataset is composed of 60,000 images, each 32 × 32 pixels and divided into 100
classes. Each class has 500 training and 100 test images. The Tiny-ImageNet is a reduced version
of the original ImageNet dataset with 200 classes. The classes are split into 500 for training, 50 for
validation, and 50 for test (for a total number of 120,000 images). The images are 64× 64 pixels.

A.2 UPDATE RULES FOR GATED CLASS-ATTENTION

The backpropagation update rules are the following:

WQ = WQ − λM<t
q ⊙ ∂L

∂Wq
Wk = Wk − λM<t

k ⊙ ∂L
∂Wk

Wv = Wv − λM<t
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∂Wv
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i,k)⊙
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W2 = W2 − λM<t
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∂W2
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o )⊙ ∂clf
∂Wclf

and the weight masks are defined as:
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A.3 ADDITIONAL RESULTS

Accuracy Matrices. In Figures 7 and 8, we show the task aware and task agnostic accuracy matrices
for the 5-task scenario on CIFAR-100. We observe that, through our gated class-attention block, we
achieve stable accuracy on previous tasks in the task-aware scenario. In Figure 8 the task-agnostic
matrix shows a drop in performance when learning new tasks. However, this behaviour is expected
since the problem becomes increasingly complex when adding new tasks.
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Figure 7: Task-Aware on CIFAR-100, 5 tasks.
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Figure 8: Task-Agnostic on CIFAR-100, 5 tasks.

Cumulative Metrics. To verify the accuracy and forgetting of our method, we compute the Cu-
mulative Accuracy and Cumulative Forgetting as defined by Soutif-Cormerais et al. (2021). We see
from Figure 9 that the cumulative accuracy of our model in the 10-task scenario on CIFAR-100 is
stable without any drop when increasing the number of observed tasks. We report in Figure 10 the
cumulative forgetting for each task. Even if there is a slight increase for early tasks, the cumulative
forgetting does not increase above 4%.
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Figure 9: Cumulative Accuracy on the 10-task
scenario of CIFAR-100.
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Figure 10: Cumulative Forgetting on the 10-task
scenario of CIFAR-100.

Gating Capacity. In Figure 11, we show the percentage of used masked capacity as tasks are
added. The experiments were performed on CIFAR-100 dataset for 5- and 10-task scenarios. We
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Figure 11: Gated Class-Attention Block capacity on CIFAR-100 in the 5- and 10-task scenarios.

observe that most most of the available capacity is used during the firsts tasks. For subsequent ones
the percentage of occupied capacity is significantly lower compared to the first ones. From the 5-
task scenario curve we that there is almost 10% of the capacity available for possible new incoming
tasks. For the 10-task scenario, however, after completing 60% of the tasks the capacity is almost
full and the last tasks are using less than 2% of capacity each.

A.4 ADDITIONAL EMBEDDING VISUALIZATIONS

We report here the complete visualization of the embeddings produced with and without the projec-
tion network cascade. In the first row of the Figure 12 we show the embedding obtained without
using the projection cascade. In the second and third rows we show the embeddings obtained using
the projection network cascade during training. The difference between the middle and bottom row
is the use of the Feature Drift Compensation mechanism during inference. The different columns
of the figure show the embeddings produced by the network during the different inference phases.
As previously explained, the projection network is introduced only during the training of the second
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Figure 12: T-SNE visualization of embedding space (output of f(·)) at the first two tasks (task-
agnostic). Top Row: the model is learned without (w/o) projection network. Middle Row: projec-
tion network is used during training but not during inference. Bottom Row: projection network is
involved in both training and inference.

task. For this reason Stage 1 of the three different presented strategies have the same embedding.
The projection network learned during the training of the second task is used to align the embed-
dings produced by the current backbone to the ones produced by the previous one. We see that
during inference on first task data after the training of the second task (i.e. Stage 2 in Figure 12)
the Feature Drift Compensation better preserves first-task clusters in embedding space: using the
projection network, the embeddings of first task classes are clearly clustered. We also analyze the
test set embedding features of the second task (third column), after the training of the second task.
In Figure 13 the task-aware feature embeddings with and without the use of the Feature Drift Com-
pensation during the inference are reported.

A.5 COMPARISON OF OUR CONTRIBUTION WITH OTHER METHODS.

To clarify our contribution in this paper, we summarize the difference compared with recent con-
tinual learning methods in Table. 5 and Table. 6. As shown in Table. 5, our method is the first
exemplar-free class incremental learning method based on the transformer. Pelosin et al. (2022) also
propose a transformer-based CL method with attention distillation, but for task-incremental learn-
ing. The method of Wang et al. (2022b) requires a pre-trained backbone and dynamically prompts
it to a sequence of tasks. Douillard et al. (2022) propose a transformer-based method with dynamic
token expansion for continual learning. This method achieves very good performances on CIL, but
requires exemplars for mitigating the forgetting. Finally (Wang et al., 2022a) propose a lifelong
vision transformer without any pretraining but requiring exemplars.

In Table 6 we report recent parameter-isolation continual learning methods. To the best of our
knowledge, ours is the first exemplar-free class-incremental learning method trained completely
from scratch. Piggyback (Mallya et al., 2018) uses task-specific binary masking for adapting the
backbone network to new tasks. Although it does not use exemplar rehearsal, it is based on a
pretrained backbone. Similarly, Mallya & Lazebnik (2018) describe PackNet which is based on task-
aware iterative pruning and re-training to mitigate forgetting and increase plasticity. These methods
apply the learned masks directly to the weights of the network. Another category of parameter-
isolation methods instead apply the masks to the layer activations. Serra et al. (2018) describe a task-
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Stage 1 (Task 1) Stage 2 (Task 2)Stage 2 (Task 1)

Figure 13: T-SNE visualization of embedding space (output of f(·)) at the first two tasks (task-
aware). Top Row: the model is learned without (w/o) projection network. Middle Row: projection
network is used during training but not during inference. Bottom Row: projection network is
involved in both training and inference.

Method Architecture Exemplars-Free Non-Pretrained
Ours ViT ✓ ✓
Dytox (Douillard et al., 2022) ViT ✗ ✓
LVT (Wang et al., 2022a) ViT ✗ ✓
Attention Distillation (Pelosin et al., 2022) ViT ✓ ✓
Prompt (Wang et al., 2022b) ViT ✓ ✗

Table 5: Comparison with published state-of-the-art approaches.

aware method for preventing updates to weights that are most useful for previous tasks. Similarly,
Masana et al. (2021) propose a ternary-mask method without the need for pretraining or exemplars.
Despite their effectiveness, these activation masking methods are task-aware. Our instead is the first
parameter isolation, task-agnostic and exemplar-free approach trained entirely from scratch.

Method Weights/Activations Class-incremental Scratch Exemplar-free
Piggyback (Mallya et al., 2018) Weights ✗ ✗ ✓
PackNet (Mallya & Lazebnik, 2018) Weights ✗ ✓ ✓
HAT (Serra et al., 2018) Activations ✗ ✓ ✓
Ternary (Masana et al., 2021) Activations ✗ ✓ ✓
Ours Activations ✓ ✓ ✓

Table 6: Comparison with different parameter-isolation approaches from the state-of-the-art.
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