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Abstract

Current machine learning algorithms are highly specialized to whatever it is they
are meant to do — e.g. playing chess, picking up objects, or object recognition.
How can we extend this to a system that could solve a wide range of problems?
We argue that this can be achieved by a modular system — one that can adapt to
solving different problems by changing only the modules chosen and the order in
which those modules are applied to the problem. The recently introduced ARC
(Abstraction and Reasoning Corpus) dataset serves as an excellent test of abstract
reasoning. Suited to the modular approach, the tasks depend on a set of human
Core Knowledge inbuilt priors. In this paper we implement these priors as the
modules of our system. We combine these modules using a neural-guided program
synthesis.

1 Introduction

Deep Learning has been hugely successful in recent years, with ever more impressive feats of (super)-
human level skills in object recognition [1]] and playing games [2H4]]. Can this progress continue, if
we only work with bigger models, or is there some limit in this skill acquisition? There are at least
two reasons to believe we might need a new approach:

e While a given neural network might be highly skilled in any one task, we are still far away
from a single model that could excel at a variety of tasks and generalizing beyond those that
it has been trained on (even as simple as playing Go on a bigger board size) [3].

e Training (recurrent) neural networks with gradient descent on more abstract tasks, such as
checking parity, counting or verifying which pixels are inside/outside a shape, has been
known for some time now to fail to generalize beyond the scope of the training set [6H12].
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How is that humans exhibit the ability to quickly learn new skills? The dual-process theory of
reasoning [13H15]] suggests that our abilities stem from the interaction between a fast, associative
system (similar to that of modern deep nets) and a slower symbolic system. This highly motivates
the need for a neural implementation of symbolic Al, which has seen some recent work, particularly
in the space of mathematical reasoning [[16H20]. The interaction between the two systems could be
implemented by a modular system — having small (neural) modules [21H24, [21]] capable of solving
specific problems and the ability to combine them using a neural controller. If the modules are
together capable of performing an efficient set of complete operations (for example in the sense of
being Turing universal), we would expect such a system to be capable of solving general tasks. This
is the setting of neurally-guided program synthesis [25H28]], which we follow in this paper.

To evaluate the ability of generalizing to new tasks, we want to consider the concept of developer-
aware generalization [29] — which measures the ability to solve problems the developer of the
algorithm has not encountered before. [29] introduced the ARC (Abstraction and Reasoning Corpus)
dataset — a set of 1Q-like tasks that are all unique — each task consists of 2-4 training examples and
one or more test examples. Importantly, the tasks never repeat and depend on a set of human Core
Knowledge inbuilt priors (such as the notion of objectness, simple arithmetic abilities and geometrical
knowledge). This is a highly challenging dataset, with a hard-coded brute force Kaggle-competition
winning solution achieving only ~ 20% performance on a hidden test set [30].

In this paper, we adapt the newly introduced Dreamcoder program synthesis framework to solving
the ARC dataset, with the modules of our system (some hard-coded, some in the form of neural
nets) given by the set of core priors identified in [29] . We show that such a system is capable of
generalizing by learning new primitives, going beyond the limitations of its initial knowledge. We
further show that using neural guidance, we can exponentially reduce the search space of programs,
from O(n!) programs down to only O(n).

1.1 Introduction to Dreamcoder

The foundation of our modular approach is Dreamcoder, a recent program synthesis approach well
suited to the ARC dataset [31]]. Dreamcoder represents modules as functional programs. As it solves
tasks, it learns new modules through "compression,” a process which distills higher-level modules
out of existing task solutions. This allows Dreamcoder to solve new tasks that it would not have been
able to solve with its original library. Dreamcoder also trains a neural network to learn to recognize
which modules are most likely to solve a given task. Together, compression and neural-guided
synthesis allow Dreamcoder to gradually acquire expertise in an area. For example, it rediscovers
laws of classical physics (including Newton’s and Coulomb’s laws) from much simpler modules, by
compositionally building on concepts from those learned earlier.

As a simple example, given only an addition module, Dreamcoder can learn to solve multiplication
tasks through repeated addition. Then, during "compression," it refactors these multiplication
programs to express them in terms of a higher-level multiplication module. This new module can be
used to solve more difficult tasks such as calculating factorials. Here, we build off of Dreamcoder to
solve the ARC dataset, by providing it with the human priors identified in [29]] as the basic modules.

2 Modules & Program Synthesis

2.1 Enabling Generalization through Compression

The compression component of Dreamcoder is crucial to our program synthesis approach. After each
iteration of attempting to solve ARC tasks, our agent looks at all of the correct programs, notices
structures that were similar between different solved programs, and then re-writes new, higher-level
programs based on lower-level programs. Compression enables our agent to learn new techniques
and behaviors based on the tasks it is solving, rather than being limited to the tools the developer
provided it with. This type of generalization ability is at the heart of the ARC challenge — creating a
machine that quickly learns to solve problems its developers might not have anticipated.

We demonstrate how the synthesizer can create more abstract modules from existing modules in the
following experiment. First, we supply our agent with six tasks (meant to be similar to ARC tasks):
drawing a line in three different directions, and moving an object in three different directions. The
programs synthesized are the following:



(lambda (rotate_cw (draw_line_down (rotate_ccw $0)))) // draws line left
(lambda (rotate_cw (move_down (rotate_ccw $0)))) // moves object left

(lambda (rotate_ccw (draw_line_down (rotate_cw $0)))) // draws line right

(lambda (rotate_ccw (move_down (rotate_cw $0)))) // moves object right

(lambda (rotate_cw (rotate_cw (draw_line_down (rotate_cw (rotate_cw $0)))))) // draws line up
(lambda (rotate_cw (rotate_cw (move_down (rotate_cw (rotate_cw $0)))))) // moves object up
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(a) Training data for drawLineLeft task  (b) Training data for moveObjectLeft task
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directions, the refactoring and compression process results in about ten new modules. Three of the
generated modules are the following general "apply action in direction" programs:

(lambda (lambda (rotate_cw ($0 (rotate_ccw $1))))) // applies action left
(lambda (lambda (rotate_ccw ($0 (rotate_cw $1))))) // applies action right
(lambda (lambda (rotate_cw (rotate_cw ($0 (rotate_cw (rotate_cw $1))))))) // applies action up

Thus, instead of our agent developing tunnel-vision and just becoming more and more suited to doing
certain kinds of trained tasks, it is able to generalize knowledge and can then apply this knowledge to
other tasks completely unrelated to drawing lines or moving objects.

2.2 Enabling generalization on ARC symmetry tasks

In a second experiment, we demonstrate how compression-based learning enables developer-aware
generalization on the ARC dataset. We provide Dreamcoder with a set of five grid-manipulation
modules — flipping vertically with vertical_£1ip, rotating clockwise with rotate_cw, overlaying
two grids with overlay, stacking two grids vertically with stack_vertically, and getting the
left half of a grid with left_half. We then train our agent on a subset of 36 ARC training tasks
involving symmetry over five iterations of enumeration and compression. During each iteration, our
agent attempts to solve all 36 tasks by enumerating possible programs for each task. It then runs
compression to create new modules. During the next iteration, the agent tries to solve all tasks again
within the same amount of time but equipped with the new modules. In this experiment, our agent
solves 16 tasks before any training. After one iteration and new modules, it solves 17 in the same
amount of time. After another, it solves 19 tasks, and after the final iteration, it solves 22.

After each iteration, our agent learns new modules which help it solve tasks that were previously
too difficult. Thus, the Dreamcoder compression framework enables our agent to learn interpretable,
compositional modules not provided by the developer, such as flipping horizontally, rotating counter-
clockwise, and stacking grids horizontally. It uses these new modules to solve progressively harder
tasks. The most difficult tasks solved involve mirroring the input grid four ways, requiring a
synthesized program which is extremely long when expressed in terms of the original modules.

This experiment shows a promising path towards the developer-aware generalization required to
succeed on the ARC dataset. In order to solve unknown tasks in the test set, our agent will need
to learn from the tasks themselves. As shown in this experiment, Dreamcoder is able to learn new
concepts based on tasks given, which enable it to solve more difficult tasks.

Action Code

mirror across diagonal #(lambda (rotate_cw (vertical flip $@)))

rotate 180 degrees #(lambda (rotate_cw (rotate_cw (input $@))))

flip horizontally #(lambda (rotate_cw (rotate_cw (#(lambda (vertical _flip (input $0))) $@))))
rotate counterclockwise #(lambda (rotate_cw (#(lambda (rotate_cw (rotate_cw (input $8)))) $@)))
stack grids horizontally #(lambda (lambda (#(lambda (rotate_cw (vertical_flip $0))) (stack_vertically

(#(lambda (rotate_cw (#(lambda (vertical flip (input $0))) $0))) $1) (#(lambda
(rotate_cw (vertical_flip $8))) $@)))))

Figure 2: Useful actions learned in the process of solving symmetry tasks. Pound signs represent
new modules. New modules may rely on others for construction; e.g. to stack grids horizontally, we
reflect each input diagonally, stack vertically, and reflect the vertical stack diagonally.



lambda (stack_vertically (#(lambda (lambda (#(lambda (lambda
(#(lambda (rotate_cw (vertical_flip $6))) (stack_vertically
(#(lambda (rotate_cw (#(lambda (vertical flip (input $@))) $0)))
$1) (#(lambda (rotate_cw (vertical_flip $0))) $0))))) $0 (#(lambda
(rotate_cw (rotate_cw (#(lambda (vertical flip (input $0))) $0))))
$1)))) $@ $8) (vertical_flip (#(lambda (lambda (#(lambda (lambda
(#(lambda (rotate_cw (vertical flip $0))) (stack_vertically
(#(lambda (rotate_cw (#(lambda (vertical_flip (input $8))) $6)))
$1) (#(lambda (rotate_cw (vertical_flip $0))) $0))))) $@ (#(lambda
(rotate_cw (rotate_cw (#(lambda (vertical_flip (input $8))) $8))))
$1)))) $e $e))))

Figure 3: One of the four-way mirroring tasks and the program discovered that solves it. The program
was discovered only after four iterations of enumeration and compression.

2.3 Neural-guided synthesis

Guiding program enumeration with a neural network is a commonly used program synthesis tech-
nique to speed up search, and is included in Dreamcoder’s synthesis approach. We showcase the
appropriateness of this approach for the ARC dataset by comparing neural-guided synthesis with
brute-force enumeration on a set of artificial ARC-like tasks involving sorting blocks of various sizes.
Training a neural network improves the space of possible programs considered for a given task from
O(n!) to roughly O(n) for a given program length. The network outputs a distribution over the set of
modules using a convolutional network over the input/output grids. Doing so exponentially speeds up
discovery of task solutions, as shown in the figure below.
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Figure 4: Using a neural net to guide synthesis exponentially improves enumeration time. Note: for
program solution length 8, brute force did not complete in a reasonable time.

3 Discussion

It is useful to compare the learning done in our approach to that done by neural networks. Neural
networks can also learn new concepts from training examples, but their internal representation lacks
structure which allows them to apply learned concepts compositionally to other tasks. In contrast,
modules learned via compression, represented as programs, can naturally be composed and extended
to solve harder tasks, while reusing modules between tasks. This constitutes a learning paradigm
which we view as essential to human-like reasoning.

Even so, there are aspects of neural network functionality we can take advantage of. Some human
priors such as object detection and denoising might be best implemented through neural networks
rather than as functional programs. Incorporating neural modules into program synthesis would allow
us to benefit from advantages of neural networks, while also benefiting from the advantage of writing
modules as programs. This is an important next step of our work. Furthermore, the current neural
network that guides program synthesis is currently limited to a bigram distribution over the library.
In practice, humans use more sophisticated reasoning when determining the solution to a task, and
we would like to incorporate such reasoning into our agent’s approach to ARC.

We believe our approach is particularly well-suited to the ARC dataset, which features various
symbolic operations combined in varying levels of difficulty, as exemplified in the symmetry tasks
which increase in difficulty. In addition, the use of a hidden test set to measure performance means
that a successful ARC agent will have to be able to learn concepts beyond what it is given by the
developer. Existing approaches to ARC involve carefully crafting a static library of modules which
allows difficult programs to be enumerated easily. These approaches are an important baseline, but
do not exhibit any sort of learning, unlike the approach here.



Figure 5: Left: 2 tasks involving denoising. Right: 2 tasks requiring more sophisticated reasoning.
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