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ABSTRACT

Here, we show that the robust overfitting shall be viewed as the early part of an
epoch-wise double descent — the robust test error will start to decrease again
after training the model for a considerable number of epochs. Inspired by our
observations, we further advance the analyses of double descent to understand
robust overfitting better. In standard training, double descent has been shown to
be a result of label flipping noise. However, this reasoning is not applicable in
our setting, since adversarial perturbations are believed not to change the label.
Going beyond label flipping noise, we propose to measure the mismatch between
the assigned and (unknown) true label distributions, denoted as implicit label noise.
We show that the traditional labeling of adversarial examples inherited from their
clean counterparts will lead to implicit label noise. Towards better labeling, we
show that predicted distribution from a classifier, after scaling and interpolation,
can provably reduce the implicit label noise under mild assumptions. In light of
our analyses, we tailored the training objective accordingly to effectively mitigate
the double descent and verified its effectiveness on three benchmark datasets.

1 INTRODUCTION

In adversarial training, a typical phenomenon is that after a certain training epoch, the robust test
error will start to increase constantly with further training, despite the robust training error continues
to decrease (Rice et al., 2020). This phenomenon, known as robust overfitting, is believed to be
separated from double descent (Belkin et al., 2019) in the literature (Rice et al., 2020).
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Figure 1: Robust overfitting can be viewed
as an early part of the epoch-wise double de-
scent. Here we employ PGD training (Madry
et al., 2018) on CIFAR-10 (Krizhevsky, 2009)
with Wide ResNet (WRN) (Zagoruyko & Ko-
modakis, 2016) and a fixed learning rate.

Here, we find that robust overfitting shall be viewed
as the early part of an epoch-wise double de-
scent (Nakkiran et al., 2020). As shown in Figure 1,
for relatively large models, the robust test error in-
creases only transiently and will eventually decrease
again after a considerable number of training epochs.
Moreover, we observe consistent and similar patterns
across various training settings (e.g., different sample
sizes, optimizers, learning rate schedulers, and neural
architectures), which further verifies our intuition on
the connection between the robust overfitting and the
double descent (See Appendix B.1).

Inspired by this observation, we further analyze the
epoch-wise double descent to better understand the
robust overfitting. In standard training, the double
descent is shown to be related to the label flipping
noise (Nakkiran et al., 2020; Yang et al., 2020b).
However, adversarial perturbations are believed to
not change underlying labels, which is further con-
firmed empirically from our manual inspection. Therefore, the popular label flipping noise explanation
is not applicable here. On the other hand, it is reasonable to believe that adversarial perturbation
distorts the label distribution since the examples do become more ambiguous after perturbation.
Thus, we focus on the implicit label noise which measures the mismatch between the assigned label
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distribution and (unknown) true label distribution. Extensive analyses of such implicit label noise
reveal the intriguing dependency of robust overfitting on perturbation size (Dong et al., 2021b) and
data quality (Dong et al., 2021a).

Guided by our analyses, we design a theoretically-grounded method to mitigate the robust overfitting.
The key idea is to resort to an alternative labeling of the adversarial examples. We show that the
predictive label distribution of a probabilistic classifier adversarially trained as usual, but after being
properly scaled and interpolated, can be utilized as a better labeling of the adversarial examples and
provably reduce the implicit label noise. This echoes the recent empirical practice of incorporating
knowledge distillation (Hinton et al., 2015) into adversarial training (Chen et al., 2021). While
previous works intuitively select fixed scaling and interpolation parameters for knowledge distillation,
we show that it is possible to fully unleash the potential of knowledge distillation by automatically
determining the set of parameters that maximally reduces the implicit label noise with a strategy
similar to confidence calibration (Guo et al., 2017). Such strategy can further mitigate robust
overfitting to a minimal amount without additional human tuning effort. Extensive experiments on
different datasets, training methods, neural architectures and robustness evaluation metrics verify the
effectiveness of our method.

In summary, our findings and contributions are as follows.

• We show that robust overfitting shall be viewed as the early part of an epoch-wise double descent,
extending the common belief in adversarial training.

• We show that double descent in adversarial training may originate from the implicit label noise
introduced by improper labeling of adversarial examples in adversarial training practice.

• We show an alternative labeling of the adversarial examples can be established to provably
reduce the implicit label noise and mitigate the robust overfitting.

The remainder of this paper is organized as follows. In Section 2, we briefly review the existing
works that explore robust overfitting and double descent. In Section 3, we theoretically explore the
origin of double descent in adversarial training from an implicit label noise perspective. In Section 4,
we propose to mitigate the double descent in adversarial training by alternative labeling based on
our understanding. Section 5 demonstrates the effectiveness of our method on realistic datasets.
Conclusions and further implications are discussed in Section 6.

2 RELATED WORK

Robust overfitting and double descent in adversarial training. Double descent refers to
the phenomenon that overfitting by increasing model complexity will eventually improve test set
performance (Neyshabur et al., 2017; Belkin et al., 2019). This appears to conflict with the robust
overfitting phenomenon in adversarial training, where increasing model complexity by training longer
will impair test set performance constantly after a certain point during training. It is thus believed in
the literature that double descent and robust overfitting are separate phenomena (Rice et al., 2020).

Towards a more complete understanding of robust overfitting, in this work, we conduct adversarial
training for exponentially more epochs than the typical practice. We find that robust overfitting shall
be viewed as the early part of an epoch-wise double descent. And increasing the model architecture
size, another way to increase the model complexity, can modulate the epoch-wise double descent
curve such that either the overfitting curve is shown, or the entire double descent curve is revealed
within the same number of training epochs as shown in Figure 1. Therefore, robust overfitting will
not go beyond modern generalization theory as an exception and should be adequately explained by
the origin of double descent such as label noise.

A recent work also considers a different notion of double descent that is defined with respect to the
perturbation size (Yu et al., 2021). Such double descent might be more related to the robustness-
accuracy trade-off problem (Papernot et al., 2016; Su et al., 2018; Tsipras et al., 2019; Zhang et al.,
2019), rather than the classic picture of double descent based on model complexity.

Understand double descent in adversarial training. In standard training, double descent is
often attributed to increased variance, with label noise being a common source. Definitions of label
noise vary in literature. Theoretically-grounded analyses of double descent focus on additive label
noise (Advani & Saxe, 2020; Mei & Montanari, 2019; Hastie et al., 2019; Belkin et al., 2020; d’Ascoli
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et al., 2020), but only applicable to regression problems. Theoretical results on double descent are
scarce on classification problems, with a few works introducing noise by randomly masking the
feature vector (Deng et al., 2019; Kini & Thrampoulidis, 2020). Analyses of double descent on
classification problems are more common in empirical studies, where a typical way to induce double
descent is to inject label flipping noise, namely the labels of a random fraction of training examples
are flipped to other labels (Nakkiran et al., 2020; Yang et al., 2020b). However, such a definition of
label noise cannot properly fit the scenario in adversarial training, where labels are not likely to be
flipped due to small adversarial perturbation.

To understand the double descent in adversarial training within the existing picture of double descent,
we introduce implicit label noise which is incurred by the mismatch between the assigned label
distribution and true label distribution of the adversarial example. Such label noise can be interpreted
as an instance-dependent, class dependent label noise in reference to the systematic studies on the
taxonomy of label noise (Frénay & Verleysen, 2014; Song et al., 2020), thus can be the origin of
double descent in adversarial training.

Mitigate robust overfitting. Robust overfitting hinders the practical deployment of adversarial
training methods as the final performance is often sub-optimal. Various regularization methods
including classic approaches such as `1 and `2 regularization and modern approaches such as
cutout (Devries & Taylor, 2017) and mixup (Zhang et al., 2018) have been attempted to tackle
robust overfitting, whereas they are shown to perform no better than simply early stopping the
training on a validation set (Rice et al., 2020). However, early stopping raises additional concern
as the best checkpoint of the robust test accuracy and that of the standard accuracy often do not
coincide (Chen et al., 2020), thus inevitably sacrificing the performance on either criterion. Various
regularization methods specifically designed for adversarial training are thus being proposed to
outperform early stopping, including regularization the flatness of the weight loss landscape (Wu
et al., 2020; Stutz et al., 2021), introducing low-curvature activation functions (Singla et al., 2021)
and adopting stochastic weight averaging (Izmailov et al., 2018) and knowledge distillation (Hinton
et al., 2015) (Chen et al., 2021). These methods are likely to suppress the implicit label noise, with
the self-distillation framework (i.e. the teacher shares the same architecture as the student model)
introduced by (Chen et al., 2021) as a particular example since introducing teacher’s outputs as
supervision is almost equivalent to the alternative labeling inspired by our understanding of the origin
of label noise in adversarial training.

3 DOUBLE DESCENT FROM AN IMPLICIT LABEL NOISE PERSPECTIVE

In this section, we present a novel perspective to understand the double descent in adversarial training.
All proofs in the remainder of this paper are provided in the appendix.

3.1 PRELIMINARIES

Let X ⊂ Rd define the input space equipped with a norm ‖ · ‖ : X → R
+ and Y = {1, . . . , c} define

the label space. Considering a classification problem with a training set D = {(x, y)}, where x ∈ X
is an input and y ∈ Y is its assigned label. We denote p(Y = j|x) as the distribution of the assigned
labels of x given by a group of annotators. Typically y = argmaxj p(Y = j|x). When there is no
ambiguity, we will denote p(Y = j|x) as p(y|x) with a slight abuse of notation. Let y∗ ∈ Y be
the true label of x and p(y∗|x) be its distribution, which can be given by a group of experts. Note
y∗ = argmaxj p(Y

∗ = j|x).
Assumption 3.1. We assume there is no label noise in D, namely y = y∗ and p(y|x) = p(y∗|x).
Definition 3.1 (Data quality). Given an example x ∈ X , we define its data quality as maxj p(Y

∗ =
j|x), namely the maximum class probability of the true label distribution.
Assumption 3.2. We assume the original clean dataset D contains mostly high-quality data, namely
maxj p(Y

∗ = j|x) ≈ 1.

We now briefly review adversarial training. Let f(·; θ) : X → Y be a probabilistic classifier and
f(·; θ)j be its j-th class probability. Adversarial training can be viewed as an data augmentation
technique that trains the classifier f on a set of adversarial examples Dδ = {(xδ, yδ)}, namely

θ∗ = argmin
θ

EDδ
`(f(xδ; θ), yδ). (1)
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Figure 2: The illustration of the origin of implicit label noise in adversarial training. The traditional
adversarial label introduces the implicit label noise by inducing a distribution mismatch between the
assigned label distribution and true label distribution of the adversarial example. Our rectified model
probability as an alternative labeling can provably reduce this distribution match.

Here, xδ ≡ x+ δ is the adversarial example of x produced by the inner maximization, where

δ = argmax
δ,‖δ‖≤ε

`(f(x+ δ; θ), y), (2)

and yδ ∈ Y is the assigned label of xδ . Finally, we denote y∗δ ∈ Y as the true label of xδ .
Remark 3.1. In adversarial training, it is the common practice that copies the label of a clean
example to its adversarial counterpart, namely yδ ← y and p(yδ|xδ)← p(y|x).

We denote ỹδ ≡ y and its associated distribution as the traditional adversarial label. We believe
traditional adversarial label is the key problem that induces double descent in adversarial training.

3.2 TRADITIONAL ADVERSARIAL LABEL DOES NOT INTRODUCE LABEL FLIPPING NOISE

In standard learning, it is often necessary to manually inject label noise to make the double descent
evident for modern neural architectures (Nakkiran et al., 2020; Yang et al., 2020b). We wish to
check if the traditional adversarial label produces any label flipping noise, a typical type of label
noise, namely if ỹδ 6= y∗δ for any adversarial example xδ. This is equivalent to checking if y∗ 6= y∗δ ,
since ỹδ = y by the construction of the traditional adversarial label (Remark 3.1) and y = y∗ by the
construction of our clean dataset (Assumption 3.1). Note that y∗ 6= y∗δ means the semantics of the
adversarial example is distorted significantly such that its true label is now different from the true
label of its clean counterpart.

We first visually check the adversarial examples created by the inner maximization in adversarial
training. We are specifically interested in those examples with the lowest data quality as they
are mostly likely to become label noise after perturbation. We estimate the data quality based on
model ensemble as shown in Appendix E.1. One can find that the adversarial counterparts of those
low-quality examples still match their original labels, albeit being slightly more ambiguous.

We have also found some evidence from the literature. Yang et al. (2020a) draw the same conclusion
by studying the distance between examples in the input space. In the CIFAR-10 training set, they
found that the minimum distance between any two examples from two different classes respectively
is around 50/255 in terms of `∞ norm, while the perturbation radius typically used in adversarial
training is around 8/255, which is significantly smaller. It is thus reasonable to claim that a significant
amount of label flipping noise will not be produced by the inner maximization, and subsequently it
cannot explain the double descent observed in adversarial training.

3.3 TRADITIONAL ADVERSARIAL LABEL INTRODUCES IMPLICIT LABEL NOISE

Although traditional adversarial label is unlikely to directly produce label flipping noise, we show
that it can produce label noise implicitly.

An adversarial example often contains salient characteristics of classes other than the original label
from human perspective (Tsipras et al., 2019; Ilyas et al., 2019). This implies that the true label
distribution of an adversarial example is likely to be different from its clean counterpart, which means
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p(y∗δ |xδ) 6= p(y∗|x). Note this will not conflict with y∗δ = y∗ as discussed in Section 3.2, since the
latter only implies argmaxj p(Y

∗
δ = j|xδ) = argmaxj p(Y

∗ = j|x).
Now we show the traditional adversarial label is improper in terms of the label distribution. As
illustrated in Figure 2, we have p(ỹδ|xδ) = p(y|x) by Remark 3.1 and p(y|x) = p(y∗|x) by
Assumption 3.1, which together with the effect of adversarial perturbation p(y∗δ |xδ) 6= p(y∗|x)
imply that p(ỹδ|xδ) 6= p(y∗δ |xδ). This means there is a distribution mismatch between the true label
distribution and the assigned label distribution of the adversarial example. Such distribution mismatch
introduces implicit label noise in the training set Dδ employed in adversarial training.
Definition 3.2 (Implicit label noise). Given an example x ∈ X , we define the implicit label noise as
the probability that its assigned label 1 is different from its true label, namely p(Y 6= Y ∗|x).
Remark 3.2. Implicit label noise is equivalent to instance-dependent and class-dependent label
noise, since p(Y 6= Y ∗|x) = 1 −

∑
j p(Y = j|Y ∗ = j, x)p(Y ∗ = j|x), and p(Y 6= j|Y ∗ =

j, x) = 1 − p(Y = j|Y ∗ = j, x) is a typical definition of label noise. It can easily seen that if
p(Y 6= Y ∗|x) > 0, p(Y 6= j|Y ∗ = j, x) > 0 for some j.

Before showing the connection between the distribution mismatch and the implicit label noise, we
need to quantify the distribution mismatch first. Here we adopt the total variation distance.
Definition 3.3 (Total variation (TV) distance). Let J be a subset of the label sample space Y . For
two discrete probability distributions p(y) and p(y′) where y, y′ ∈ Y , the total variation distance
between them can be defined as

‖p(y)− p(y′)‖TV = max
J

∣∣∣∣∣∣
∑
j∈J

p(y = j)−
∑
j∈J

p(y′ = j)

∣∣∣∣∣∣ (3)

We are now ready to present our main result.
Theorem 3.1 (Traditional adversarial label incurs implicit label noise). The implicit label noise
incurred by the distribution mismatch between the traditional adversarial label and the true label of
the adversarial example is lower-bounded, namely

p(ỹδ 6= y∗δ |xδ) ≥ ‖p(ỹδ|xδ)− p(y∗δ |xδ)‖TV = ‖p(y∗|x)− p(y∗δ |xδ)‖TV . (4)

An informal proof can be sketched from a frequentist’s view and help the understanding of implicit la-
bel noise. Say there areM identical copies of xδ in the training setDδ , with their true labels and tradi-
tional adversarial labels distributing according to p(y∗δ |xδ) and p(ỹδ|xδ), respectively. The number of
copies that have the same true label and assigned label is M

∑
j min{p(Ỹδ = j|xδ), p(Y ∗δ = j|xδ)}.

The fraction of label noise exists in Dδ is thus 1 −
∑
j min{p(Ỹδ = j|xδ), p(Y ∗δ = j|xδ)} =

‖p(ỹδ|xδ)− p(y∗δ |xδ)‖TV by the definition of the total variation distance.

3.4 DEPENDENCE OF IMPLICIT LABEL NOISE IN ADVERSARIAL TRAINING

We now show the implicit label noise in adversarial training depends on the perturbation size and the
data quality, which will subsequently affect the double descent curves.

We consider optimal adversarial perturbation for simplicity, which is defined as

δ∗ = argmax
δ,‖δ‖≤ε

`(f∗(x+ δ; θ), y), (5)

where f∗(·) denotes the optimal probabilistic classifier such that f∗(x) = p(y∗|x). With ` being the
cross-entropy loss, the above equation can be rewritten as

δ∗ = argmin
δ,‖δ‖≤ε

f∗(x+ δ; θ)y∗ , (6)

which implies the optimal perturbation will reduce the probability mass of the true label. With the
optimal adversarial perturbation, the minimum implicit label noise can be solved as follows.

1Note here the assigned label is a random variable rather than an outcome. See Theorem 3.1 for a better
understanding of implicit label noise.
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Theorem 3.2 (Minimum implicit label noise under optimal perturbation). Assume the true label
distribution p(y∗|x) is locally convex around x and can be asymptotically described as

‖∇x p(Y ∗ = j|x)‖ ∝ 1− p(Y ∗ = j|x), p(Y ∗ = j|x)→ 1 (7)
we have

min p(ỹδ 6= y∗δ |xδ) ∝ ε(1−max
j
p(Y ∗ = j|x)),

where min means the lower bound of the minimum label noise.

In Appendix A.1, we show that Assumption (7) holds true for a Gaussian mixture model. The above
theorem shows that, when the data quality of the clean example is relatively high, the implicit label
noise introduced by adversarial perturbation is proportional to (1) the perturbation radius (2) the data
quality. We conduct controlled experiments and empirically verify this correlation in Appendix B.2.

Interestingly, the above analysis implies that if the perturbation does not reduce the probability mass
of the true label, it will not cause implicit label noise even with an extremely large perturbation radius.
We demonstrate this in detail and empirically verified it for Gaussian noise in Appendix B.3.

3.5 IMPLICIT LABEL NOISE INDUCES DOUBLE DESCENT
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Figure 3: Without explicitly injecting label
noise, standard training can also produce dou-
ble descent if conducted on a dataset aug-
mented by fixed and small adversarial per-
turbation, which can be properly explained
by our implicit label noise perspective. De-
tailed experiment settings can be found in
Appendix F.3.

In standard training, the effect of label noise on dou-
ble descent has been rigorously studied based upon
both analytical settings (Mei & Montanari, 2019;
Hastie et al., 2019; Deng et al., 2019; Belkin et al.,
2020) and bias-variance analyses (Jacot et al., 2020;
Yang et al., 2020b; d’Ascoli et al., 2020). Since im-
plicit label noise is just a special case of label noise
(Remark 3.2), and adversarial training can be viewed
as standard training on an augmented dataset (Equa-
tion (1)), it can be inferred that implicit label noise
will increase the variance and make an evident dou-
ble descent in adversarial training. To demonstrate
this in a straightforward way, in Figure 3 we employ
standard training on a dataset augmented by fixed ad-
versarial perturbation and show it can indeed produce
double descent.

Since implicit label noise modulates the double de-
scent, and by Theorem 3.2 it depends on the pertur-
bation radius and data quality, the double descent in
adversarial training should strongly correlate with the
perturbation radius and data quality. Indeed, it has
been observed respectively that small perturbation radius will not induce robust overfitting (Dong
et al., 2021b), and high-quality data will not induce robust overfitting (Dong et al., 2021a).

4 MITIGATE DOUBLE DESCENT IN ADVERSARIAL TRAINING

In this section, we focus on suppressing the implicit label noise in adversarial training to mitigate
double descent from both theoretical and practical perspectives. Since the implicit label noise is
incurred by the traditional adversarial label which improperly labels the adversarial example and
causes a distribution mismatch between its assigned label and true label, we wish to find an alternative
label (distribution) for the adversarial example to reduce such distribution mismatch.

4.1 RECTIFY MODEL PROBABILITY TO REDUCE DISTRIBUTION MISMATCH

We show that it is possible to reduce the distribution mismatch by utilizing the predictive probability
of a classifier trained on traditional adversarial labels, which we will refer as the model probability for
simplicity. We now provide a theoretical guarantee to show that, with temperature scaling (Hinton
et al., 2015; Guo et al., 2017) enabled in the softmax function, model probability induces a distribution
mismatch provably smaller than the traditional adversarial label.
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Theorem 4.1 (Model probability induces smaller distribution mismatch than the traditional adver-
sarial label). Let f(x; θ, T ) denote the predictive probability of a hypothesis classifier scaled by
temperature T , namely

f(x; θ, T )j =
exp(zj/T )∑
j exp(zj/T )

,

where z is the logits of the classifier from x.

Let xδ be an adversarial example correctly classified by a classifier f , i.e. argmaxj f(xδ; θ)j = y∗δ ,
then there exists T , such that

‖f(xδ; θ, T )− p(y∗δ |xδ)‖TV ≤ ‖p(ỹδ|xδ)− p(y∗δ |xδ)‖TV .

One possible way to further reduce the distribution mismatch is to interpolate between the model
probability and the traditional adversarial label.
Theorem 4.2 (Interpolation can further reduce the distribution mismatch). Let xδ be an adver-
sarial example incorrectly classified by a classifier f , i.e. argmaxj f(xδ; θ, T )j 6= y∗δ . Assume
maxj p(Y

∗
δ = j|xδ) ≥ 1/2, then there exists an interpolation ratio λ, such that

‖λ · f(xδ; θ, T ) + (1− λ) · p(ỹδ|xδ)− p(y∗δ |xδ)‖TV ≤ ‖f(xδ; θ, T )− p(y∗δ |xδ)‖TV .

Note the above theorem focus on incorrectly classified examples and thus can be regarded as a
complement to Theorem 4.1.

As a summarization, to reduce the distribution mismatch, we propose to use the following distribution
as the assigned label of the adversarial example in adversarial training instead of the traditional
adversarial label.

pθ;T,λ(yδ|xδ) = λ · f(xδ; θ, T ) + (1− λ) · p(ỹδ|xδ), (8)
We refer this label distribution as the Rectified model probability.

In Appendix D, we show that the optimal hyper-parameters (i.e. T and λ) of almost all training
examples concentrate on the same set of values by empirically studying on a synthetic dataset with
known true label distribution. Therefore it is possible to find an universal set of hyper-parameters that
reduce the distribution mismatch for all adversarial examples.

4.2 DETERMINE THE OPTIMAL TEMPERATURE AND INTERPOLATION RATIO

The set of temperature and interpolation ratio in the rectified model probability that maximally
reduces the distribution mismatch is not straightforward to find as the true label distribution of the
adversarial example is unknown in reality. Fortunately, given a sufficiently large validation dataset as
a whole, it is possible to measure the overall distribution mismatch in a frequentist’s view without
knowing the true label distribution of every single example. A popular metric adopted here is the
negative log-likelihood (NLL) loss, which is known as a proper scoring rule (Gneiting & Raftery,
2007) and is also employed in the confidence calibration of deep networks (Guo et al., 2017). By
Gibbs’s inequality it is easy to show that the NLL loss will only be minimized when the assigned
label distribution matches the true label distribution (Hastie et al., 2001), namely

−E(xδ,y∗δ )∈D
val
δ
log pθ;T,λ(Yδ = y∗δ |xδ) ≥ −Ep(y∗δ )∼Dval

δ
p(y∗δ |xδ) log p(y∗δ |xδ). (9)

And here y∗δ is known since the adversarial example should share the same argmax label with its
clean counterpart as shown in Section 3.2.

Therefore, we propose to find the optimal T and λ in Equation (8) as

T, λ = argmin
T,λ

−E(xδ,y∗δ )∈D
val
δ
log pθ;T,λ(Yδ = y∗δ |xδ) (10)

One may note that Equation (10) cannot be directly optimized since the traditional adversarial label
is only defined on the example in the training set and cannot be simply generalized to the validation
set. A reasonable solution is using the nearest neighbour classifier to find the closest traditional
adversarial label for every example in the validation set. However, to speed up the optimization we
propose to employ the classifier overfitted by the traditional adversarial labels on the training set
as an surrogate (see Appendix E.2), which works well in practice. Such process incurs almost no
additional computation as we simply obtain the logits of a surrogate classifier on the validation set.
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4.3 RECTIFIED MODEL PROBABILITY MITIGATES DOUBLE DESCENT

We now work on a realistic dataset (CIFAR-10) to demonstrate the rectified model probability
proposed in Equation (8) can effectively mitigate the robust overfitting, or equivalently the epoch-wise
double descent in adversarial training. The outer minimization of adversarial training (Equation (1))
now becomes

θ∗ = argmin
θ

EDδ
`
(
f(xδ; θ), pθTrad;T,λ(yδ|xδ)

)
, (11)

where θTrad denotes the parameters of a classifier trained on the traditional adversarial label beforehand.
The details of the experimental setting are available in Appendix F.1.

As shown in Figure 4, adversarial training on rectified model probability can best mitigate the
robust overfitting when the temperature T and interpolation ratio λ are optimal. Such optimal
hyperparameters perfectly aligns with the ones automatically determined by Equation (10).
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Figure 4: (Upper) NLL loss obtained on the validation set for different T and λ. (Bottom) Robust test
accuracy at the best and last checkpoint by adversarial training with the rectified model probability
with different T and λ. λ = 0.8 for grid search on T (Left) and T = 2 for grid search on λ (Right).
Orange dashed lines in the left and right columns indicate the temperature and the interpolation ratio
automatically determined by Equation (10), respectively.

5 EXPERIMENTS

Experiment setup. We consider three datasets, CIFAR-10, CIFAR-100 (Krizhevsky, 2009) and
Tiny-ImageNet (Le & Yang, 2015). We consider robustness against `∞ norm-bounded adversarial
attack with perturbation radius 8/255, and employ AutoAttack (Croce & Hein, 2020) for reliable
evaluation. We conduct PGD training on pre-activation ResNet-18 (He et al., 2016) in this section.
Appendix C.1 includes results on additional adversarial training methods (e.g., TRADES (Zhang et al.,
2019), FGSM (Goodfellow et al., 2015)), neural architectures (e.g., VGG (Simonyan & Zisserman,
2015), WRN) and evaluation metrics (e.g., PGD-1000, Square Attack (Andriushchenko et al., 2020),
RayS (Chen & Gu, 2020)). More setup details can be found in Appendix F.

Results & Discussions. Our method is essentially adversarial training with self-distillation
equipped with an algorithm automatically searching for the optimal hyper-parameters, which we now
denote as KD-AT-Auto. We compare KD-AT-Auto with two baselines: regular adversarial training
on traditional adversarial label (AT), and adversarial training combined with self-distillation (KD-AT)
with fixed temperature T = 2 and interpolation ratio λ = 0.5 as suggested by Chen et al. (2021).

As shown in Figure 5, our method can effectively mitigate robust overfitting for all datasets, with
both standard accuracy (SA) and robust accuracy (RA) constantly increasing throughout training.
In Table 1, we measure the difference between the RA at the best checkpoint (Best) and at the last
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Figure 5: Our method can effectively mitigate robust overfitting for different datasets.

checkpoint (Last) to clearly show the overfitting gap. Our method can reduce the overfitting gap to
less than 0.3% for all datasets. One may note that self-distillation with fixed hyper-parameters is
in fact inferior in terms of reducing robust overfitting, while its effectiveness can be significantly
improved with the optimal hyper-parameters automatically determined by our method, which further
verifies our understanding of robust overfitting.

Compared with self-distillation with fixed hyper-parameters, our method can also boost both RA and
SA at the best checkpoint for all datasets.

Our method can further be combined with orthogonal techniques such as Stochastic Weight Averaging
(SWA) (Izmailov et al., 2018) and additional standard teachers as mentioned in previous work (Chen
et al., 2021) to achieve better performance. More results and discussion can be found in Appendix C.2.

Dataset Setting T λ
Robust Acc. (%) Standard Acc. (%)

Best Last Diff. Best Last Diff.

CIFAR-10
AT - - 47.35 41.42 5.93 82.67 84.91 -2.24
KD-AT 2 0.5 48.76 46.33 2.43 82.89 85.49 -2.60
KD-AT-Auto 1.47∗ 0.8∗ 49.05 48.80 0.25 84.26 84.47 -0.21

CIFAR-100
AT - - 24.79 19.75 5.04 57.33 57.42 -0.09
KD-AT 2 0.5 25.77 23.58 2.19 57.24 60.04 -2.80
KD-AT-Auto 1.53∗ 0.83∗ 26.36 26.24 0.12 58.80 59.05 -0.25

Tiny-ImageNet
AT - - 17.20 15.40 1.80 47.72 47.62 0.10
KD-AT 2 0.5 17.86 17.18 0.68 47.73 48.28 -0.55
KD-AT-Auto 1.23∗ 0.85∗ 18.29 18.39 -0.10 47.46 47.56 -0.10

Table 1: Performance of our method on different datasets. ∗ denotes the hyper-parameter automatically
determined by our method.

6 CONCLUSION AND DISCUSSIONS

In this paper, we extend the understanding of robust overfitting and show that it is the early part of an
epoch-wise double descent in adversarial training. Our further analyses show that the double descent
may originate from the implicit label noise introduced by the improper labeling of the adversarial
examples. Based on our understanding, we propose an alternative labeling of adversarial examples
by rectifying model probability, which can effectively mitigate robust overfitting without any manual
hyper-parameter tuning.

By showing robust overfitting and epoch-wise double descent are in fact the same phenomena, our
work eases the difficulty in understanding overfitting in modern generalization theory. Existing
theories on double descent can be readily applied to adversarially robust learning setting, and
potentially consolidate the theoretical grounding of robust learning.

Beyond the double descent in adversarial training, our definition of implicit label noise from a
distribution mismatch perspective may also exist in a variety of scenarios, especially in real-world
tasks where labeling is often complicated and ambiguous. Our method to rectify such label noise
should thus be applicable as well. This would be an interesting future work.
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A PROOFS

A.1 PROOFS AND REMARKS FOR IMPLICIT LABEL NOISE

Total variation distance.

For two discrete probability distributions p(y) and p(y′) where y, y′ ∈ Y , the total variation distance
between them can be equally defined as

‖p(y)− p(y′)‖TV = max
J

∣∣∣∣∣∣
∑
j∈J

p(y = j)−
∑
j∈J

p(y′ = j)

∣∣∣∣∣∣
=

1

2

∑
j

|p(y = j)− p(y′ = j|)|

Proof of Theorem 3.1. This theorem can be easily proven by the coupling inequality.

Proof of Theorem 3.2.

Proof. For simplicity, we consider the adversarial perturbation generated by FGSM. Other adversarial
perturbation can be viewed as a Taylor series of such perturbation.

δ∗ ≈ −ε ∇x maxj p(y
∗ = j|x)

‖∇x maxj p(y∗ = j|x)‖
, (12)

Now let j∗ = argmax p(y = j|x). Recall f∗(x) = p(y∗|x), f∗(xδ) = p(y∗δ |xδ) and p(yδ|xδ) =
p(y∗|x). We have

min p(yδ 6= y∗δ |xδ) = ‖p(y∗|x)− p(y∗δ |xδ)‖TV

=
1

2

∑
j

|p(y∗ = j|x)− p(y∗δ = j|xδ)| TV distance

≥ 1

2
|p(y∗ = j∗|x)− p(y∗δ = j∗|xδ)|

=
1

2
|f∗(x)j∗ − f∗(x+ δ)j∗ |

=
1

2
[f∗(x)j∗ − f∗(x+ δ)j∗ ] Adversarial perturbation

=
1

2

[
−∇xf∗(x)j∗ · δ −

1

2
δT∇2f∗(z)j∗δ

]
≥ 1

2

[
−∇xf∗(x)j∗ · δ −

M

2
‖δ‖22

]
Local convexity

≥ 1

2

[
ε
‖∇xf∗(x)j∗‖22
‖∇xf∗(x)j∗‖

− M

2
‖δ‖22

]
≥ 1

2

[
ε‖∇xf∗(x)j∗‖2 −

M

2
‖δ‖22

]
≥ 1

2

[
ε‖∇xf∗(x)j∗‖∞ −

M

2
‖δ‖22

]
,

where the last two inequalities leverage the fact that ‖ · ‖∞ ≤ ‖ · ‖2.

With the assumption

‖∇x f∗(x)j‖ ∝
{
1− f∗(x)j , f∗(x)j → 1

f∗(x)j , f∗(x)j → 0,
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we then have
min p(ŷ 6= y|x+ δ) ∝ ε(1− p(y = j∗|x)),

where min means the lower bound of the minimum label noise.

Sanity check of Assumption 7. Here we check if Assumption 7 is reasonable by studying a
Gaussian mixture model (GMM).

The conditional distribution in a Gaussian mixture model can be formulated as

p(y = j|x) ≡ f∗(x)j =
ψjNx(µj , σj)∑
l ψlNx(µl, σl)

≡ ψjgj(x)∑
l ψlgl(x)

,

where

gl(x) =
1√

det(2πσl)
exp

[
−1

2
(x− µl)Tσ−1l (x− µl)

]
.

The gradient can be derived as

∇xf∗(x)j =
ψj∇gj(x)∑
l ψlgl(x)

− ψjgj(x)
∑
l ψl∇gl(x)

[
∑
l ψlgl(x)]

2

=
−ψjgj(x)σ−1j (x− µj)∑

l ψlgl(x)
+ ψjgj(x)

∑
l ψlgl(x)σ

−1
l (x− µl)

[
∑
l ψlgl(x)]

2

=
ψjgj(x)∑
l ψlgl(x)

[
−σ−1j (x− µj) +

∑
l σ
−1
l (x− µl)ψlgl(x)∑

l ψlgl(x)

]
= f∗(x)j

[
−σ−1j (x− µj) +

∑
l

f∗(x)lσ
−1
l (x− µl)

]

When x− µj → 0, f∗(x)j → 1 and f∗(x)l → 0, for l 6= j,

∇xf∗(x)j ≈ f∗(x)j(f∗(x)j − 1)σ−1j (x− µj)

Therefore
‖∇xf∗(x)j‖ ∝ 1− f∗(x)j

A.2 PROOFS FOR MITIGATING DOUBLE DESCENT

Proof of Theorem 4.1.

Proof. Let j∗ = argmax p(yδ = j|xδ) and thus p(yδ = j∗|xδ) ∈ [1/c, 1]. Let
g(T ) := f(xδ; θ, T )j∗ , which is a continuous function defined on [0,∞]. The condition j∗ =
argmaxj f(xδ; θ, T )j ensures that g(T ) ∈ [1/c, 1], where c is the number of classes. By the
intermediate value theorem, there exists T ∗, such that g(T ∗) = p(yδ = j∗|xδ).
Let T = T ∗, we have

‖f(xδ; θ, T )− p(y∗δ |xδ)‖TV =
1

2

∑
j

|f(xδ; θ, T )j − p(y∗δ = j|xδ)|

=
1

2

∑
j,j 6=j∗

|f(xδ; θ, T )j − p(y∗δ = j|xδ)|

≤ 1

2

 ∑
j,j 6=j∗

f(xδ; θ, T )j +
∑
j,j 6=j∗

p(y∗δ = j|xδ)


= 1− p(yδ = j∗|xδ),
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where the inequality holds by the triangle inequality.

Meanwhile, we have

‖p(ỹδ|xδ)− p(y∗δ |xδ)‖TV = ‖p(y|x)− p(y∗δ |xδ)‖TV
= ‖1(y)− p(y∗δ |xδ)‖TV

=
1

2

1− p(y∗δ = y|xδ) +
∑
j,j 6=ŷ

p(y∗δ = y|xδ)


= 1− p(y∗δ = y|xδ)
≥ 1− p(y∗δ = j∗|xδ).

Therefore, it can seen that for T = T ∗,

‖f(xδ; θ, T )− p(y∗δ |xδ)‖TV ≤ ‖p(ỹδ|xδ)− p(y∗δ |xδ)‖TV .

Proof of Theorem 4.2.

Lemma A.1. Let xδ be an example incorrectly classified by a classifier f in terms of the true label
distribution p(y∗δ = j|xδ), namely

argmax
j

f(xδ; θ, T )j 6= j∗,

where j∗ = argmaxj p(y
∗
δ = j|xδ). Assume p(y∗δ = j∗|xδ) ≥ 1/2, then

f(xδ; θ, T )j∗ ≤ p(y∗δ = j∗|xδ).

Proof. We prove it by contradiction. Assume f(xδ; θ, T )j∗ > p(y∗δ = j∗|xδ), we have
f(xδ; θ, T )j∗ > p(y∗δ = j∗|xδ) ≥ 1/2. Therefore,

f(xδ; θ, T )j ≤
∑
j,j 6=j∗

f(xδ; θ, T )j = 1− f(xδ; θ, T )j∗ < 1/2, ∀j 6= j∗,

which means f(xδ; θ, T )j < f(xδ; θ, T )j∗ , ∀j 6= j∗. This leads to j∗ = argmaxj f(xδ; θ, T )j ,
which contradicts our condition.

Now we prove Theorem 4.2

Proof. First let p(yδ|xδ) = p(y|x) ≈ 1(y). This is our assumption. But the approx here would be a
problem, we need exactly one-hot.

Let j∗ = argmaxj p(y
∗
δ = j|xδ). By Lemma A.1 we have f(xδ; θ, T )j∗ ≤ p(y∗δ = j∗|xδ) ≤ 1.

Then there exists λ∗ > 0, such that λ∗ ·f(xδ; θ, T )j∗+(1−λ∗) = p(y∗δ = j∗|xδ) by the intermediate
value theorem.
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Let λ = λ∗, we have
2 [‖λ · f(xδ; θ, T ) + (1− λ) · p(ỹδ|xδ)− p(y∗δ |xδ)‖TV − ‖f(xδ; θ, T )− p(y∗δ |xδ)‖TV ]

=2 [‖λ · f(xδ; θ, T ) + (1− λ) · 1(y)− p(y∗δ |xδ)‖TV − ‖f(xδ; θ, T )− p(y∗δ |xδ)‖TV ]

=
∑
j

|λ · f(xδ; θ, T )j + (1− λ) · 1(j = y)− p(y∗δ = j|xδ)| −
∑
j

|f(xδ; θ, T )j − p(y∗δ = j|xδ)|

=
∑
j

|λ · f(xδ; θ, T )j + (1− λ) · 1(j = y∗)− p(y∗δ = j|xδ)| −
∑
j

|f(xδ; θ, T )j − p(y∗δ = j|xδ)|

=
∑
j,j 6=j∗

|λ · f(xδ; θ, T )j − p(y∗δ = j|xδ)| −
∑
j,j 6=j∗

|f(xδ; θ, T )j − p(y∗δ = j|xδ)| − |f(xδ; θ, T )j∗ − p(y∗δ = j∗|xδ)|

≤
∑
j,j 6=j∗

|λ · f(xδ; θ, T )j − f(xδ; θ, T )j | − |f(xδ; θ, T )j∗ − p(y∗δ = j∗|xδ)|

=
∑
j,j 6=j∗

[f(xδ; θ, T )j − λ · f(xδ; θ, T )j ]− [p(y∗δ = j∗|xδ)− f(xδ; θ, T )j∗ ]

=
∑
j,j 6=j∗

[f(xδ; θ, T )j − λ · f(xδ; θ, T )j ]− [λ · f(xδ; θ, T )j∗ + (1− λ)− f(xδ; θ, T )j∗ ]

=
∑
j

f(xδ; θ, T )j − λ
∑
j

f(xδ; θ, T )j − (1− λ)

= 0.

B MORE EMPIRICAL ANALYSES

B.1 EPOCH-WISE DOUBLE DESCENT IS UBIQUITOUS IN ADVERSARIAL TRAINING

In this section, we conduct extensive experiments with different optimizers, sample sizes, model
architectures, and learning rate schedulers to verify the connection between robust overfitting and
epoch-wise double descent. The default experiment settings are listed in Appendix F.2 in detail.

Optimizer. Similar to the setting employed in Nakkiran et al. (2020), we conduct the adversarial
training using both the Adam optimizer and SGD. As already shown in Figure 1, double descent can
be observed for both optimizers, although Adam may be inferior compared to SGD.

Sample size. We randomly sample a desired number of examples without replacement from the
original training set in CIFAR-10. As shown in Figure 6, for both optimizers, increasing sample size
will shrink the area under the double descent curve, but will not significantly distort its shape. Similar
observation is also made for double descent curve under standard training (Nakkiran et al., 2020).
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Figure 6: Varying sample size will shrink the area under the epoch-wise double descent curve, but
will not significantly distort its shape.

Model capacity. We modulate the capacity of the deep model by varying the widening factor of
the Wide ResNet. To extend the lower limit of the capacity, we allow the widening factor to be less
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than 1, in which case the number of channels in each residual block is scaled similarly but rounded.
The number of channels in the first convolutional layer will be reduced accordingly to ensure the
width monotonically increasing through the forward propagation. To accelerate the training with
an extremely large model, we randomly sample a training set of size 5000 and employ the Adam
optimizer, since the sample size will not significantly distort the shape of the double descent as
shown above. Figure 7a shows that the double descent will gradually become more complete as the
model capacity increases and the model translates from under-parameterized to over-parameterized
regime (Nakkiran et al., 2020).
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(a) Similar to Figure 1 in the introduction, but in-
clude more widening factors to show the gradual
transition of the model from under-parameterized to
over-parameterized regime. The training curves are
smoothed by a window of 5.
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Figure 7: Effect of model on the epoch-wise double descent curve

Model architecture. We also experiment on model architectures other than Wide ResNet, including
pre-activation ResNet-18 (He et al., 2016) and VGG-11 (Simonyan & Zisserman, 2015). We select
these configurations to ensure approximately comparable model capacities2. As shown in Figure
7, different model architectures may produce slightly different double descent curves. The second
descent of VGG-11 in particular will be delayed due to its inferior performance compared to residual
architectures.

Learning rate scheduler. A specific learning rate scheduler may shape the robust overfitting
differently as suggested by Rice et al. (2020). We consider the following learning rate schedulers in
our experiments.

• Piecewise decay: The initial learning rate rate is set as 0.1 and is decayed by a factor of 10 at the
100th and 500th epochs within a total of 1000 epochs.

• Cyclic: This scheduler was initially proposed by Smith (2017) and has been popular in adversarial
training. We set the maximum learning rate to be 0.2, and the learning rate will linearly increase
from 0 to 0.2 for the initial 400 epochs and decrease to 0 for the later 600 epochs.

• Cosine: This scheduler was initially proposed by Loshchilov & Hutter (2017). The learning rate
starts at 0.1 and gradually decrease to 0 following a cosine function for a total of 1000 epochs.

Experiments on various learning rate schedulers show the second descent can be widely observed
except the piecewise decay, where the appearance of second descent might be delayed due to
extremely small learning rate in the late stage of training. This further demonstrates the connection
between robust overfitting and epoch-wise double descent.

B.2 DEPENDENCE OF DOUBLE DESCENT IN ADVERSARIAL TRAINING

In this section, we show that the double descent in adversarial training is conditioned on the data
quality. As models are trained on adversarial examples, data properties in adversarial training are

2WRN-28-5, pre-activation ResNet-18 and VGG-11 have 9.13×106, 11.17×106 and 9.23×106 parameters,
respectively.
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Figure 8: The effect of the learning rate scheduler on the epoch-wise double descent curve in
adversarial training. Modulating the model capacity can produce training curves with diverse
behaviors. Different model architectures may produce slightly different double descent curves. The
training curve is smoothed by moving average with a window of 5.

concerned with the quality of the clean examples, and the adversary employed to generate the
perturbation, which further depends on the perturbation radius and the number of attack iterations3.
We show that the double descent in adversarial training has a strong dependence on the data quality
and the perturbation radius, but almost no dependence on the number of attack iterations.

Perturbation radius. Overfitting has been shown to dominate in adversarial training, but rarely
appear in standard training (Rice et al., 2020). This suggests the overfitting, or more generally double
descent, is conditioned on the perturbation radius in adversarial training, since standard training and
standard accuracy can be viewed as adversarial training and robust accuracy with zero perturbation
radius, respectively. By modulating the perturbation radius, we show that such correlation is gradual.
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Figure 9: (Left) Dependence of double descent on the perturbation radius. ε = 0/255 indicates the
standard training where no double descent occurs. (Right) Dependence of double descent on the data
quality. The curves are smoothed by a window of 5 epochs to reduce overlapping.

As shown in Figure 9, the double descent emerges and exacerbates as the perturbation radius increases,
indicating a strong correlation between perturbation radius and double descent in adversarial training.
In particular, when the perturbation radius is around 4/255, a second minimum can be observed
which is equivalently good or even better than the first minimum. This again validates the strong
connection between robust overfitting and double descent, and suggests longer training can still be
helpful for adversarial training.

Data quality. Previous works have shown that some datasets such as ImageNet (Deng et al., 2009)
may produce significantly stronger robust overfitting (Rice et al., 2020). It has also been observed
that the low-quality data in the same dataset causes the robust overfitting (Dong et al., 2021a). This

3The best step size in terms of the model performance can often be determined from the combination of
perturbation radius and attack iterations (Madry et al., 2018)
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implies that the double descent in adversarial training hinges on the quality of the data. We measure
the data quality using the predictive probability of a classifier (see Appendix B.2 for details), and
sample training sets with different levels of data quality controlled by a threshold of the quality-based
rank. Figure 9 shows that as the quality of the training set degrades, the double descent gradually
emerges and exacerbates, indicating a strong correlation between the data quality and the double
descent in adversarial training. One may again note that when the quality of the training data is
relatively high, a second minimum can be observed which is equivalently good as the first minimum.

The number of attack iterations. We have shown that the double descent in adversarial training
strongly depends on the perturbation radius. In this section we conduct experiments to show whether
it also depends on the strength of the adversary.

In Figure 10, we fix the perturbation radius as 4/255 where the double descent is relatively complete
and vary the number of attack iterations of the PGD attack employed in the inner maximization. One
may find that as long as the model capacity is reasonably large, the number of attack iterations will
not significantly affect the double descent curve, both for epoch-wise one and model-wise one. From
the analysis of implicit label noise, this is easy to understand as more attack iterations will not reduce
the probability corresponding to the true label much more—it is widely observed more iterations
in PGD attack only marginally increase the attack successful rate. Consequently, the distribution
mismatch between the true label distribution and the assigned label distribution that induces the
implicit label noise will not expand significantly.
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Figure 10: Dependence of double descent on the number of attack iterations. As more iterations are
employed in the inner maximization, neither epoch-wise nor model-wise double descent changes
significantly except for an extremely small model (WRN-28-1/8). For the model-wise double descent,
only the test error at the best checkpoint is shown to avoid overlapped curves since the last checkpoint
achieves similar error as the best checkpoint in this training setting.

B.3 GAUSSIAN NOISE

One may expect adversarial training and adversarial augmentation (see Section 3.5) produce double
descent simply by perturbing the inputs, thus increasing the variance. To verify the implicit label
noise induced by a mismatch between the true label distribution and the assigned label distribution
is essential to produce double descent, we select one type of common corruption, Gaussian noise,
to perturb the image inputs. We first briefly show that Gaussian noise does not cause a distribution
mismatch.

We follow the notation introduced in Section 3.1, where δ ∈ Rd now refers to a Gaussian perturbation.
Under a 1-st order approximation of p(y|x), the mismatch between the true label distribution and
label distribution can be derived as (see proof of Theorem 3.2 in Appendix A.1)

‖p(y∗δ |xδ)− p(ỹδ|xδ)‖TV ≡ ‖p(y∗δ |xδ)− p(y|x)‖TV =
1

2

∑
j

∣∣∣∣∇xf∗(x)j · δ + 1

2
δT∇2f∗(z)jδ

∣∣∣∣
(13)

where δ ∼ N (0, σ · Id). Since the image inputs span a low-dimension subspace X and the dimension-
ality d is large (3072 for CIFAR-10), it is highly likely that δ⊥X , which means∇xf∗(x)j · δ = 0 and
δT∇2f∗(z)jδ = 0 for all j. One can also empirically verify that a Gaussian perturbation is almost
always orthogonal to the difference between any two images, while an adversarial perturbation is not.
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We now experiment on dataset perturbed by Gaussian noise and verify our intuition. Similar to
adversarial augmentation, we apply Gaussian noise to the training set only once, and then conduct
standard training on the perturbed training set. Aligned with the setting of adversarial augmentation
(See Appendix F.3), we employ Adam to train a WRN-28-5 on randomly selected 5000 examples for
1000 epochs. As shown in Figure 11, Gaussian noise with a perturbation radius as high as 80/255,
which will reduce the accuracy of a classifier to the same level as an adversarial attack will, does not
produce significant double descent. We note that similar observation has been made on common
curruption benchmark CIFAR-10-C (Hendrycks & Dietterich, 2019) in a previous work (Yang et al.,
2020b).
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Figure 11: Even with extremely high Gaussian noise corrupting the training set, no significant double
descent can be observed. This shows the input perturbation is not essential to produce double descent.

C MORE EXPERIMENT RESULTS

C.1 ADVERSARIAL TRAINING METHODS, NEURAL ARCHITECTURES AND EVALUATION
METRICS

In this section we conduct extensive experiments with different adversarial training methods, neural
architectures and robustness evaluation metrics to verify the effectiveness of our method.

Method Setting T λ
Robust Acc. (%) Standard Acc. (%)

Best Last Diff. Best Last Diff.

TRADES
AT - - 48.50 45.53 2.97 82.79 82.68 0.11
KD-AT 2 0.5 48.74 47.52 1.22 82.30 83.03 -0.73
KD-AT-Auto 1.12∗ 0.82∗ 48.75 48.39 0.36 82.44 82.80 -0.36

FGSM
AT - - 41.96 35.39 6.57 85.91 87.20 -1.29
KD-AT 2 0.5 42.82 41.61 1.21 86.69 87.93 -1.24
KD-AT-Auto 2.18∗ 0.78∗ 44.11 43.75 0.36 87.38 87.66 -0.28

Table 2: Performance of our method with different adversarial training methods.
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Architecture Setting T λ
Robust Acc. (%) Standard Acc. (%)

Best Last Diff. Best Last Diff.

VGG-19
AT - - 42.21 39.12 3.09 73.95 80.45 -6.50
KD-AT 2 0.5 43.59 42.69 0.90 74.30 77.80 -3.50
KD-AT-Auto 1.28∗ 0.79∗ 44.27 44.24 0.03 76.41 76.79 -0.38

WRN-28-5
AT - - 49.85 42.89 6.96 84.82 85.87 -1.05
KD-AT 2 0.5 51.08 48.40 2.68 85.36 86.88 -1.52
KD-AT-Auto 1.6∗ 0.82∗ 51.47 51.10 0.37 86.05 86.24 -0.19

WRN-34-10
AT - - 52.29 46.04 6.25 86.57 86.75 -0.18
KD-AT 2 0.5 53.11 50.97 2.14 86.41 88.06 -1.65
KD-AT-Auto 1.6∗ 0.83∗ 54.17 53.71 0.46 87.69 88.01 -0.32

Table 3: Performance of our method with different neural architectures.

Attacks Setting T λ
Robust Acc. (%)

Best Last Diff.

PGD-1000
AT - - 50.64 43.00 7.64
KD-AT 2 0.5 51.79 48.43 3.36
KD-AT-Auto 1.47∗ 0.8∗ 52.05 51.71 0.34

Square Attack
AT - - 53.47 48.90 4.57
KD-AT 2 0.5 54.39 52.92 1.47
KD-AT-Auto 1.28∗ 0.79∗ 55.23 55.17 0.06

RayS
AT - - 55.76 51.63 4.13
KD-AT 2 0.5 56.59 55.50 1.09
KD-AT-Auto 1.6∗ 0.82∗ 57.74 57.54 0.20

Table 4: Performance of our method under different adversarial attacks. PGD-1000 refers to PGD
attack with 1000 attack iterations, with step size fixed as 2/255 as recommended by Croce & Hein
(2020).

C.2 COMBINED WITH ADDITIONAL TECHNIQUES

Here, we show that combined with the additional techniques proposed in (Chen et al., 2021), our
method can achieve better performance.

We note that our proposed method is essentially the baseline knowledge distillation for adversarial
training with a robustly trained self-teacher, equipped with an algorithm that automatically finds its
optimal hyperparameters (i.e. the temperature T and the interpolation ratio λ). Stochastic Weight
Averaging (SWA) and additional standard teachers employed in (Chen et al., 2021) are orthogonal
contributions. KD-AT-Auto can certainly be combined with SWA and KD-Std to achieve better
performance. As shown in Table 5, on CIFAR-10, KD-AT + KD-Std + SWA (Chen et al., 2021) can
already reduce the overfitting gap (difference between the best and last robust accuracy) to almost 0,
while KD-AT-Auto + KD-Std + SWA maintains an overfitting gap close to 0. Interestingly, on the
SVHN dataset (Netzer et al., 2011), where KD-AT + KD-Std + SWA still produces a high overfitting
gap (also see Appendix A1.3 in (Chen et al., 2021)), KD-AT-Auto + KD-Std + SWA can further push
this gap to close to 0.

Here, the interpolation ratio of the standard teacher is fixed as 0.2 and the SWA starts at the first
learning rate decay for all experiments. We employ PGD-AT (Madry et al., 2018) as the base
adversarial training method and conduct experiments with a pre-activation ResNet-18. The robust
accuracy is evaluated with AutoAttack. Other experiment details are in line with Appendix F.1.

Furthermore, we note that (Chen et al., 2021) shows SWA and KD-Std are essential components to
mitigate robust overfitting on top of KD-AT, while we show that KD-AT itself can mitigate robust
overfitting by proper parameter tuning. We are thus able to separate these components and allow a
more flexible selection of hyperparameters in diverse training scenarios without fear of overfitting. In
particular, although (Chen et al., 2021) suggests SWA starting at the first learning rate decay (exactly
when the overfitting starts) mitigates robust overfitting, the effectiveness of SWA on mitigating
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Dataset Setting T λ
Robust Acc. (%) Standard Acc. (%)

Best Last Diff. Best Last Diff.

CIFAR-10
AT - - 47.35 41.42 5.93 82.67 84.91 -2.24
KD-AT + KD-Std + SWA 2 0.5 49.98 49.89 0.09 85.06 85.52 -0.46
KD-AT-Auto + KD-Std + SWA 1.47∗ 0.8∗ 50.03 50.05 -0.02 84.69 84.91 -0.22

SVHN
AT - - 47.83 39.77 8.06 90.18 91.11 -0.93
KD-AT + KD-Std + SWA 2 0.5 47.88 46.46 1.42 91.59 91.76 -0.17
KD-AT-Auto + KD-Std + SWA 1.53∗ 0.83∗ 50.58 50.09 0.49 90.54 90.76 -0.22

Table 5: Performance of our method combined with SWA and additional standard teacher on different
datasets.

overfitting may strongly depend on its hyper-parameter selection including s0, i.e., the starting epoch
and τ , i.e., the decay rate4, which is also mentioned in recent work (Rebuffi et al., 2021). We also
did some additional experiments on CIFAR-10 following the SWA setting in (Rebuffi et al., 2021)
to demonstrate the wide applicability of our method. As shown by Table 6, when changing the
hyperparameters of SWA, KD-AT + KD-Std + SWA cannot consistently mitigate robust overfitting,
while KD-AT-Auto + KD-Std + SWA can maintain an overfitting gap close to 0 and achieve better
robustness as well.

Setting s0 τ
Robust Acc. (%) Standard Acc. (%)

Best Last Diff. Best Last Diff.

KD-AT + KD-Std + SWA 80 0.999 49.00 48.04 0.96 84.04 86.11 -2.07
KD-AT-Auto + KD-Std + SWA 80 0.999 49.35 49.25 0.1 85.38 85.91 -0.37

KD-AT + KD-Std + SWA 0 0.999 49.01 48.01 1.0 83.78 86.20 -2.42
KD-AT-Auto + KD-Std + SWA 0 0.999 49.32 49.25 0.07 84.78 85.48 -0.7

Table 6: Performance of our method combined with SWA with different hyper-parameters

D STUDY ON A SYNTHETIC DATASET WITH KNOWN TRUE LABEL
DISTRIBUTION
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Figure 12: Example
mixup augmentation.

Synthetic Dataset. Since the true label distribution is typically unknown
for adversarial examples in real-world datasets, we simulate the mechanism of
implicit label noise in adversarial training from a feature learning perspective.
Specifically, we adapt mixup (Zhang et al., 2018) for data augmentation on
CIFAR-10. For every example x in the training set, we randomly select
another example x′ in a different class and linearly interpolate them by a
ratio ρ, namely x := ρx + (1 − ρ)x′, which essentially perturbs x with
features from other classes. Therefore, the true label distribution is arguably
y ∼ ρ ·1(y)+(1−ρ) ·1(y′). Unlike mixup, we intentionally set the assigned
label as ŷ ∼ 1(y), thus deliberately create a mismatch between the true label
distribution and the assigned label distribution. We refer this strategy as
mixup augmentation and only perform it once before the training. In this way,
the true label distribution of every example in the synthetic dataset is fixed.

Concentration of optimal temperature and interpolation ratio of individual examples. In
Section 4.1 we have shown that in terms of individual examples, the rectified model probability can
provably reduce the distribution mismatch between the assigned label distribution and true label
distribution of the adversarial example. However, since the true label distribution is unknown in
realistic scenarios, it is not possible to directly follow Theorems 4.1 and 4.2 and calculate the optimal
set of hyper-parameters for each example in the training set. The best we can do is to employ a

4SWA can be implemented using an exponential moving average θ′ of the model parameters θ with a decay
rate τ , namely θ′ ← τ · θ′ + (1− τ) · θ at each training step (Rebuffi et al., 2021).
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validation set and determine a universal set of hyper-parameters based on the NLL loss, which expects
all training examples to share similar optimal temperatures and interpolation ratios. Here, based on
the synthetic dataset where a true label distribution is known, we empirically verify this assumption
is reasonable.
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Figure 13: The histograms of optimal temperature (left) and interpolation ratio (right) of individual
examples.

In Figure 13 left, we solve the optimal temperature for each correctly classified training example
based on Theorem 4.1 with the interpolation ratio fixed as 1.0. One can find that the individual
optimal temperatures mostly concentrate between 0.5 and 1.5. In Figure 13 right, we solve the
optimal interpolation ratio for each incorrectly classified training example based on Theorem 4.2
with the temperature fixed as 1.0 . One can find that the individual optimal interpolation ratio mostly
concentrate between 0.5 and 0.7.

E TOOLKIT

E.1 ESTIMATION OF THE DATA QUALITY

We use the predicative probabilities of classifiers trained on CIFAR-10 to score its training data.
Similar strategy is employed in previous works to select high-quality unlabeled data to improve
adversarial robustness (Uesato et al., 2019; Carmon et al., 2019; Gowal et al., 2020). Slightly
deviating from these works focusing on out-of-distribution data, we use adversarially trained instead
of regularly trained models to measure the quality of in-distribution data, since under standard
training almost all training examples will be overfitted and gain overwhelmingly high confidence.
Specifically, we adversarially train a pre-activation ResNet-18 with PGD and select the model at
the best checkpoint in terms of the robustness. The quality of an example is estimated by the
model probability corresponding to the true label without adversarial perturbation and random data
augmentation (flipping and clipping). We repeat this process 10 times with random initialization to
obtain a relatively accurate estimation.

E.2 DETERMINE THE OPTIMAL HYPER-PARAMETERS

We employ a model overfitted on the training set to generate approximate traditional adversarial label
of the adversarial example in the validation set. Such overfitted model is typically the model at the
final checkpoint when conducting regular adversarial training for sufficient epochs. Mathematically,
our final method to determine the optimal temperature and interpolation ratio in rectified model
probability can be described as

T, λ = argmin
T,λ

E(xδ,yδ)∼Dval ` (λ · f(xδ; θ, T ) + (1− λ) · f(xδ; θs, T ), yδ) , (14)

where f(xδ; θs, T ) denotes the predictive probability of a surrogate model scaled by temperature on
xδ .
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F EXPERIMENTAL DETAILS

F.1 SETTINGS FOR MAIN EXPERIMENT RESULTS

Dataset. We include experiment results on CIFAR-10, CIFAR-100, Tiny-ImageNet and SVHN.

Training setting. We employ SGD as the optimizer. The batch size is fixed to 128. The momentum
and weight decay are set to 0.9 and 0.0005 respectively. Other settings are listed as follows.

• CIFAR-10/CIFAR-100: we conduct the adversarial training for 160 epochs, with the learning rate
starting at 0.1 and reduced by a factor of 10 at the 80 and 120 epochs.

• Tiny-ImageNet: we conduct the adversarial training for 80 epochs, with the learning rate starting at
0.1 and reduced by a factor of 10 at the 40 and 60 epochs.

• SVHN: we conduct the adversarial training for 80 epochs, with the learning rate starting at 0.01 (as
suggested by (Chen et al., 2021)) and reduced by a factor of 10 at the 40 and 60 epochs.

Adversary setting. We conduct adversarial training with `∞ norm-bounded perturbations. We
employ adversarial training methods including PGD-AT, TRADES and FGSM. We set the perturbation
radius to be 8/255. For PGD-AT and TRADES, the step size is 2/255 and the number of attack
iterations is 10.

Robustness evaluation. We consider the robustness against `∞ norm-bounded adversarial attack
with perturbation radius 8/255. We employ AutoAttack for reliable evaluation. We also include the
evaluation results again PGD-1000, Square Attack and RayS.

Neural architectures. We include experiments results on pre-activation ResNet-18, WRN-28-5,
WRN-34-10 and VGG-19.

Hardware. We conduct experiments on NVIDIA Quadro RTX A6000.

F.2 SETTINGS FOR ANALYZING DOUBLE DESCENT IN ADVERSARIAL TRAINING

Dataset. We conduct experiments on the CIFAR-10 dataset, without additional data.

Training setting. We conduct the adversarial training for 1000 epochs unless otherwise noted. By
default we use the Adam optimizer with the learning rate fixed as 0.0001, since it requires minimal
hyper-parameter tuning. For SGD the learning rate starts at 0.1, and will not be changed unless
otherwise noted. The batch size will be fixed to 128, and the momentum will be set as 0.9 wherever
necessary. No regularization such as weight decay is used. These settings are mostly aligned with the
empirical analyse of double descent under standard training (Nakkiran et al., 2020).

Sample size. To reduce the computation load demanded by exponential training epochs In
individual cases, we reduce the size of the training set by randomly sampled a subset of size 5000
from the original training set without replacement. This will linearly shift the double descent curve
but will not significant distort its shape as shown in Appendix B.1. We adopt this setting for extensive
experiments such as the analyses of the dependence of double descent on perturbation radius, data
quality and the number of attack iterations. Note that in the experiment associated with data quality,
we randomly sampled the training subset from those examples with quality lower than a threshold.
The sampled subset is restricted to class-balanced.

Adversary setting. We conduct adversarial training with `∞ norm-bounded perturbations. We
employ standard PGD training with the perturbation radius set to 8/255 unless otherwise noted. The
number of attack iterations is fixed as 10, and the perturbation step size is fixed as 2/255.

Robustness evaluation. We consider the robustness against `∞ norm-bounded adversarial attack
with perturbation radius 8/255. We use PGD attack with 10 attack iterations and step size set to
2/255.

Neural architecture. By default we experiment on Wide ResNet (Zagoruyko & Komodakis, 2016)
with depth 28 and widening factor 5 (WRN-28-5) to speed up training.

Hardware. We conduct experiments on NVIDIA Quadro RTX A6000.
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F.3 SETTINGS FOR ADVERSARIAL AUGMENTATION

We generate adversarial examples with PGD attack on the model obtained at the best checkpoint
through a pratical adversarial training (see Appendix F.1 for details). The number of attack iterations
is fixed as 10 and the step size fixed as 2/255. The adversarial examples of all training examples
along with their labels are then grouped into a new training set, where we conduct standard training
for 1000 epochs. Other settings are same as those listed in Appendix F.2 except no adversary is
employed.
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