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Abstract

Critical data science and decision-making questions across a wide variety of do-
mains are fundamentally causal questions. We present a suite of open-source causal
tools and libraries that aims to simultaneously provide core causal AI functionality
to practitioners and create a platform for research advances to be rapidly deployed.
In this paper, we describe our contributions towards such a comprehensive causal
AI suite of tools and libraries, its design, and lessons we are learning from its
growing adoption. We hope that our work accelerates use-inspired basic research
for improvement of causal AI.

1 Introduction

Critical data science and decision-making questions across a wide variety of domains are fundamen-
tally causal questions. Whether estimating the impact of a marketing campaign, understanding the
reasons for customer churn, predicting the impact of climate change, or identifying which drug may
work best for which patient, answering key questions relies on successfully modeling cause-and-effect
relationships that underlie a system. As the field of data science and applications of data-driven
decision making expand, many people are recognizing the importance of causal methods for providing
robust insights. However, valid causal analysis requires a combination of human domain expertise (to
make reasonable assumptions) and sophisticated analytical frameworks (to build those assumptions
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Figure 1: End-to-end causal inference pipeline

into causal models and learning algorithms), which makes it particularly important to develop robust
tools that empower analysts and decision-makers to use the latest statistical advances.

The causal AI research area is still early in its development, however, and as with any technology
area, will require many more advances and iterative practical deployments to reach its full impact.
As argued by Stokes [38], fundamental research is accelerated when it is motivated and informed
by considerations of use. To enable and accelerate such “use-inspired basic research” in causality,
we should create mechanisms that enable and ease the practical usage of state of the art technology,
and collect results and challenges to inform the direction of research. This requires that we broaden
the accessibility of causal methods beyond today’s causal experts, and make them available to the
larger audiences of scientists, decision-makers, and other practitioners, so that we may discover the
fundamental challenges of causality that stymie its full adoption. Learning from broad usage of these
methods, and in particular the use cases in which current methods are insufficient or fail, will motivate
and speed new research directions that our field might not otherwise prioritize or even be aware of.

We present a suite of causal tools and libraries that aims to simultaneously provide core causal AI
functionality to practitioners and create a platform for research advances to be rapidly deployed.
First, this suite aims to be easy for practitioners, including non-causal experts, to use. Importantly,
the tools should provide scaffolding to those familiar with non-causal machine learning and data
science processes as they learn causal workflows. Ideally, tools should make it easy for people to
make the right assumptions and come to the correct causal conclusions, and make it difficult for
people to make mistakes. Second, to enable new research advances to be rapidly deployed, the suite
provides an interface that clearly separates the problem (e.g., a given causal task we wish to perform
or causal question we wish to answer) from the algorithmic and methodological implementations
that may solve the problem. Finally, to encourage cross-pollination of ideas across disparate causal
communities of interest, the suite of tools and libraries bridges across multiple causal frameworks and
tasks, including graphical approaches to causal reasoning, potential outcomes approaches to effect
inference, causal discovery algorithms, and others. Parts of our causal AI suite are already widely
used across industry and academia, with over 1.5 million downloads, and newer components are
receiving significant interest as well.

In this paper, we describe our contributions towards such a comprehensive causal AI suite tools and
libraries, our design decisions, lessons learned from their usage, and what is next.

2 A Causal AI Suite

The primary goals of our causal AI suite are (1) to broaden usage of causal methods by data scientists
and decision-makers in practice; and (2) act as a flywheel to accelerate fundamental causal research
and impact. The initial focus of our suite is the end-to-end causal inference task, as shown in Figure 1.
The inputs to the pipeline are data and domain knowledge, capturing key causal assumptions as
partial structural knowledge of a causal graph and other non-graphical assumptions. We use causal
discovery to aid the exploration and inference process.

We first discuss our core design principles; and then present the major libraries and tools that make
up our causal AI suite: DoWhy, EconML, Causica, and ShowWhy.

2.1 Design Principles and Decisions

Scaffolding the causal analysis process: The right API abstraction can guide users to follow best
practices of causal inference and characterize the impact of causal assumptions on the estimated
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effect. For instance, incorrect identification leads to bias in an estimate that cannot be corrected
by simply optimizing across different estimation methods ([36]). In the absence of a global cross-
validation evaluation procedure as in supervised machine learning, the steps for stating and validating
assumptions are a critical part of causal inference ([33]).

Thus, a key design decision in our causal AI suite is organized around an analysis pipeline that
elevates domain knowledge and its assumptions as a first-class entity. These assumptions dynamically
guide the identification of algorithmic approaches, e.g., for causal estimation. And, these assumptions
are all subject to validation, refutation, or sensitivity analysis in our pipeline.

Separation of causal questions from algorithmic and methodological implementations: Given
the rapid pace of advancement in causal methods and machine learning more broadly, we expect to
see significant changes in algorithms and methodological approaches for causal inference. To enable
and encourage such advancement, we build API abstractions that cleanly separate how we represent
and ask causal questions from how those questions are answered. The right abstractions also allow
easier reuse and flexible combinations of algorithms and core components across related causal tasks.

For example, given a graphical causal model, the identification step of causal effect inference
is a causal reasoning problem whereas the estimation step is a statistical problem. Our libraries
enforce this boundary by having two separate API calls for identification and estimation. This
allows modularity, allowing us to rapidly expand our set of supported identification and estimation
methods independently. Furthermore, we can “mix-and-match” identification and estimation methods:
multiple estimation methods can be used for a single identified estimand and vice versa.

Find common abstractions across causal frameworks. To encourage cross-pollination of ideas,
we build abstractions that bridge across multiple causal frameworks and tasks, including graphical
approaches to causal reasoning, potential outcomes approaches to effect inference, causal discovery
algorithms, and others. The exercise of finding common ways of expressing the causal assumptions
used by graphical reasoning methods, panel data methods, and causal discovery encourages us to
consider both the similarities and distinctive strengths of methods, algorithms, and scenarios.

All of the components below are available as open-source Python packages 1.

2.2 DoWhy

DoWhy is an end-to-end library for causal analysis that builds on the latest research in modeling
assumptions and robustness checks ([5, 23]), and provides an easy API interface. To scaffold and
guide users through the best practices of causal inference, DoWhy’s API is organized around the four
fundamental steps for causal analysis: Model, Identify, Estimate, and Refute. Model encodes prior
knowledge as a formal causal graph, identify uses graph-based methods such as the ID algorithm to
identify the causal effect, estimate uses statistical methods, such as EconML’s sophisticated methods
for estimating the identified estimand, and finally refute tests the validity of the assumed graph and
resultant estimate. DoWhy unifies two powerful frameworks: causal graphs ([28]) and potential
outcomes ([19]). Specifically, DoWhy uses graph-based criteria and do-calculus for modeling
assumptions and identifying a non-parametric causal effect. For estimation, it switches to methods
based on potential outcomes, including methods from external libraries like EconML ([26]) and
CausalML ([9]).

In 2022, DoWhy became the first library to join the independent community-governed PyWhy
organization as part of an effort to encourage the development of an open source ecosystem for causal
machine learning.

2.3 EconML

The EconML library complements DoWhy with a focus on sophisticated estimation methods based
on the latest advances in causal machine learning. EconML applies advanced machine learning
techniques to estimate individualized causal responses from observational or experimental data. The
suite of estimation methods provided in EconML represents the latest advances in causal machine

1DoWhy: https://github.com/py-why/dowhy/; EconML: https://github.com/microsoft/
econml/; Causica: https://github.com/microsoft/causica/; ShowWhy: https://github.com/
microsoft/showwhy/
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learning. Supervised machine learning algorithms (such as random forests, boosting, lasso, and
neural nets) have become enormously effective at predicting an outcome Y from a set of features.
They achieve this good performance, and improve on earlier ad hoc methods, with automated model
selection, usually with cross-fitting. The central advance of causal machine learning is to recognize
that many individual steps within causal analysis can benefit from machine learning. EconML
encodes this causal machine learning approach (e.g., DoubleML, meta-learners, and many others)
into a simple API that builds intuitively on other popular ML packages such as scikit-learn. Armed
with an appropriate data sample, analysts can estimate reliable causal effects with a few lines of code.
In the background, EconML estimates “nuisance” functions using flexible ML models—including
the option to use AutoML to choose across multiple algorithms, automatically cross-fits to tune
those models—and builds these estimates into carefully constructed final models that use the latest
techniques to deliver interpretable causal effects. Each approach in the library includes confidence
intervals, many constructed analytically for added efficiency, and enables flexible modeling of
heterogeneous treatment effects to understand how treatment effects vary across a population and
create targeted, personalized plans of action.

2.4 Causica

Causica develops deep learning methods for end-to-end causal inference (DECI), using existing data
and domain constraints to both perform causal discovery and compute causal inference quantities
such as (conditional) average treatment effects. Causica also provides core functionality for a variety
of causal tasks, including missing value prediction, best next question, causal discovery, and causal
inference. The DECI model is a generative approach that employs an additive noise structural equation
model (ANM-SEM) to capture the functional relationships among variables and exogenous noise,
while simultaneously learning a variational distribution over causal graphs [14]. DECI estimates
causal quantities (ATE / CATE) by applying the relevant interventions to its learnt causal graph and
then sampling from the generative model.

2.5 ShowWhy

ShowWhy builds atop this ecosystem of Causal AI libraries to develop a new class of no-code
user interfaces (GUIs) that empower domain experts to become “decision scientists” who can
independently ask a causal question, develop causal estimates, and present and defend causal evidence
to an audience of decision makers. We expect that making causal methods available to this broader
audience of stakeholders will motivate and accelerate new use-inspired basic research. As new
algorithms and methods are implemented underneath the shared APIs of the DoWhy, EconML, and
Causica libraries, ShowWhy’s no-code user interface can easily leverage them.

Since the broader audience of ShowWhy users may not be familiar with specific machine learning
estimators or causal inference more generally, a key design principle for our no-code interfaces is to
use a range of estimators, problem specifications, and visualization techniques to communicate the
overall balance of evidence regarding the existence and strength of potential causal relationships.

ShowWhy’s no-code interfaces also recognize the fact that decision making is an ongoing process,
often involving rapid iterative feedback loops, that extends beyond any individual decision. We can
even view it as a new kind of decision science: first, discovering candidate interventions; second,
deciding which interventions to make; and third, evaluating the impact of chosen interventions over
time. Figure 2 presents the three major workflows supported by ShowWhy. The first workflow helps
users answer exploratory questions of the form “do variables in some dataset have causal links? The
next workflow helps users answer questions of the form “does exposure to a specific treatment cause
a specific outcome?” The third and final workflow helps users answer questions of the form “did a
specific event cause a specific outcome over time?”

3 Example usage

Parts of the causal suite are widely used across industry and academia: DoWhy and EconML, for
example, have been downloaded over 1.5 million times. Through adoption and usage of these tools,
we have found several templates of causal analysis scenarios to be commonly used: (1) identifying
causal drivers of key metrics and outcomes; (2) return-on-investment analyses, such as identifying the
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(a) Exploration: Use causal dis-
covery methods to explore causal
links among variables.

(b) Exposure Analysis: Use effect
inference methods to see whether
exposure causes outcomes.

(c) Event analysis: Use panel data
analyses to determine whether an
event caused an outcome.

Figure 2: The ShowWhy no-code interfaces enable domain experts without coding expertise to use
the latest methods to answer key causal questions

impact of customer loyalty programs; (3) robust prediction and forecasting, such as modeling future
impacts of expected climate change; and (4) segmentation and personalized treatment scenarios.

Here, we present an example usage of these causal analysis libraries for a multi-investment attribution
task, identifying the business actions that have a causal effect on revenue from enterprise customers.

3.1 Example: Multi-investment Attribution

A software company would like to know whether its multiple outreach efforts to their business
customers are successful in boosting sales. They would also like to learn how to better target different
incentives to different customers. In other words, they would like to learn the treatment effect
of each investment on customers’ total expenditure on the company’s products—particularly the
heterogeneous treatment effect.

Here, we show how tools from the Causica, EconML and DoWhy libraries can use historical
investment data to learn the effects of multiple investments. We then use Causica to discover the
causal graph: the relationship between each variable in the simulated data. With this generated
graph, we use DoWhy to identify an appropriate strategy to estimate the causal effect. We pass
this recommendation to EconML to estimate the personalized treatment effects for each customer.
We also show an alternative effect estimation using Causica. Finally, we use DoWhy to test the
assumptions underlying the causal estimation. The full walkthrough is available as a Jupyter notebook
at https://aka.ms/causal_suite_notebook.

3.1.1 Data

We create a simulated dataset of 10,000 customers. Each customer is associated with annual revenue
from the customer and whether they received technical support, a discount, or were targeted by new
outreach strategies. Each customer is annotated with 10 additional characteristics that might affect
revenue, such as the company’s employee count, whether the customer is a commercial or public
sector, a global company, etc. Data is simulated to mimic realistic correlations between features.

3.1.2 Discovering the Causal Graph

The first step in our analysis, shown in Listing 1, is to extract the causal graph using a causal
discovery algorithm, here using the DECI algorithm from Causica [14]. To inform the causal
discovery procedure, we provide several simple constraints in the form of a constraint_matrix.
In this case study, we declare that the revenue outcome variable cannot be the cause of other nodes;
that certain attributes of companies cannot be changed by others; and that treatments do not cause
each other. We omit this code for brevity.

Listing 1: Causal Discovery Code Example�
## C au sa l D i s c o v e r y s t e p
model = DECI . c r e a t e ( "mymodel" , mode ld i r , d a t a s e t . v a r i a b l e s ,

cfg , d e v i c e ="gpu" )
model . s e t _ g r a p h _ c o n s t r a i n t ( c o n s t r a i n t _ m a t r i x ) # p r o v i d e domain knowledge
model . r u n _ t r a i n ( d a t a s e t , t r a i n i n g _ p a r a m s )
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d i s c o v e r e d _ g r a p h = model . ne tworkx_graph ( )
� �
3.1.3 Treatment effect identification and estimation

The causal graph identifies the likely paths of connection between features. This next step will
quantify the strength of those relationships between treatment and outcomes. Our tools estimate both
the average treatment effect across all customers (ATE) and how these treatment effects vary across
customer features.

DoWhy tools can help users identify an appropriate causal model for their question and understand
which confounders, or conditioning variables, they should include in their estimation. To identify an
estimation approach, DoWhy needs to work with a causal graph that describes the problem space.
DoWhy can work with a causal graph generated through discovery, or input directly by users based
on their domain knowledge, including perhaps identifying features that may affect the outcome and
treatment but are unobservable.

Listing 2 runs DoWhy’s identification algorithm. In this scenario, DoWhy recommends a backdoor
estimation approach, which relies on the unconfoundedness assumption, and selects all of the potential
confounding variables except for one which was not identified as a confounder in the graph. We then
use DoWhy to call the Linear Double Machine Learning model from the EconML library for the
estimation step.

Listing 2: Identification and Estimation Code Example�
## I d e n t i f i c a t i o n
dw = dowhy . CausalModel ( d a t a = d a t a s e t , g raph = d i s c o v e r e d _ g r a p h ,

t r e a t m e n t ="Tech Support" , outcome="Revenue" ,
e f f e c t _ m o d i f i e r s = [ ’Global Flag’ , ’Size’ ] )

e s t i m a n d = dw . i d e n t i f y _ e f f e c t ( method_name="maximal-adjustment" ,
e s t i m a n d _ t y p e =’nonparametric -cde’ )

# E s t i m a t e
e s t i m a t e = dw . e s t i m a t e _ e f f e c t ( e s t imand ,

c o n f i d e n c e _ i n t e r v a l s =True ,
method_name="backdoor.econml.dml.LinearDML" )
� �

3.1.4 Validation and Reporting

If causal assumptions are incorrect or otherwise violated, then identified causal estimands will be
biased in ways that cannot be corrected through improved estimation methods ([35]). As validating
assumptions is a critical part of causal inference ([33]), we briefly describe the refute step here. We
leave code examples of refutation and validation out of the paper due to space considerations.

To aid data scientists’ inspection of the validity of causal assumptions, DoWhy provides two kinds of
tests: 1) Refutations are necessary—but not sufficient—tests of the validity of a causal analysis must
pass; and 2) Sensitivity analyses that measure the robustness of a causal estimate to violations of
assumptions [32]. Tests supported by DoWhy include addition of random common causes, placebo
treatments, data subset validation, bootstrap validation, and testing of independence constraints
entailed by the causal graph.

4 Learning from practical deployment and next steps

These tools have been used in a wide variety of domains, including health and medicine [40, 12, 4, 3,
11, 10, 1, 37, 27, 6], logistics and travel [41, 8, 29, 39], marketing and sales [2, 17, 34], environment
and agriculture [20, 13, 15], manufacturing [24], law [18], education [21, 7], and others. From the
questions and feedback we receive, as well as from our use of these packages in our own application
scenarios, we see several areas of both fundamental interest and with potential for practical impact.

Improved elicitation of domain knowledge. First, we see that data scientists and domain experts
often have difficulty encoding domain knowledge correctly–whether because domain experts are
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unavailable or for lack of causal expertise. As a result, we are seeking new ways to ease the
elicitation of domain knowledge, including tighter integration of causal discovery and interactive
tools for exploration and bootstrapping. Other promising directions include seeking to extract
structural domain knowledge from other sources, such as the academic literature [30] and trusted
simulators [25].

Improved validation, refutation, and sensitivity analyses. Continual improvement of valida-
tion and refutation methods, including integration with A/B experimentation methodologies when
available is an important need for many of the scenarios we observe.

Improved support for unstructured and high-dimensional text and image data. In many appli-
cation areas today, the richest source of data about a domain is text or image data, such as clinical
notes in electronic health records, or satellite imagery capturing climate impacts. While methods for
causal inference in the context of high-dimensional data are being explored [31, 16], further work is
needed to create approaches for analysis of unstructured data, e.g., building on causal representation
methods [22].

Our next steps include continuing to grow the open-source community and ecosystem for Causal
AI tools and libraries; expanding capabilities to new tasks and APIs, such as causal representation
learning, and robust prediction. We encourage others to join us in creating a vibrant ecosystem that
serves both researchers and practitioners.
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