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ABSTRACT

Many studies have proven that Translation Memory (TM) can help improve the
translation quality of neural machine translation (NMT). Existing ways either em-
ploy extra encoder to encode information from TM or concatenate source sen-
tence and TM sentences as encoder’s input. These previous methods don’t model
the semantic relationship between the source sentence and TM sentences. Mean-
while, the training corpus related to TM is limited, and the sentence level retrieval
approach further limits its scale. In this paper, we propose a novel method to com-
bine the strengths of both TM and NMT. We treat the matched sentence pair of TM
as the additional signal and apply one encoder enhanced by the pre-trained lan-
guage model (PLM) to encode the TM information and source sentence together.
Additionally, we extend the sentence level retrieval method to the n-gram retrieval
method that we don’t need to calculate the similarity score. Further, we explore
new methods to manipulate the information flow from TM to the NMT decoder.
We validate our proposed methods on a mixed test set of multiple domains. Ex-
periment results demonstrate that the proposed methods can significantly improve
the translation quality and show strong adaptation for an unknown or new domain.

1 INTRODUCTION

Neural machine translation (NMT), an end-to-end approach, has achieved state-of-the-art translation
performance on many language pairs (Vaswani et al., [2017; Wang et al., [2019). Usually, a trained
NMT model translates a new sentence into the target language from scratch. However, human
translators can quickly and accurately translate a sentence by reuse existing repetitive translation
fragments in the translation memory (TM). Therefore, we naturally think of using TM to improve
the translation quality of NMT. Typically, a TM consists of bilingual parallel sentence pairs(TM-
source and TM-target) that are similar to the current sentence to be translated (Koehn & Senellart,
2010; |Cao & Xiong, [2018)). And from statistical machine translation (SMT) to NMT, a variety of
efforts have been made to integrate a TM into machine translation.

The process of integrating TM information and NMT mainly includes two steps: TM retrieval and
fusion of TM information and NMT network. For the fusion of TM and NMT, such attempts have
already been conducted. And a commonly used integration way is to employ the multi-encode
structure. |(Cao & Xiong| (2018)) propose a simple method that employs a new encoder to encode the
TM information to guide the decoding process and [Xia et al.| (2019)) also use a graph-based encoder
to pack the TM sentences into a graph. Their methods all require additional encoder structure, ignore
the TM-source information, and only encode the TM-target information. These will cause a series
of problems. On the one hand, it will significantly increase the parameter scale of the network. On
the other hand, the encoding process of TM-target information and source sentence are isolated from
each other, so the semantic connection between them is lost.

About TM retrieval, various metrics can be used to estimate the similarity score of two sentences.
We select the sentences with the highest similarity from the TM database for the current source
sentence by calculating the similarity score. The existing retrieval approaches used in previous work
are usually to calculate the sentence level similarity score, such as Edit-Distance (Gu et al., 2017}
Xia et al.} 2019)), IDF-based similarity score (Bapna & Firat,[2019), and cosine similarity (Xu et al.,
2020). TM’s current work is experimenting with relatively small data sets that are usually only
hundreds of thousands of sentences. One main reason is that we use sentence-level similarity. When
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we also set a relatively high similarity threshold for a source sentence, we have a high probability
that we will not find a similar sentence in the TM database. Although |Bapna & Firat (2019) and
Xu et al. (2020) also use the n-gram method to search, they still need to select the corresponding
sentence that maximizes the n-gram similarity with the source sentence. Meanwhile, a small training
set will also lead to insufficient training of network parameters.

In this paper, to address the problem presented above, we proposed a novel and effective method
for the combination of TM and NMT. The proposed approach’s key idea is to treat the matched
TM-source and TM-target as the additional signal and try to encode them with the source sentence
together. Specifically, we first find the matched TM-source and TM-target sentence pairs from our
training corpus. To enhance the semantic relationship between source sentence, TM-source, and
TM-target, we use a universal encoder to encode the three sentences and obtain context representa-
tion information simultaneously. Then we explore and try four methods to incorporate the context
information into the decoding network. To further strengthen the ability to copy useful information
from TM context information and alleviate the rare-word problem, we integrate pointer network
(Gulcehre et al .l |2016;|Gu et al., 2016} See et al., 2017) into the decoder.

To obtain sufficient training corpus and train network parameters more fully and effectively, in this
paper, we also modify the retrieval algorithm and use a pre-trained language model (PLM) to ini-
tialize the encoder’s parameters. Partially inspired by phrase-based SMT, we don’t compute the
sentence level similarity score between two sentences in our retrieved method. If two sentences
have a common n-gram segment, we assume that they are similar, and the sentence pairs of the TM
database can provide a useful segment to help improve the translation quality. Currently, many stud-
ies have proven that PLM can offer valuable prior knowledge to enhance the translation performance
of NMT (Weng et al.| [2020; |Song et al., 2019), So we also employ PLM to initialize the parameters
of the encoder and give encoder well-trained parameters as a starting point.

To validate the proposed approach’s effectiveness, we implement our idea on top of the state-of-
the-art model Transformer (Vaswani et al.|[2017). A series of experiments on the English-to-French
translation task demonstrate that the proposed method can significantly improve NMT with the TM
information. In summary, we make three main contributions:

* We employ the n-gram retrieval to find a similar sentence, and this is very simple and fast. It
does not need the complicated fuzzy matches algorithm to calculate the similarity between
the source sentence and TM-source from TM or training data.

* Does not need an extra encoder to encode the retrieved sentence from TM and use only an
encoder enhanced by PLM to model the semantic relationship between TM sentences and
the source sentence and obtain their context representation information simultaneously.

* apply the Copy Mechanism to alleviate the rare-word problem, especially when we do not
have sufficient training corpus.

2 RELATED WORK

TRANSLATION MEMORY

Our work aim at the studies that integrate Translation Memory into machine translation. Many
methods have been proposed to combine TM and MT. For example, |[Koehn & Senellart| (2010)
applies the matched segments from TM to SMT in decoding. However, the integration of TM and
NMT is more complicated, and limited efforts method is explored so far compared with the fusion of
TM and SMT. |Cao & Xiong (2018) identify this as a multi-input problem and use the multi-encode
framework to encode the retrieved TM-target sentence and current source sentence. On this basis,
Bapna & Firat (2019)) propose a new approach that incorporates information from source sentence
and TM-source while encoding the TM-target. |Gu et al.| (2017) encode all similar sentences from
TM into context-vectors and use context-vectors to decode the target word by an additional attention
mechanism. Xia et al.|(2019) further extend the method of (Gu et al.|2017) in which they pack the
sequential TM into a graph, leading to a more efficient attention computation. Our proposed method
does not require an extra encoder, so no additional encoder parameters are introduced. Additionally,
Different from the method proposed by Bapna & Firat|/(2019), we encode the three sentences (source,
TM-source, TM-target) and obtain their context representation information simultaneously.
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SOURCE DATA-AUGMENTED

Our work is related to studies that use similar sentences to improve translation quality. For exam-
ple, Niehues et al.| (2016) employ the pre-translations obtained by a phrase-based SMT system to
augment the input sentences, and then concatenate the pre-translations and input sentences as the
final input of the NMT model. This method is maintaining a separate SMT system which might
introduce errors of its own. A similar principle, to dynamically adapt individual input sentences, [Li
et al.[ (2018)) retrieve similar sentences from the training data to finetune the general NMT model.
But this approach requires running expensive gradient descent steps before every translation. [ Xu
et al.|(2020) and Bulte & Tezcan| (2019) employ the various experimenting to introduce how to re-
trieve similar sentences from TM and use the selected sentence as the extra information of source
sentence. However, these studies only focus on how to enhance the context information of source
sentences. How to use enhanced context information more effectively in the decoder is ignored.
In our proposed methods, we try different ways to manipulate the extra context information from
TM-source and TM-target.

EXTERNAL KNOWLEDGE FOR NMT

Our work is also related to previous works that incorporate external knowledge or information into
NMT. Recently, a series of studies have explored the integration of SMT knowledge into the nmt
system. For example, Zhou et al| (2017) and [Wang et al.| (2017) propose to integrate the SMT
recommendations into NMT and improve the translation quality of NMT. Besides, there exist also
studies on the learning of global context by the aid of discourse-level methods in document machine
translation (Kuang & Xiong] [2018; [Kuang et al., 2018} Zhang et al. [2018). Additionally, several
successful attempts have been made to apply the pre-trained model for NMT (Ramachandran et al.,
2017;|[Song et al.,2019;|Weng et al.,[2020)). In addition to these, some studies also integrate external
dictionaries into NMT or employ the force-decoding methods to constrain the decoding process
of NMT by given words/phrases in target translations (Hokamp & Liul [2017; |Post & Vilar, 2018;
Hasler et al., 2018)).

3 PROBLEM FORMULATION

3.1 ATTENTIONAL NMT

Here, we will introduce neural machine translation based on the Transformer (Vaswani et al.,
2017), which has achieved state-of-the-art performance in several language pairs. Formally, let
x = (x1, 2, ...,xs) be a source sentence and y = (y1, Yo, ..., ys) be a target sentence. The source
and target sentence are parallel sentence pair. «; denotes the i-th word vector representation in
source sentence and y; denotes the j-th word vector representation in target sentence.

By default, the encoder is composed of a stack of L identical layers. The output of I-th encoder layer
can be computed as follows:

O' = LN(ATT(Q', K", V) + H'™!) (1)

H' = LN(FFN(O') + 0Y)) 2)

where ATT,LN and FFN are self-attention mechanism, layer normalization, and feed-forward net-
works with ReLU activation in between, respectively. Q', K’ and V'! are the query, key and value
matrix that are transformed from the (I — 1)-th encoder layer output H'~!. We define the output of
the [-th encoder layer as H,

In the decoding stage, the decoder is also composed of a stack of L identical layers. the output Z'
of [-th decoder layer can be calculated as follows:

O' = LN(ATT(Q', K', V) + Z'71) 3)
S' = LN(ATT(0", K., V.) + O') (4)
Z' = LN(FFN(S') + §%)) (5)
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where Q', K' and V! are transformed from the (I — 1)-th decoder layer Z'~!. K, and V, are
transformed from the H.. For self-attention mechanism ATT, the computed process is as follows:

J
c = Z % v; (6)
j=1
€tj
ay = =g ™
’ Zi:l Gtk
erj = qik] (8)

where c¢; is computed context vector of the ¢-th words, and the g; is transformed from hidden repre-
sentation of the ¢-th words, k and v is obtained from the previous layer of the decoder or the context
representation of the encoder.

4 TRANSLATION MEMORY GUIDED NMT

In this section, we first introduce how TM sentence pairs are retrieved. Then describe the proposed
Translation Memory Guided NMT (TMG-NMT) model in detail. Our TMG-NMT consists of two
parts, a universal memory encoder for encoding context information of TM sentences and source
sentence and a TM-guided decoder for using the TM context information to improve the translation
quality.

4.1 SEGMENT-BASED TM RETRIEVAL

Given a source sentence x to be translated, we find a matched example (tz, ty) from a translation
memory database D = {(x, y)}}. Existing approaches proposed by previous work employ off-the-
shelf search engines for the retrieval stage, and the retrieval source part ¢tz has the highest similarity
score to the x. In general, when calculating similarity scores between x and tx, the sentence level
similarity score is employed, such as IDF-Based sentence score (Bapna & Firat,|2019), Fuzzy Match
Score (Cao & Xiong, 2018)), and Edit-Distance (Li et al., 2018)).

Motivated by phrase-based SMT, in this paper, we propose the segment-based retrieval method that
uses n-gram as the segment representation. When the retrieved sentence tx has the same segment
as the x, we can consider that (tx,ty) may be helpful to improve the translation quality. Given a
source sentence x, we denote its segments set as s = (s1, S, ..., Sk ), where sy, is one n-gram in the
sentence x. For each si in s, we try to find a matched example (tz, ty) from D what tx contains
the si.. So, for sentence =, we can obtain a example set {(tz*,ty")} with N sentence pairs. The
advantages of the segment-based method are as follows:

* It doesn’t need to compute the sentence level score, which greatly saves matching time.

* For (z,y) pair in training data, we can find N matched sentence pairs, this dramatically
increases the size of our training corpus.

4.2 UNIVERSAL MEMORY ENCODER

Figure 1 illustrates the proposed universal memory encoder (UM-encoder). We concatenate
the source sentence, TM-source sentence, and TM-target sentence as the input of the encoder.
Formally, We use tx = (tx1,txs,...,txy) and ty = (tyi,tys, ..., tyy) to represent the re-
trieval TM-source sentence and TM-target sentence. The input of encoder H is concatenation
of all vector representations of source words, TM-source words and TM-target words. H =
[@1; .5 45 15 st EYL; s Ty

Then, we split the H' to get the source context H,., TM-source context H,. and TM-target context
H,, as follows:

H, H,,, Hy, = split(H', I, M, N) 9)
where split is a function to split the matrix according to the length parameters (I, M, N).

Context control Unlike the previous work, we don’t employ additional context encoder or self-
attention layer (Cao & Xiong} [2018}; |Kuang & Xiong) 2018) to encode and integrate contexts. And
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Figure 1: Architecture of the proposed UM-encoder model. A separation mark “SEP” is inserted
between them. Position embedding is introduced to distinguish the word order in each sentence;
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Figure 2: Architecture of TM-concat decoder Figure 3: Architecture of TM-gate decoder

we only use one encoder to model the concatenated input. In this way, no additional parameters
will be introduced and can also keep the same source sentence’s semantic consistency. Meanwhile,
to distinguish the context information from different sentences, a separation mark "SEP” is inserted
between sentences. We arrange its position embedding separately to keep the word order for each
sentence.

Cross-lingual Encoding The TM information contains two different languages: the source language
and target language. So we need the UM-encoder to learn the ability to encode the semantics of
different languages. For this goal, we introduce two methods into the UM-encoder:

* Firstly, we use a pre-trained cross-lingual language model (PLM) to initialize the UM-
encoder’s parameters, which provides an excellent cross-language modeling ability in ad-
vance.

* Secondly, We use TM-source as a bridge to establish the connection between the source
sentence and TM-target. Because the TM-source and TM-target are the parallel sentence
pair while the source sentence and TM-source are the same languages, it is easier to model
the connection.

4.3 TM-GUIDED DECODER

By the UM-encoder, we can obtain the source context vectors, TM-source context vectors, and TM-
target context vectors. So, we can employ the TM context information to guide the decoder to predict
the next words. It is worth mentioning that we ignore TM-source context information because
the words in the TM-source also appear in the source sentence, and we don’t need to re-encode
them while the words in TM-source but not in the source sentence are not helpful for translation.
Additionally, we have used TM-source as a bridge to establish the semantic association between TM-
target and source. There may exist different ways to use TM context information. We concentrate
on the following four methods.

TM-implicit Decoder As we use UM-encoder for encoding, the source context already contains
TM-target context information. So, we only use the source context H, as input H, of the decoder.

TM-concat Decoder Following |Xu et al.| (2020), we also concatenate the source context and TM-
target context as the input of the decoder. Figure 2 illustrates the TM-concat decoder model. And
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Figure 4: Architecture of TM-point decoder.

the H, can be obtained as follows:
Hc = [Hrath] (10)

TM-gate Decoder Following Bapna & Firat (2019), We also try to use the gate attention mechanism
for information fusion and use the H, and Hy, as the decoder’s input. Figure 4 schematically
illustrates the TM-gate model. The S' of the decoder are recalculated as follows:

S! = ATT(O', K., V,) (11)

S, = ATT(O', K, Vi) (12)

g' = sigmoid(FFN(S., S7,, Z'™ 1)) (13)
S'=LN(g'* S, + (1 —g') + S{, + O (14)

where g' is the gated context vector obtained by sigmoid function and FFN. The K, and V, are
transformed from the H,, and the K, and V;, are transformed from the Hy,.

TM-pointer Decoder We further integrate the pointer-network into the decoder to enhance the
model’s copy ability based on the TM-gate model. Figure 5 is a schematic representation of the
TM-pointer model. At each decoding step ¢, we can get the current gated scalar g, by Equation
(11) and attention distribution vectors a computed by Equation (10) from [-th decoder layer, where
Zév a; =1 and N is the length of TM-target sentence. The final word prediction probability for
y¢is calculated as follows:

PYely<i, ) = gt * Ppredict Ye|y<t, ) + (1 — ge) * Deopy (Ye|[y<e, ) (15)

where ppredict (Yt|y<t, ) is the vocabulary distribution computed by decoder. The peopy (yt|y<t, )
is the probability what copying a word from the TM-target sequence and we use the attention distri-
bution vectors a represent this probability. Notice that if ¥, is not in the TM-target sentence, we set

pcopy(yt |y<t7 .’E) =0.

5 EXPERIMENTS

We carried out a series of English-to-French translation experiments to evaluate the effectiveness of
the proposed TMG-NMT and conducted in-depth analyses on experiment results and translations.

5.1 DATA

We used the following corpora in this work to validate the performance of the proposed model: the
WMT training set (36M pairs), Open-Subtitles (33M pairs), the IWSLT bilingual corpus (237k pairs)
and JRC-Acquis (797k pairs). For OpenSubtitles and JRC-Acquis, there is no publicly available test
set. We create our own splits for validation and test. After segmentation, the JRC-Acquis test set
contains 2000 sentence pairs and the OpenSubtitles test set has 2000 sentence pairs. For WMT, we
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Table 1: BLEU scores on the English-to-French translation tasks and the baseline is trained using
the concatenation of all the original corpus. OST indicate the OpenSubTitle test. Avg means the
average scores on all test sets. Higher BLEU scores indicate better translation quality.

Model IWSLT15 OST JRC WMTI14 | Avg A
Deep-Transformer || 43.07 34776 5431 42.02 43.57 | -
Baseline Transformer-Bert 44.25 35.18 5643 4353 4484 | —
w/ pretrain 44.88 35.02 5699 4323 45.03 | -
TM-implicit 44.85 3557 6131 4394 46.41 | +1.38
TM-concat 45.45 3586 61.69 43.77 46.69 | +1.66
TMG-NMT TM-gate 46.18 3544 6171 4397 46.82 | +1.79
TM-pointer 46.97 36.49 62.60 44.64 47.67 | +2.64

use newstest 13 for validation and the newstest 14 for test. For IWSLT, we use test 2014 as validation
and test 2015 as test.

In the training stage, for each sentence pair (x,y) in the training corpus, we find up to N similar
sentence pairs ¢z, ty from the training corpus. And we set the IV to 10. In the test stage, for each
source sentence in the test set, we randomly select one of them when finding N similar sentence
pairs. Additionally, we restrict the retrieval set to the in-domain training corpus.

Following M-BERT (Pires et al.,[2019), and for source vocabulary, we use a 110k shared WordPiece
vocabulary. For the target vocabulary, we extract French-related character representations from the
source vocabulary, and the target vocabulary size is 39000. We used the case-insensitive 4-gram
NIST BLEU (Papineni et al.,[2002)) score as our evaluation metric.

5.2 EXPERIMENTAL SETTINGS

We implemented our TMG-NMT model based on a standard Transformer Base model (Vaswani
et al., 2017). For the pre-trained cross-lingual language model, We take M-BERT trained on 104
languages as our first choice because its structure is consistent with the encoder of the Transformer.

For the encoder of the TMG-NMT, to conveniently load the parameters from M-BERT, we set the
dimension of the hidden layer as 768 and set the size of the feed-forward layer is 3072. The number
of layer and attention heads are 12 for the encoder. For the decoder of the TMG-NMT, the hidden
dimension of all layers is set to 512, and the size of the feed-forward layer is set to 2048. We employ
8 parallel attention heads. The number of layers for the decoder is 6. Sentence pairs are batched
together by approximate sequence length, and the maximum length of a sentence is limited to 100.
We use label smoothing with value 0.1 and dropout with a rate of 0.1. We use Adam (Kingma &
Ba, 2015) to update the parameters, and the learning rate was varied under a warm-up strategy with
6000 steps. Other settings of Transformer follow (Vaswani et al., 2017)).

In order to compare the performance of our proposed model more fairly, we also use the same
parameter settings to train the following two baseline systems. Our proposed models maintain the
same configuration as Transformer-Bert.

* Deep-Transformer The baseline model that encoder contains 12 layers, hidden size is set
to 512, the size of the feed-forward layer is 2048, and the number of attention head in the
encoder are 12.

* Transformer-Bert The enhanced baseline model that the encoder has the same configura-
tion with TMG-NMT. The encoder contains 12 layers, hidden size is set to 768, the size of
the feed-forward layer is 3072, and the number of attention head in the encoder are 12.

5.3 EXPERIMENTAL RESULTS

Main Results Table 1 displays the translation performance measured in terms of BLEU scores. The
results on the IWSLT15, OpenSubTitle, JRC and WMT14 indicate that every one of our proposed
TMG-NMT models improves the translation accuracy in comparison to the transformer baseline.
With respect to BLEU scores, we observe a consistent trend that the TM-gate model works bet-
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Table 2: BLEU scores when the baseline model and TMG-NMT with TM-pointer model are only
trained on WMT corpus.

Model IWSLT15S OST JRC WMT14 | Avg A
Transformer-Bert with pretrain || 39.32 22.33 5259 42776 39.25 | -
TM-pointer 41.04 2498 58.60 43.76 42.09 | +2.84

ter than the TM-concat model and TM-implicit model, while the TM-pointer model achieves the
best accuracy over all test sets. On all test sets, the TM-pointer outperforms the baseline Deep-
Transformer by 4.1 BLEU points and outperforms the other three proposed methods by 0.54~1.26
BLEU points.

compared with Enhanced baseline We also trained an enhanced transformer model (Transformer-
Bert), which has the same encoder parameters configuration as TMG-NMT. From Table 1, we can
find that as the scale of parameters increases, Transformer-Bert achieves an average gain of 1.27
BLEU points over the Deep-transformer. When we use M-BERT’s parameters to initialize the en-
coder, it further improves 0.19 BLEU points compared with Transformer-Bert. However, compared
with the enhanced baseline, the proposed TMG-NMT still achieves an average improvement of
1.38~2.64 BLEU points.

5.4 ADAPTATION

In the section, we consider a different translation scenario to NMT. In this scenario, we have a
new TM that has never been seen when training the TMG-NMT model. Or the test sets we need
to translate are a new domain, which is entirely different from the corpus for training the TMG-
NMT model. So, we need to test whether the TMG-NMT model can be adapted to any new dataset
by updating the retrieval TM database. In document-level translation tasks and online translation
services, it’s a common phenomenon that new sentence will be added continuously to the TM cache,
and should be applied immediately to translate the following sentence.

So, following (Bapna & Firatl 2019)), on the WMT training corpus, we train a baseline model and a
TMG-NMT model. Then we valid the translation performance in JRC, IWSLT15, and OpenSubTitle
test sets. We retrieval similar TM-source and TM-target from their respective training corpus when
evaluating the adaptation of The proposed TMG-NMT.

Table 2 shows the corresponding results. Note that since the model is only trained on the WMT
corpus, all test BLEU scores are lower than those shown in Table 1. The TM-pointer model sig-
nificantly outperforms the base model on all test sets and achieves an average gain of 2.84 BLEU
points. The results on three test sets indicate that the proposed methods show good adaptability to
the unknown or new domain.

6 CONCLUSION

In this paper, we have presented TMG-NMT, an effective method to encode translation memory
into NMT. Firstly, we explore a new framework that employs the universal memory encoder to
simultaneously encode the TM information and source sentence, allowing the encoder to obtain
the semantic relationship easily. Secondly, the TM-guided decoder is proposed to manipulate the
information flow from TM to NMT decoder. Especially, we incorporate the pointer-network into
the TM-guided decoder to further strengthen copying. Finally, We only use the n-gram matching
algorithm to find similar sentences, making it easier for us to obtain the training corpus of the TMG-
NMT model and expand the model’s application scenarios.

Experiments on English to French translation shows that the proposed models can significantly
improve translation quality. Further in-depth analysis demonstrate that our models show excellent
adaptability to the unknown or new domain.
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