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ABSTRACT

Detecting out-of-distribution (OOD) data is critical to building reliable machine
learning systems in the open world. Previous works mainly perform OOD detec-
tion in feature space or output space. Recently, researchers have achieved promis-
ing results using gradient information, which combines the information in both
feature and output space for OOD detection. However, existing works still suf-
fer from the problem of overconfidence. To address this problem, we propose
a novel method called “Reactivate Gradnorm (RG)”, which exploits the norm of
the clipped feature vector and the energy in the output space for OOD detection.
To verify the effectiveness of our method, we conduct experiments on four bench-
mark datasets. Experimental results demonstrate that our RG outperforms existing
state-of-the-art approaches by 2.06% in average AUROC. Meanwhile, RG is easy
to implement and does not require additional OOD data or fine-tuning process.
We can realize OOD detection in only one forward pass of any pretrained model.

1 INTRODUCTION

In addition to the need for the accuracy of predictions, more and more attention has been paid to
whether the model can make rejection identification when faced with completely unfamiliar samples.
People want models that are not only accurate in their familiar data distribution but also aware of
uncertainty outside the training distribution. This gives rise to the importance of out-of-distribution
(OOD) detection, which determines whether an input is in-distribution (ID) or OOD. And OOD
detection is widely used in fields with high safety requirements, such as medical diagnosis (Nair
et al., 2020) and autonomous driving (Amini et al., 2018).

Deep neural networks can easily make overconfident predictions on OOD inputs, which increases
the challenge to separate ID and OOD data Van den Oord et al. (2016); Chen et al. (2021). For
instance, a model may wrongly but confidently classify an image of a crab into the clapping class,
even though no crab-related concepts appear in the training set. Previous works focused on deriving
OOD uncertainty measurements from the output space (Hendrycks & Gimpel, 2016; Liu et al., 2020)
or feature space (Lee et al., 2018; Sun et al., 2022). A recent work (Huang et al., 2021) based on
gradients has intrigued us. Actually, gradient information can often be decomposed into information
from feature space and output space, which can be derived from the process of the BP algorithm.
However, this method still has room for further improvement on OOD detection, which encourages
us to utilize both output space and feature space information for better OOD detection.

In this paper, we perform OOD detection by jointly using information from feature space and output
space. Formally, we propose Reactivate Gradnorm (RG), a simple and effective method to detect
OOD by utilizing the inputs and outputs of the last layer of the neural networks. Specifically, RG
directly uses the product of the 1-norm of the clipped input of the last layer of neural network and
the logarithm of the exponential sum of the outputs (free energy) as the OOD scoring function.
The reason for using the 1-norm of the hidden layer features is that the neurons will be activated
for the ID sample. The motivation for cropping it comes from the fact that there will be a few
OOD samples with strong features. Appropriate cropping can reduce the 1-norm of the features of
the OOD samples without excessively affecting the 1-norm of the features of the ID samples. The
energy information in the logits space is selected instead of the information in the probability space
(like MSP(Hendrycks & Gimpel, 2016)) because there is information loss from the logits space to
the probability space (the relative size information of the logits will be ignored by the softmax layer).
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on the other hand, there are good theoretical and practical effects by using the energy as an OOD
evaluation score.

Empirically, we have established excellent performance on the large-scale ImageNet benchmark.
RG is vastly superior to previous use of energy after crop ReAct (Sun et al., 2021) 8.9% by AUROC,
and our source of inspiration Grodnorm 5.86% by AUROC. Our method also achieves excellent
performance compared to the MOS (Huang & Li, 2021) 2.06% by AUROC.

Our key results and contributions are summarized as follows:

• We propose RG, a simple and effective OOD uncertainty estimation method, which is label-
agnostic (no label required), OOD agnostic (no outlier data required), train data agnostic
(Only the pre-trained model is used and no fine-tuning or extra training).

• We conduct sufficient experiments on the combination of information from output space
and input space to help us better understand the effectiveness of our OOD detection meth-
ods. RG promotes the average AUROC by 2.06% compared to the current best method
under the same pre-trained model and dataset. Experiments show that using information
from both feature space and output space has a gain for OOD detection.

• We perform a simple theoretical analysis of our method that using information from both
feature space and output space at the same time helps to model the distribution of training
data, which facilitates ood detection. And we unify several previous approaches under the
equation 10 in a new framework.

2 BACKGROUND

In a supervised learning, we denote by X = Rd the input space and Y = {1, 2, ..., C} the output
space. A neural network f(x, θ) = {fi(x, θ)}Ci=1 with the parameter θ, we abbreviate it as f(x),
which is a mapping from X to RC . When given a dataset D = {(xi, yi)}ni=1, the supervised learning
task is to minimize:

R(f) = E(x,y)∈DlCE(f(x), y) (1)

where lCE usually used the cross-entropy loss:

lCE(f(x), y) = −log
efy(x)∑c
i=1 fi(x)

(2)

where y is the ground-truth label.

Problem statement OOD detection can be formulated as a binary classification problem. The goal
is to design a discriminator G(x) which is a mapping from X to R. Given a threshold c, we will
decide a sample x as an OOD sample if and only if G(x) < c. The design of the discriminator G is
often related to the neural network model f(x, θ), which will help the neural network model reject
the recognition when G(x) < c. Typically, c will be set to the fraction of 95% of In-distribution
(ID) data that can to be identified as ID. The key challenge is to derive a scoring function G(x)
that captures OOD uncertainty. Previous OOD detection approaches primarily rely on the output or
feature space for deriving OOD scores, and there has been some recent interest in utilizing gradient
information for OOD detection. We will reveal that effective gradient-based OOD detection method
is a method that combines the information from output space and feature space. And based on it, a
more efficient method is proposed in the following section.

3 MOTIVATION AND METHOD

In this section, we will first describe the gradient-based OOD detection method and then analyze that
the gradient-based OOD detection method is based on the synthesis of the information in the feature
space and the information in the output space in section 3.1. The gradient-based OOD detection
method inspired us to design an appropriate OOD score which is a combination of the norm of the
clipped feature vector and the energy in the output space to achieve OOD detection in Section 3.2.
In section 3.3, we unify several previous approaches under the equation 10 in a new framework.
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3.1 GRADIENT-BASED OOD DETECTION

We start by introducing the loss function for backpropagation and then describe how to design the
gradient norm for OOD uncertainty estimation.

We provide a perspective to revisit gradient-based OOD detection: the idea of the gradient-based
OOD detection method stems from that for a fully trained neural network, When we continue to feed
the neural network with samples of the training set, then use the ground truth to calculate the loss
and use the loss to backpropagation, the gradient of the neural network parameters will be small
because the neural network is fully trained.

However, when doing OOD detection, the ground-truth is missing. So we can not use the ground
truth information to calculate prediction loss. A natural idea is to use a uniform distribution as a
substitute for ground-truth and the gradient will be large for an ID sample. (Huang et al., 2021):

G(x) = ||∂KL(u||softmax(f(x)))

∂w
||1 (3)

where u = { 1
C }ci=1, KL(u|softmax(f(x))) = − 1

C

∑c
i=1 log

efi(x)∑c
i=1 fi(x)

. w is the parameters of
the network.

Another way to replace the ground-truth is that we think the probability that the true label has a
probability py = efy(x)∑c

i=1 fi(x)
to be class y. Then we can design the score as Igoe et al. (2022)

mentioned:

G(x) = Ey∼p(x)||
∂logpy
∂w

||1 (4)

The probability that each sample has probability of pi belongs to the ith class, then the expectation
of the gradient of the classification loss will be small for ID samples. Note that the negative log-
likelihood is used when calculating the loss function, so for ID data, G(x) will also be larger than
OOD data.

Similarly, to avoid the problem of missing ground truth, we can also use such a loss function
−
∑C

i=1 e
fi(x) and design our own novel score as:

G(x) = ||
∂
∑C

i=1 e
fi(x)

∂w
||1 (5)

Under some special settings: only the gradient information of the last layer is used, we will find out
that equation 3 is actually:

G(x) = UV (6)

where V is the L1 norm of the features of the last layer of neural network input, and U =
∑c

i=1 |
1
C −

pi|. Meanwhile the equation 4 also has the form of equation 6, where V is the L1 norm of the features
of the last layer of neural network input, and U = 2

∑c
i=1 pi(1 − pi). And the equation 5 also has

the form of equation 6, where V is the L1 norm of the features of the last layer of neural network
input, and U = 2

∑c
i=1 e

fi(x).

From the expression, these scores are still difficult to overcome the problem of overconfidence pre-
diction of OOD samples. As the example we mentioned in the introduction, a model may wrongly
but confidently classify an image of a crab into the clapping class, even though no crab-related con-
cepts appear in the training set. Suppose the crab has a strong feature related to the recognition of
the clapping class, which will result in a large 1-norm in the feature space. This means that there is
room for improvement in both U and V .

Summarize Some gradient-based OOD detection methods can be transformed into a combination
of feature information and output information. But that’s not surprising, because in the BP algorithm
the gradient in the last layer is equal to the product of the error propagated and input value where
the former only depends on the output space, the latter only depends on the feature space. Previous
work inspired us to explore suitable U and V for OOD detection.
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3.2 THE CHOICE OF U AND V

U comes from the output space. In OOD detection, using the maximum softmax probability
Hendrycks & Gimpel (2016) is a natural choice. However OOD samples may also have very confi-
dent predictions, so we use an energy score-based score as U :

U = T log

c∑
i=1

efi(x)/T (7)

It has good theoretical and practical significance to use energy score as an indicator for OOD detec-
tion. It is also a very common strategy to estimate the certainty of predictions by summing the neural
network output after activation, as in the method of estimating the certainty based on the Dirichlet
distribution, using softplus(·) + 1 as the activation and summing (Sensoy et al., 2018).

V comes from the feature space. A common strategy is to model OOD data from a standard Gaussian
distribution in feature space. For ood data, the ith element of features vector is vi = max(0, zi),
zi ∼ N(0, 1). The score of ood is measured by e−v2

i . For ID data, use 1− e−v2
i as measure. Based

on the assumption that each feature in the feature space is independent, we should multiply all Vi as
V. But this will cause numerical instability, such as if one of the factors is 0 then the product is 0.
So we use V =

∑
i(1− e−v2

i ). Actually we take an approximation of it: V =
∑

min(1, vi). They
are all based on the same idea: to avoid overconfident predictions of OOD samples with few strong
features, the contribution of each feature to the overall score should be suppressed.

In general, the OOD score we use is:

G(x) = T log(
∑
i

efi(x)/T )
∑
i

min(vi, k) (8)

where T is the temperature in the energy function, and default is 1. k is the clipping threshold of
each feature in the feature vector, and default is 1. In this paper, equation 8 is used as the OOD
detection score by default.

3.3 ADDITION-BASED COMBINATION OF U AND V

Different from the combination method of multiplying U and V in the previous section, in this
section we will use another method to combine U and V and provide a perspective that unifies the
previous approaches.

To better explain this, let’s look at the fully connected layer of the last layer of the neural network.
Suppose for the sample x, the input of the last layer of the neural network is v = {vj}Nj=1. Suppose
the joint probability that the feature v belongs to class i is P (v, Ci) = eg(v)+wt

iv+bi , where g(·) is a
mapping from RN to R, wi ∈ Rd, bi ∈ R. The choice of g(·) cannot be too arbitrary, as it will be
constrained by probability normalization.

The probability that sample x belongs to class i is:

P (Ci|v) =
P (v, Ci)∑c
i=1 P (v, Ci)

=
eg(v)+wt

iv+bi∑c
i=1 e

g(v)+wt
iv+bi

=
ew

t
iv+bi∑c

i=1 e
wt

iv+bi
(9)

This is exactly what the final fully connected layer of the neural network and the softmax layer are
working. We will easily see the combination of the fully connected layer and the softmax layer
ignores the relative size g(v). This also implies that if the information of v from feature space can
be effectively used, the performance of OOD detection can be better than the information of the prob
space alone, like MSP (Hendrycks & Gimpel, 2016).

Then,

logP (v) = log(

c∑
i=1

P (v, Ci)) = log(

c∑
i=1

eg(v)+wt
iv+bi) = g(v) + log(

c∑
i=1

efi(x)) (10)

So we can use g(v) from the feature space, and log(
∑c

i=1 e
fi(x)) from the output space to charac-

terize the probability of a sample appearing. The greater the probability P (v), the more likely the
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sample is to belong to the ID sample. When g(v) = maxj(−log(
∑

i ̸=j e
wt

iv+bi)), that is equal
to MSP (Hendrycks & Gimpel, 2016). When g(v) = 0, that is equal to Energy (Liu et al., 2020).
When g(v) represents the inverse of the norm of the residuals of the projection of v onto the main
subspace, that is equal to VIM (Wang et al., 2022). When g(v) is quadratic, that is GEM (Morteza
& Li, 2022). We can look at these methods under a unified framework.

For practice, if we think that the ID samples are more likely to be close to the set Dk = {v ∈ RN |vi ≤
k, i = 1, ..., N}. g(v) is used to penalize samples that do not belong to set D. The measure of penalty
takes the L1 distance from v to the set Dk. So we can design our own novel score as:

G(x) =
∑
i

(min(vi, k)− k) + log(
∑
i

efi(x)) (11)

Ignore the constant term, and provide a balance coefficient α for the information from the feature
space and the output space. We can use the score:

G(x) = log(
∑
i

efi(x)) + α
∑
i

min(vi, k) (12)

Similar to the method we proposed in equation 8, they both use the same U and V , the difference is
that the combination is changed from multiplication to addition.

A natural idea is to choose a balance coefficient α that makes the standard deviations of the two
terms close. Since the choice of the balance coefficient is intuitive, we use equation 8 by default in
the experimental part. But we will do experiments to explore the appropriate balance coefficient.

4 EXPERIMENT

In this section, we evaluate RG on a large-scale OOD detection benchmark with ImageNet-1k as
an in-distribution dataset. We describe the experimental setup in Section 4.1 and demonstrate the
superior performance of RG over existing approaches in Section 4.2, followed by extensive ablations
and analyses that improve the understanding of our approach.

4.1 EXPERIMENTAL SETUP

Dataset We evaluate our method on the large-scale ImageNet benchmark proposed by Huang & Li
(2021). ImageNet benchmark is not only rich in data sources, but also many categories. OOD de-
tection for the ImageNet model is more challenging due to both a larger feature space (dim = 2048)
as well as a larger label space (C = 1000). In particular, the large-scale evaluation can be relevant to
real-world applications, where the deployed models often operate on images that have high resolu-
tion and contain many class labels. Moreover, as the number of feature dimensions increases, noisy
signals may increase accordingly, which can make OOD detection more challenging. We evaluate
on four OOD test datasets, which are from subsets of iNaturalist (Van Horn et al., 2018), SUN (Xiao
et al., 2010), Places (Zhou et al., 2017), and Textures (Cimpoi et al., 2014), with non-overlapping
categories w.r.t. ImageNet-1k. The OOD datasets include various domains including fine-grained
images, scene images, and textural images. The amount of OOD data is also very large, with the
exception of Textures which has 5640 images, the other datasets have 10000 images each.

Model and hyperparameters We mianly use Google BiT-S models (Kolesnikov et al., 2020) pre-
trained on ImageNet-1k with a ResNetv2-101 architecture (He et al., 2016). The BiT-S model is
adopted not only for its excellent classification performance on ImageNet-1k but also for a better
fair comparison with Gradnorm (Huang et al., 2021) methods. In Section 4.2. Additionally, we
use clipping threshold 1 as the default and explore the effect of other clipping thresholds in Section
4.2. The temperature parameter T is set to be 1 unless specified otherwise, and we explore the
effect of different temperatures in Section 4.2. We also report performance on another architecture,
DenseNet121 (Huang et al., 2017). At test time, all images are resized to 480 × 480.

4.2 RESULTS AND ABLATION STUDIES

Comparison with benchmark methods The results for ImageNet evaluations are shown in 1, where
our method(RG) demonstrates superior performance. We report OOD detection performance for
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Table 1: Main Results. OOD detection performance comparison between RG and baselines. All
methods utilize the standard ResNetv2-101 model trained on ImageNet. The classification model is
trained on ID data only. All values are percentages.

iNaturalist SUN Places Textures Average
Method FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
MSP 63.69 87.59 79.98 78.34 81.44 76.76 82.73 75.45 76.96 79.29
KL-matching 27.36 93.00 67.52 78.72 72.61 76.49 49.70 87.07 54.30 83.82
Energy 64.91 88.48 65.33 85.32 73.02 81.37 80.87 75.79 71.03 82.74
ReAct 49.97 89.80 65.30 87.40 73.12 85.34 80.82 70.53 67.30 83.27
Mahalanobis 96.34 46.33 88.43 65.20 89.75 64.46 52.23 72.10 81.69 62.02
MOS 9.28 98.15 40.63 92.01 49.54 89.06 60.43 81.23 39.97 90.11
ODIN 62.69 89.36 71.67 83.92 76.27 80.67 81.31 76.30 72.99 82.56
Conor Igoe 45.64 91.59 41.67 91.04 56.25 87.20 68.67 81.67 53.06 87.88
Gradnorm 50.03 90.33 46.48 89.03 60.86 84.82 61.42 81.07 54.70 86.31
OURS 31.38 94.67 35.36 92.53 49.06 89.19 31.80 92.30 36.90 92.17

each OOD test dataset, as well as the average over the four datasets. For a fair comparison, all the
methods use the same pre-trained backbone, without regularizing with auxiliary outlier data. Since
our method is inspired by Gradnorm(Huang et al., 2021), the settings of the method compared in
that article are also the same as it, Such as MSP(Hendrycks & Gimpel, 2016), ODIN (Liang et al.,
2017), Mahalanobis(Lee et al., 2018), as well as Energy(Liu et al., 2020). We also compared KL
matching(Hendrycks et al., 2019) and the methods MOS (Huang & Li, 2021) which use the same
pre-trained model on the same dataset. And for Conor Igoe (Igoe et al., 2022), we use the L1 norm
of feature and the Energy. In addition, we also compare the ReAct(Sun et al., 2021), which has
the same clipping threshold 1, and uses the Energy score after clipping as the score. We reproduce
ReAct. Other methods have been reproduced on mos (Huang & Li, 2021) or Conor Igoe (Igoe et al.,
2022), so we reported the result from them. For a fair comparison, we primarily compare with
methods utilizing a pre-trained discriminative network without regularizing with auxiliary outlier
data.

RG outperforms the best gradient-based baseline Gradnorm by 5.86% in AUROC. RG also outper-
forms a competitive feature-based method, Mahalanobis, by 44.79% in FPR95. RG also outper-
forms the method ReAct by 30.4% FPR95. Compared with the current group-based OOD detection
method MOS, RG has promoted 2.06%. RG is stable with relatively small differences on four OOD
datasets. Besides, OOD detection can be achieved in one forward pass without the need for another
back pass like GradNorm. Our method is computationally small and requires no additional storage
space, almost the same as MSP or energy methods.

Table 2: Ablation on U and V. OOD detection performance by different U and V. All methods utilize
the standard ResNetv2-101 model trained on ImageNet. The classification model is trained on ID
data only. All values are percentages. U and V are combined by multiplication. The meaning of the
first line is to use the U and V of GradNorm (GN). The meaning of the Second line is to use the V
of GradNorm and U of Ours. The meaning of the fourth line is to only use the U of Ours.

Method iNaturalist SUN Places Textures Average
U V FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
GN GN 50.03 90.33 46.48 89.03 60.86 84.82 61.42 81.07 54.70 86.31
Ours GN 45.64 91.59 41.67 91.04 56.25 87.20 68.67 81.67 53.06 87.88
GN Ours 39.15 93.20 41.85 89.89 55.55 86.00 34.52 93.08 42.77 90.54
Ours 1 64.91 88.48 65.33 85.32 73.02 81.37 80.87 75.79 71.03 82.74
1 Ours 73.18 76.63 62.15 76.86 75.54 70.71 42.93 87.73 63.45 77.98
Ours Ours 31.38 94.67 35.36 92.53 49.06 89.19 31.80 92.30 36.90 92.17

Ablation on U and V. We conduct experiments on the results of U and V alone and using U and
V in combination. There are two directions of ablation experiments: ablation to separate feature
space and output space, and ablation to Gradnorm. As we described in Section 3, the combined use
of information from feature space and output space can achieve performance that surpasses either
of them in OOD detection. On the other hand, we also noticed that the information from the output
space plays a leading role in OOD detection, which can also reflect the effectiveness of the previous
methods such as Energy that depend on the output space.
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Compared to Gradnorm, we have an increase in replacing V with energy alone. Replacing U alone
with the cropped 1-norm also improves. This also shows that our U and V are suitable for OOD
detection based on the BiT network.

Table 3: The effect of the clipping thresholds. OOD detection based our method. Use default
temperature. All values are percentages.

iNaturalist SUN Places Textures Average
k FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
0.1 48.04 91.90 47.14 89.58 58.49 85.39 35.76 90.47 47.36 86.84
0.3 33.68 94.31 36.24 91.86 49.69 88.12 26.51 93.11 36.53 91.85
0.5 30.44 94.78 34.69 92.38 48.41 88.89 25.66 93.43 34.80 92.37
0.7 30.67 94.82 34.98 92.52 48.86 89.14 27.60 93.15 35.53 92.41
1 31.38 94.67 35.36 92.53 49.06 89.19 31.80 92.30 36.90 92.17
2 35.59 93.78 37.54 92.17 51.84 88.71 42.55 88.80 41.88 90.87
3 39.20 93.01 39.18 91.77 53.73 88.17 50.12 86.00 45.56 89.74
5 43.30 92.10 40.83 91.29 55.44 87.55 56.00 83.12 48.89 88.52
∞ 45.64 91.59 41.67 91.04 56.25 87.20 68.67 81.67 53.06 87.88

The effect of the clipping thresholds We evaluate our method RG with different clipping thresholds
k from k = 0.1 to k = 5. As shown in 3, k = 0.5 or 0.7 is optimal, while either increasing or decreasing
the clip threshold will degrade the performance. The appropriate clipping threshold is related to the
distribution of ID samples in the feature space.

If the clipping threshold is relatively large, OOD samples with few strong features will be identified
as ID samples. If the clipping thresholds are relatively small, the information loss of the samples in
the feature space will be serious, which will lead to ID samples being identified as OOD samples.
As the clipping threshold increases, the results converge to the unclipped result, which is the result
of the last row. When the clipping is small, the performance will be worse than no clipping. This
shows that a suitable clipping threshold is beneficial to filter out those OOD samples that make
overconfident predictions because of extremely strong features.

Table 4: The effect of temperature. OOD detection based our method. Use default clipping thresh-
old. All values are percentages.

iNaturalist SUN Places Textures Average
T FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
0.5 32.84 95.56 41.26 91.27 54.55 87.80 39.50 90.60 42.04 91.31
1 31.38 94.67 35.36 92.53 49.06 89.19 31.80 92.30 36.90 92.17
2 62.63 85.40 52.53 85.09 66.97 80.55 37.94 90.98 55.02 85.51
4 72.13 77.74 60.98 78.01 74.57 72.06 42.45 88.06 63.03 78.97
8 73.04 76.83 62.01 77.07 75.46 70.96 42.87 87.77 63.35 78.16
16 73.14 76.70 62.07 76.90 75.51 70.77 42.93 87.74 63.41 78.03
32 73.18 76.67 62.14 76.87 75.54 70.72 42.93 87.73 63.45 77.80
64 73.18 76.66 62.15 76.86 75.54 70.71 42.93 87.73 63.55 77.99

The effect of temperature. We evaluate our method RG with different temperatures T. As shown
in 4, T = 1 is optimal, while either increasing or decreasing the temperature will degrade the per-
formance. This can be explained as the temperature balances the information in the feature space
and the input space. The higher the temperature, the stronger the dependence on the feature space,
and the lower the temperature, the stronger the dependence on the output space. As the temperature
increases, the results converge to the penultimate row in 2, which is a result that depends entirely on
the feature space.

U plus V exploration. As described in Section 3.3, OOD detection can also be performed using
an additive combination of U and V. we test the OOD detection performance based on equation 12.
Then the key to the experiment is the choice of the hyperparameter α, this is a parameter that
balances the effect of feature space and output space on OOD. A heuristic is to make the standard
deviation of the two terms close, which we denote by αs. αs need to be obtained from the training
data of the network. To calculate it quickly, we randomly select 1k values from the training set to
calculate. The experimental results are shown in Table 5. All of the average AUROC are better than
the MOS which achieves an average AUROC of 0.901. On datasets where the output space benefits
OOD detection more, the optimal alpha is slightly less than 1. On datasets where the feature space
benefit OOD detection more, the optimal alpha is slightly greater than 1.
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Table 5: The effect of balance factors. OOD detection based equation 12. All values are percentages.
iNaturalist SUN Places Textures Average

α FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
0.3αs 31.40 94.88 36.08 91.78 49.68 87.81 40.92 87.97 39.52 90.61
0.4αs 29.20 94.95 34.82 92.41 48.46 88.73 36.17 89.89 37.16 91.50
0.5αs 29.66 95.03 34.83 92.64 48.54 89.20 32.70 91.18 36.43 92.01
0.6αs 30.27 94.88 35.03 92.60 49.03 89.32 31.12 92.04 36.36 92.21
0.8αs 35.03 94.20 37.20 92.05 51.78 88.85 30.23 92.97 38.56 92.02
αs 39.16 93.19 39.39 91.20 54.31 87.91 30.20 93.32 40.77 91.39
1.2αs 42.91 92.32 41.62 90.25 56.50 86.81 30.76 93.37 42.95 90.69

Table 6: OOD detection performance comparison on a different architecture, DenseNet-121. Model
is trained on ImageNet-1k as the ID dataset. All methods are post hoc and can be directly used for
pre-trained models

iNaturalist SUN Places Textures Average
Method FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
MSP 48.55 89.16 69.39 80.46 71.42 80.11 68.51 78.69 64.47 82.11
Energy 36.39 93.29 54.91 86.53 59.98 84.29 53.87 85.07 51.29 87.30
ReAct 44.25 91.14 63.48 85.48 68.52 82.93 69.15 78.17 61.35 84.43
Mahalanobis 97.36 42.24 98.24 41.17 97.32 47.27 62.78 56.53 88.93 46.80
ODIN 37.00 93.29 57.30 86.12 61.91 84.14 56.49 84.62 53.18 87.04
Gradnorm 23.87 93.97 43.04 87.79 53.92 83.04 43.16 87.48 41.00 88.07
Conor Igoe 19.05 95.93 37.46 90.73 47.65 87.37 37.59 89.08 35.44 90.78
OURS 14.91 96.93 34.80 91.45 45.59 88.32 27.52 92.77 30.71 92.36
OURS(clips=0.7) 14.48 97.01 34.48 91.36 45.14 88.33 25.90 93.01 30.00 92.43
OURS(clips=0.5) 14.46 97.01 35.16 91.17 45.28 88.24 25.53 93.07 30.11 92.37

RG is effective on alternative neural network architecture. We evaluate RG on a different archi-
tecture DenseNet-121 and report performance in Table 6. For a fair comparison, we reproduction
ReActSun et al. (2021) and Connor Igoe Igoe et al. (2022), and other numbers were reported in
Huang et al. (2021). RG is consistently effective, outperforming our source of inspiration Gradnorm
by 10.29% in FPR95 and 4.29% in AUROC. If we use the optimal clipping threshold 0.5 shown in 3,
FPR95 can drop 0.6% compared to the default clipping threshold 1. This shows that the appropriate
clipping threshold is related in different network structures. Additionally, we also compare with
state-of-the-art nonparametric feature space methods KNN (Sun et al., 2022). Because that method
requires relatively high storage space, We decided to compare on the same ResNet-50 model trained
on ImageNet. The results are shown in the table 7. we report KNN-based results from Sun et al.
(2022). This also shows that our method is effective on another pre-trained model.

5 RELATED WORKS

OOD detection by Output-based Methods The earliest OOD detection method is based on MSP,
which uses the maximum softmax probability as the indicator score of ID data (Hendrycks & Gim-
pel, 2016). The researchers’ interest then turned to study OOD scores in the output space (Sastry
& Oore, 2020; Dong et al., 2022). ODIN (Liang et al., 2017; Hsu et al., 2020) is an output-based
method that uses temperature scaling and input perturbation to increase the separability of ID and
OOD. After that, researchers’ interest shifted from softmax space to logit space. (Liu et al., 2020)
proposed using an energy score for OOD detection, which enjoys theoretical interpretation from a
likelihood perspective (Morteza & Li, 2022). JointEnergy score (Wang et al., 2021) is then pro-
posed to perform OOD detection for multi-label classification networks. Some recent studies have
shown that one of the reasons for the overconfidence of OOD is the abnormally high activation of a
few neurons, so appropriate inhibition of activated neurons is beneficial for OOD detection, which
is ReAct (Sun et al., 2021). Then (Sun & Li, 2022) proposes a weight sparsification-based OOD
detection framework termed DICE. These methods have the advantage of being easy to use without
modifying the training procedure and objective.

OOD detection by Feature-based Methods. OOD detection based on feature space is often based
on the assumption that after modeling the density function of ID data, OOD data is often in low-
density regions, or OOD data is far from the center of ID samples Xiao et al. (2010); Zong et al.
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Table 7: OOD detection performance comparison with KNN-based OOD detection. All methods
utilize the ResNet-50 model trained on ImageNet. The classification model is trained on ID data
only. All values are percentages.

iNaturalist SUN Places Textures Average
Method FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
KNN 59.00 86.47 68.82 80.72 76.28 75.76 11.77 97.07 53.97 85.01
-With Contrastive Learning 30.18 94.89 48.99 88.63 59.15 84.71 15.55 95.40 38.47 90.91
OURS 20.21 96.02 31.12 92.62 42.83 89.73 26.03 92.88 30.05 92.81
OURS(clips=0.7) 18.89 96.28 30.66 92.74 42.22 89.88 23.74 93.34 28.88 93.06
OURS(clips=0.5) 18.12 96.43 30.58 92.70 42.35 89.34 22.29 94.00 28.34 93.12

(2018); Ren et al. (2019; 2021); Ming et al. (2022). A simple density assumption is that the features
follow a class-conditional Gaussian distribution (Lee et al., 2018). For more complex distributions,
flow technology can be used (Zisselman & Tamar, 2020). Nonparametric methods for estimating
density have also recently emerged like Cook et al. (2020). And also OOD detection using k-nearest-
neighbor has shown good performance (Sun et al., 2022), but it is based on a large amount of known
ID data and finding K-nearest neighbors in practical applications is not an easy task in terms of
storage and computation.

OOD detection by Fusing information from feature space and output space. Recently, there
have been some methods that directly or indirectly mix the feature space information and output
space information for OOD detection. (Huang et al., 2021) uses the feature space and output space
information implicitly. VIM (Wang et al., 2022) uses the reconstruction error in the feature space
and the energy in the output space. Igoe et al. (2022) also use the information in the feature space
and output space for OOD detection. But experiments show that our method is better in performance
because we use a more appropriate distance in the feature space.

6 DISCUSSION

Gradient-based OOD detection can often be transformed into a combination of information about
the feature space and output space, as in section 3.1, the process of the BP algorithm also indirectly
reflects this. An important reason why our method outperforms the baseline is that it uses infor-
mation from both feature space and output space. Using the proper fusion method makes sense for
OOD detection. It is a good choice to fuse the information of energy and feature space.

Our method benefits a lot from the network structure. Because the BN layer (Ioffe & Szegedy,
2015) is widely used in image recognition, the training data does not shift too much from 0, this is
an important reason why reactivation strategy can improve performance. The reactivation strategy
in our method is similar to Sun et al. (2021), but we don’t use the reactivated feature vector to get
the energy score. In Section 3.3 we revisit the reactivation method based on distance. From this
view, we penalized the deviation from the set D to get g(·). VIM (Wang et al., 2022) considers the
set D to be a subspace for training data. OOD-based KNN (Sun et al., 2022) considers the set D to
be a subset of feature vectors for training data. However, the choice of g(·) in Section 3.3 is only
heuristic, a strict g(·) should also satisfy normalization equation:

∫ ∑C
i=1 e

g(v)+wt
iv+bidv = 1. In

the future, we might make some assumptions about g(·) and then learn the parameters of g(·) from
the training data.

7 CONCLUSION

In this paper, we propose RG, a novel OOD uncertainty estimation approach utilizing information
extracted from the feature space and output space. And we propose a framework for combining
metrics in the feature space and energy in the output space for OOD detection. Experimental results
show that our gradient-based method can improve the performance of OOD detection by up to 2.06%
in AUROC, establishing superior performance. Extensive ablations provide further understanding
of our approach. We believe that considering both feature space and output space information can
improve the performance of OOD detection. At the same time, we hope our work draws attention to
the strong promise of the OOD detection methods that combine information from feature space and
output space.
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