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Abstract

In offline RL, constraining the learned policy to remain close to the data is essential1

to prevent the policy from outputting out-of-distribution (OOD) actions with erro-2

neously overestimated values. In principle, generative adversarial networks (GAN)3

can provide an elegant solution to do so, with the discriminator directly providing4

a probability that quantifies distributional shift. However, in practice, GAN-based5

offline RL methods have not outperformed alternative approaches, perhaps because6

the generator is trained to both fool the discriminator and maximize return – two7

objectives that are often at odds with each other. In this paper, we show that the8

issue of conflicting objectives can be resolved by training two generators: one that9

maximizes return, with the other capturing the “remainder” of the data distribution10

in the offline dataset, such that the mixture of the two is close to the behavior policy.11

We show that not only does having two generators enable an effective GAN-based12

offline RL method, but also approximates a support constraint, where the policy13

does not need to match the entire data distribution, but only the slice of the data14

that leads to high long term performance. We name our method DASCO, for15

Dual-Generator Adversarial Support Constrained Offline RL. On benchmark tasks16

that require learning from sub-optimal data, DASCO significantly outperforms17

prior methods that enforce distribution constraint.18

1 Introduction19

Offline reinforcement learning (RL) algorithms aim to extract policies from datasets of previously20

logged experience. The promise of offline RL is to enable the extraction of decision making engines21

from existing data [27]. Such promise is especially appealing in domains where data collection is22

expensive or dangerous, but large amounts of data may already exists (e.g., robotics, autonomous23

driving, task-oriented dialog systems). Real-world datasets often consist of both expert and sub-24

optimal behaviors for the task of interest and also include potentially unrelated behavior corresponding25

to other tasks. While not all behaviors in the dataset are relevant for solving the task of interest, even26

sub-optimal trajectories can provide an RL algorithm with some useful information. In principle, if27

offline RL algorithms can combine segments of useful behavior spread across multiple sub-optimal28

trajectories together, they can then perform better than any behavior observed in the dataset.29

Effective offline RL requires estimating the value of actions other than those that were taken in the30

dataset, so as to pick actions that are better than the actions selected by the behavior policy. However,31

this requirement introduces a fundamental tension: the offline RL method must generalize to new32

actions, but it should not attempt to use actions in the Bellman backup for which the value simply33

cannot be estimated using the provided data. These are often referred to in the literature as out-of-34

distribution (OOD) actions [23]. While a wide variety of methods have been proposed to constrain35

offline RL to avoid OOD actions [21, 9, 1], the formulation and enforcement of such constraints can36

be challenging, and might introduce considerable complexity, such as the need to explicitly estimate37

the behavior policy [43] or evaluate high-dimensional integrals [25]. Generative adversarial networks38



(GANs) in principle offer an appealing and simple solution: use the discriminator as an estimator for39

whether an action is in-distribution, and train the policy as the “generator” in the GAN to fool this40

discriminator. Although some prior works have proposed variants on this approach [43], it has been41

proven difficult in practice as GANs can already suffer from instability when the discriminator is too42

powerful. Forcing the generator (i.e., the policy) to simultaneously both maximize reward and fool43

the discriminator only exacerbates the issue of an overpowered discriminator.44

We propose a novel solution that enables the effective use of GANs in offline RL, in the process not45

only mitigating the above challenge but also providing a more appealing form of support constraint46

that leads to improved performance. Our key observation is that the generative distribution in47

GANs can be split into two separate distributions, one that represents the “good parts” of the data48

distribution and becomes the final learned policy, and an auxiliary generator that becomes the policy’s49

complement, such that the mixture of the two is equal to the data distribution. This formulation50

removes the tension between maximizing rewards and matching the data distribution perfectly: as51

long as the learned policy is within the support of the data distribution, the complement will pick up52

the slack and model the “remainder" of the data distribution, allowing the two generators together to53

perfectly fool the discriminator. If however the policy ventures outside of the support of the data,54

the second generator cannot compensate for this mistake, and the discriminator will push the policy55

back inside the support. We name our method DASCO, for Dual-Generator Adversarial Support56

Constrained Offline RL.57

Experimentally, we demonstrate the benefits of our approach, DASCO, on standard benchmark58

tasks. For offline datasets that require a combination of expert and sub-optimal data to obtain good59

performance, our method outperforms distribution-constrained offline RL methods by a large margin.60

2 Related Work61

Combining behaviors from sub-optimal trajectories to obtain high-performing policies is a central62

promise of offline RL. During offline training, querying the value function on unseen actions often63

leads to value over-estimation and unrecoverable collapse in learning progress. To avoid querying64

the value functions on out-of-distribution actions, existing methods encourage the learned policies65

to match the distribution of the dataset generation policies. This principle has been realized with a66

variety of practical algorithms [17, 43, 35, 36, 43, 24, 21, 20, 41, 8, 5, 10, 16, 32, 6, 29]. For example,67

by optimizing the policies with respective to a conservative lower bound of the value function estimate68

[25], only optimizing the policies on actions contained in the dataset [21], or jointly optimizing69

the policy on the long-term return and a behavior cloning objective [8]. While explicitly enforcing70

distribution constraint by adding the behavior cloning objective allows for good performance on71

near-optimal data, this approach fails to produce good trajectories on sub-optimal datasets [21].72

Methods that implicitly enforce distribution constraints, such as CQL and IQL, have seen more73

successes on such datasets. However, they still struggle to produce near-optimal trajectories when the74

actions of the dataset generation policies are corrupted with noise or systematic biases (a result we75

demonstrate in Section 5).76

However, enforcing distribution constraints to avoid value over-estimation may not be necessary.77

It is sufficient to ensure the learned policies do not produce actions that are too unlikely under78

the dataset generation policy, but it is not necessary for them to fully cover the data distribution,79

only to remain in-support [24, 22, 27, 43, 44, 4]. Unfortunately, previous methods that attempt to80

instantiate this principle into algorithms have not seen as much empirical success as algorithms81

that penalize the policies for not matching the action distribution of the behavior policies. In this82

paper, we propose a new GAN-based offline RL algorithm whose use of dual generators naturally83

induce support constraint and has competitive performance with recent offline RL methods. In a84

number of prior works, GANs have been used in the context of imitation learning to learn from expert85

data [15, 28, 14, 30]. In this work, we show that dual-generator GANs can be used to learn from86

sub-optimal data in the context of offline RL.87

3 Background88

LetM = (S,A, P,R, γ) define a Markov decision process (MDP), where S and A are state and89

action spaces, P : S ×A× S → R+ is a state-transition probability function, R : S ×A → R is a90

reward function and γ is a discount factor. Reinforcement learning methods aim at finding a policy91
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π(a|s) that maximizes the expected discounted reward R(τ) =
∑T
t=0 γ

tR(st, at) over trajectories92

τ = (s0, a0, . . . , sT , aT ) with time horizon T induced by the policy π.93

In this work, we concentrate on the offline or off-policy RL setting, i.e. finding an optimal policy94

given a dataset D of already previously collected experience τ ∼ D by a behavior policy πβ . A95

particularly popular family of methods for offline learning are based on training a Q-function through96

dynamic programming using temporal-difference (TD) learning [42, 38]. Such methods train a97

Q-function to satisfy the Bellman equation:98

Q(st, at) = R(st, at) + γEa∼π[Q(st+1, a)].

In Q-learning, the policy is replaced with a maximization, such that π(a|s) = argmaxaQθ(s, a),99

while actor-critic methods optimize a separate parametric policy πϕ(a|s) that maximizes the Q-100

function. In this work, we extend the Soft Actor-Critic (SAC) method [13] for learning from diverse101

offline datasets.102

Generative Adversarial Networks (GANs) [12] enable modeling a data distribution pD through an103

adversarial game between a generator G and a discriminator D:104

min
G

max
D

Ex∼pD [log(D(x))] + Ez∼p(z)[log(1−D(G(z)))] (1)

For this two player zero-sum game, [12] shows that for a fixed generator G, the optimal discriminator105

is D∗
G(x) =

pD(x)

pD(x) + pG(x)
and the optimal generator matches the data distribution p∗g(x) = pD.106

GAN has been extended to the offline RL setting by interpreting the discriminator function as a107

measure of how likely an action is under the behavior policy, and jointly optimizing the policy to108

maximize an estimate of the long-term return and the discriminator function [43]:109

min
π

max
D

Es,a∼pD [log(D(s, a))] + Es∼pD,a∼π(a|s)[log(1−D(s, a))]− Es∼pD,a∼π(a|s)[Q(s, a)],

(2)

where Q(s, a) is trained via the Bellman operator to approximate the value function of the policy110

π(a|s). This leads to iterative policy evaluation and policy improvement rules for the actor and the111

policy [43]:112

Qk+1 ← argmin
Q

Es,a,s′∼D

[(
(R(s, a) + γEa′∼πk(a′|s′)[Q

k(s′, a′)])−Qtarget(s, a)
)2]

πk+1 ← argmax
π

Es∼D,a∼πk(a|s)
[
Qk+1(s, a) + logDk(s, a)

] (3)

where the logD(a|s) term in the policy objective aims at regularizing the learnt policy to prevent113

it from outputting OOD actions. In practice, maximizing both Q and discriminator might lead to114

conflicting objectives for the policy and thus poor performance on either objective. This can happen115

when the data contains a mixture of good and bad actions. Maximizing the value function would116

mean avoiding low-reward behaviors, while on the other side maximizing discriminator would require117

taking all in-distribution actions, including sub-optimal ones. Our approach alleviates this conflict and118

enables in support maximization of the value function when learning from mixed-quality datasets.119

4 Dual-Generator Adversarial Support Constraint Offline RL120

We now present our algorithm, which uses a novel dual-generator GAN in combination with a121

weighting method to enable GAN-based offline RL that constrains the learned policy to remain122

within the support of the data distribution. We call our method Dual-generator Adversarial Support123

Constraint Offline RL (DASCO). We will first introduce the dual-generator training method generically,124

for arbitrary generators that must optimize a user-specified function f(x) within the support of the125

data distribution in Section 4.1. We will then show this method can be incorporated into a complete126

offline RL algorithm in Section 4.2 in combination with our proposed weighting scheme, and then127

summarize the full resulting actor-critic method in Section 4.3.128
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4.1 Dual generator in-support optimization129

In this section, we will develop an approach for performing a joint optimization of adversarial and130

secondary objectives of the generator in a GAN framework, which we will then apply to offline RL.131

This is a necessary component for performing the joint optimization in Eq. 2 without introducing a132

conflict of these objectives. All proofs for theorems presented in this section are in Appendix A.133

Let’s consider a general objective that requires training a generator G to fool the discriminator D134

while also optimizing the expected value of some other function f :135

min
G

max
D

Ex∼pD [log(D(x))] + Ez∼p(z)[log(1−D(G(z)))] + Ez∼p(z)[f(G(z))] (4)

Here, we have added an additional term Ez∼p(z)[f(G(z))], where f is a mapping from the generator136

output to a scalar value.137

Theorem 4.1 The optimal generator of Eq. 4 induces a distribution p∗g(x) = pD(x)
e−f(x)−ν

2− e−f(x)−ν
,138

where ν > 0 is the Lagrange multiplier that ensures that p∗g(x) is normalized to 1.139

We can see that by adding a secondary objective function for the generator, in general, the optimal140

generator does not attempt to match the data distribution pD(x) anymore, but instead tries to match141

the data distribution weighted by
e−f(x)−ν

2− e−f(x)−ν
. We expect that in such case, the discriminator142

clearly has an advantage in the two player zero-sum game and will be able to distinguish between143

real samples and sample generated by the generator.144

To allow the generator to specialize in optimizing the secondary objective function, we propose to145

introduce a second auxiliary generator that matches the portion of the data distribution that is not146

well captured by the primary generator. Let pmix =
pg + paux

2
, consider the min-max problem:147

min
G,Gaux

max
D

Ex∼pD [log(D(x))] + Ex∼pmix [log(1−D(x))] + Ex∼pg [f(x)], (5)

where we mix samples from the primary generator G and the auxiliary generator Gaux to generate148

samples that can fool the discriminator.149

Theorem 4.2 (Informal) Given that f is appropriately normalized, the primary generator pG per-150

forms in-support optimization of f(x).151

We first note that the optimal solution of the mixed distribution from Eq. 5 is the real data distribution:152

p∗aux(x) + p∗g(x)

2
= pD(x) (6)

Accordingly, the auxiliary generator distribution can be expressed as153

p∗aux(x) = 2pD(x)− p∗g(x) (7)

We define x0 to be the element inside the support of the data distribution pD that minimizes f , i.e.154

x0 = argmin
x∈Supp(pD)

f(x). When optimizing the secondary objective f(x), the primary generator will155

maximize the probability mass of in-support samples that maximize f(x). However, Eq. 7 introduces156

a constraint that enforces 2pD(x)− p∗g(x) ≥ 0 for p∗aux(x) ≥ 0 to remain a valid distribution. This157

leads us to conclude that the optimal primary generator p∗g assigns the following probability to x0:158

p∗g(x0) =

{
2pD(x0) if 2pD(x0) < 1

1 otherwise
(8)

Interestingly, if the global maximum x0 is not taking the full probability mass, the rest of the159

probability mass is redistributed to the next best in-support maxima, which we can define recursively:160

For xi ∈ argmin
x∈Supp(pD)\{xj}i−1

j=0

f(x), p∗g(xi) =


2pD(xi) if

∑i
j=0 p

∗
g(xj) < 1

1−
∑i−1
j=0 p

∗
g(xj) if

∑i
j=0 p

∗
g(xj) > 1

0 if
∑i−1
j=0 p

∗
g(xj) = 1

(9)
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We note that by introducing an auxiliary generator and mixing it with the primary generator, not only161

does the optimal solution for the mixed distribution match the real data distribution, but also the162

primary generator optimizes the secondary objective f only on the part of the domain of f that is163

within the support of pD.164

4.2 Update rules for offline reinforcement learning165

We will now incorporate the dual-generator method to train policies for offline RL, based on optimiz-166

ing the joint objective from Eq. 5. The updates for the actor and the critic are generally similar to167

Eq. 3. However, simply combining Eq. 5 and Eq. 3 can still allow the policy to exploit errors in the168

value function during the policy improvement step. We therefore augment the policy improvement169

step with an adaptive weight on the Q-value. More concretely, as the policy improvement step170

samples actions from the current policy iterate πk to optimize the policy objective, there is a non-zero171

probability that the sampled actions will exploit spurious maxima in the value function and have172

their probability of being sampled again in the future increased. If the same actions are sampled173

during the policy evaluation step, the errors in the value functions from the next states are backed174

up into the preceding states, leading to divergent value functions, as we observe in our experiments.175

To alleviate this issue, we use the probability assigned to the sampled actions to weight the value176

function estimates in the policy objective, leading to the following updates:177

Qk+1 ← argmin
Q

Es,a,s′∼D

[(
(R(s, a) + γEa′∼πk(a′|s′)[Q

k(s′, a′)])−Qtarget(s, a)
)2]

(10)

πk+1 ← argmax
π

Es,aD∼D,a∼πk(a|s)

[
Dk(s, a)

Dk(s, aD(s))
Qk+1(s, a) + logDk(s, a)

]
, (11)

where aD(s) is the action from the offline dataset. The term Dk(s, a) down-weights the contribution178

of the gradient of the value function to the policy update if the discriminator deems the sampled179

action too unlikely. We further calibrate the probability Dk(s, a) by dividing it with the probability180

Dk(s, aD(s)) that the discriminator assigns to the dataset action aD(s). It should be noted that during181

optimization the gradients are not propagated into these weights.182

Next, we define the update rules for the auxiliary generator and the discriminator. We mix the samples183

from the kth iterate of the policy πk and the distribution paux induced by the kth iterate of the184

auxiliary generator Gkaux, that is, let pmix =
πk + paux

2
. At every iteration k, we update the kth185

iterate of the auxiliary generator Gkaux and discriminator Dk using the objectives:186

Gk+1
aux ← argmin

Gaux

Ex∼pmix [log(1−Dk(s, a))] (12)

Dk+1 ← argmax
D

Ex∼pD [log(Dk(s, a))] + Ex∼pmix [log(1−Dk(s, a))] (13)

4.3 Algorithm summary187

Algorithm 1 provides a step-by-step description of our algorithm. At every training step, we sample188

a batch of transitions from the offline dataset and proceed to update the parameters of the value189

function, the policy, the auxiliary generator and the discriminator in that order.190

Algorithm 1 DASCO algorithm summary
1: Initialize Q-function Qθ, policy πϕ, auxiliary generator Gaux,ψ , discriminator Dω

2: for training step k in {1,. . . ,N} do
3: (s, a, r, s′)← D: Sample a batch of transitions from the dataset
4: θk+1 ← Update Q-function Qθ using the Bellman update in Eq. 10
5: ϕk+1 ← Update policy πϕ using the augmented objective in Eq. 11
6: ψk+1 ← Update auxiliary generator Gaux,ψ using the objective in Eq. 12
7: ωk+1 ← Update discriminator Dω using mixed samples from πϕ and Gaux,ψ as in Eq. 13
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5 Experiments191

Our experiments aim at answering the following questions: 1. When learning from offline datasets192

that require combining actions from sub-optimal trajectories, does DASCO outperform existing193

methods that are based on distribution constraints? 2. On standard benchmarks such as D4RL [7],194

how does DASCO compare against recent methods? 3. Are both the dual generator and the probability195

ratio weight important for the performance of DASCO?196

5.1 Comparisons on standard benchmarks and new datasets197

For our first set of experiments, we introduce four new datasets to simulate the challenges one198

might encounter when using offline RL algorithms on real world data. These datasets also introduce199

additional learning challenges and require the algorithm to combine actions in different trajectories200

to obtain good performance. We use the existing AntMaze environments from the D4RL suite [7]:201

antmaze-medium and antmaze-large. In these two environments, the algorithm controls an 8-DoF202

“Ant" quadruped robot to navigate a 2D maze to reach desired goal locations. The D4RL benchmark203

generates the offline datasets for these two environments using two policies: 1. a low-level goal204

reaching policy that outputs torque commands to move the Ant to a nearby goal location and 2. a205

high-level waypoint generator to provide sub-goals that guide the low-level goal-reaching policy to206

the desired location. We use the same two policies to generate two new classes of datasets. For the207

noisy dataset, we add Gaussian noise to the action computed by the low-level goal-reaching policy.208

The noise variance depends on the current 2D location of the Ant in the maze – larger in some 2D209

regions than others. We intend this dataset to be representative of situations where the data generation210

policies are more deterministic in some states than others [26] – a robot picking up an object has211

many good options to approach the object, but when the robot grasps the object, its behavior should212

be more deterministic to ensure successful grasp without damaging or dropping the object [33].213

For a biased dataset, in addition to adding Gaussian noise to the actions as it is done in the noisy214

dataset, we also add bias to the actions computed by the low-level policy. The values of the bias also215

depend on the current 2D location of the Ant in the maze. This setting is meant to simulate learning216

from relabelled data, where the dataset was generated when the data generation policies were per-217

forming a different task than the tasks we are using the dataset to learn to perform. Relabelling offline218

data is a popular method for improving the performance of offline RL algorithms [40, 37], especially219

when we have much more data for some tasks than others [18]. In the AntMaze environment, offline220

RL algorithms must combine data from sub-optimal trajectories to learn behaviors with high returns.221

In addition, noisy and biased datasets present a more challenging learning scenarios due to the222

added noise and systematic bias which vary non-uniformly based on the 2D location of the Ant.223

Table 1 illustrates the performance comparison of our method and representative methods that enforce224

distribution constraints, either through optimizing a conservative lower bound of the value estimates225

(CQL) or only optimizing the policy on actions in the dataset using Advantage Weighted Regression226

[35] (IQL). Our method outperforms both CQL and IQL. In these tasks, to ensure a fair comparison227

between different methods, we perform oracle offline policy selection to obtain the performance228

estimates for CQL, IQL, and our method. We also compare the performance on standard AntMaze229

tasks without modifications in Table 2. Our method outperforms IQL by a large margin on two230

diverse datasets.

Table 1: Performance comparison to distribution-constrained baselines when learning from the
noisy and biased datasets. Our method outperforms the baselines by a large margin.

Dataset CQL IQL DASCO (Ours)
antmaze-large-bias 50.0 41.0 63.9
antmaze-large-noisy 41.7 39.0 54.3
antmaze-medium-bias 72.7 48.0 90.2
antmaze-medium-noisy 55.0 44.3 86.3
noisy and biased antmaze-v2 total 219.4 172.3 294.7

231

By comparing the results in Table 1 (learning from noisy and biased datasets) and Table 2 (learning232

from existing offline datasets in D4RL), we also note that our proposed algorithm outperforms233
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Table 2: Performance comparison to distribution-constrained baselines on AntMaze tasks in D4RL.
Our algorithm outperforms the baselines when learning from two diverse datasets.

Dataset CQL IQL DASCO (Ours)
antmaze-umaze 95.0 93.0 98.2
antmaze-umaze-diverse 61.0 64.0 97.1
antmaze-medium-play 73.0 82.0 87.8
antmaze-medium-diverse 73.2 81.0 84.6
antmaze-large-play 44.0 53.0 56.0
antmaze-large-diverse 46.0 53.0 74.1
antmaze total 392.2 426.0 497.8

Table 3: Performance comparison with recent offline RL algorithms on the Gym locomotion tasks
Dataset BC 10%BC DT AWAC Onestep RL TD3+BC CQL IQL DASCO (Ours)
halfcheetah-medium-replay 36.6 40.6 36.6 40.5 38.1 44.6 45.5 44.2 44.7
hopper-medium-replay 18.1 75.9 82.7 37.2 97.5 60.9 95.0 94.7 101.7
walker2d-medium-replay 26.0 62.5 66.6 27.0 49.5 81.8 77.2 73.9 74.5
halfcheetah-medium-expert 55.2 92.9 86.8 42.8 93.4 90.7 91.6 86.7 94.3
hopper-medium-expert 52.5 110.9 107.6 55.8 103.3 98.0 105.4 91.5 111.4
walker2d-medium-expert 107.5 109.0 108.1 74.5 113.0 110.1 108.8 109.6 109.3
locomotion total 295.9 491.8 488.4 277.8 494.8 486.1 523.5 500.6 535.9

distribution-constraint offline RL algorithms (CQL, IQL) more consistently when tested on the noisy234

and biased datasets. For the results in these two tables, the definition of the antmaze-medium235

and antmaze-large environments are the same. The only axis of variation in the learning setup is236

the noise and systematic bias added to the actions of the dataset generation policies. We therefore237

conclude that our algorithm is more robust to the noise and systematic bias added to the actions than238

distribution-constrained offline RL algorithms.239

Next, we evaluate our approach on Gym locomotion tasks from the standard D4RL suite. The240

performance results on these tasks are illustrated in Table 3. Our method is competitive with BC,241

one-step offline RL methods [3], and multi-step distribution-constraint RL methods [21, 25]. This is242

not surprising because in these tasks, the offline dataset contains a large number of trajectories with243

high returns.244

In terms of total amount of compute and type of resources used, we use an internal cluster that allows245

for access up to 64 preemptive Nvidia RTX 2080 Ti GPUs. For each experiment of learning from an246

offline dataset, we use half a GPU and 3 CPU cores. Each experiment generally takes half a day to247

finish. We implemented our algorithms in Pytorch [34] and obtained results for baselines from the248

publicly available implementations released by the original authors.249

5.2 Ablations250

We conduct three different sets of experiments to gain more insights into our algorithm. The first251

experiment measures the importance of having an auxiliary generator. We recall that there are two252

benefits to having the auxiliary generator. Firstly, without the auxiliary generator, the generator does253

not in general match the data distribution (Theorem 4.1). As such, the discriminator has an unfair254

advantage in learning how to distinguish between real and generated examples. Secondly, the auxiliary255

generator plays the role of a support player and learns to output actions that are assigned non-zero256

probability by the data distribution, but have low Q values. The support player allows the policy257

to concentrate on in-support maximization of the Q-function (Theorem 4.2). Table 4 demonstrates258

that having an auxiliary generator clearly leads to a performance improvement across different task259

families, from Gym locomotion tasks to AntMaze tasks and even dexterous manipulation tasks.260

The second experiment compares the performance of the policy and the auxiliary generator on a subset261

of the Gym locomotion and AntMaze tasks (Table 5). The difference in the performance of the policy262

and auxiliary generator illustrates their specialization of responsibility: the policy learns to output263

actions that lead to good performance, while the auxiliary generator learns to model the “remainder"264
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of the data distribution. If this “remainder" also contains good action, then the auxiliary generator265

will have non-trivial performance. Otherwise, the auxiliary generator will have poor performance.266

In the Gym locomotion tasks, the auxiliary generator has non-trivial performance, but it is still worse267

than the policy. This demonstrates that: 1. By optimizing the policy to maximize the long-term268

return and the discriminator function, the policy can outperform the auxiliary generator, which only269

maximizes the discriminator function, 2. The dataset contains a large fraction of medium performance270

level actions contained in continuous trajectories, which the auxiliary generator has learnt to output.271

In contrast, in the bias and noisy AntMaze tasks, the auxiliary generator fails to obtain non-zero272

performance while the policy has strong performance. This reflects the necessity of carefully picking273

a subset of the in-support actions to obtain good performance.274

Table 4: Ablation for training without and with auxiliary generator. The dual generator technique,
which trains the auxiliary generator in addition to the policy, is crucial to obtain good performance.

Dataset Without With
halfcheetah-medium-expert 77.7 94.3
hopper-medium-expert 99 111.4
antmaze-large-bias 54.0 63.9
antmaze-large-noisy 39.0 54.3
relocate-human-longhorizon 10.1 40.7

Table 5: Policy vs Auxiliary Generator. The auxiliary generator has reasonable performance on the
easier locomotion tasks and is significantly worse than the policy on the harder AntMaze tasks.

Dataset Auxiliary Generator Policy
halfcheetah-medium-expert 44.167 94.3
hopper-medium-expert 75.357 111.4
antmaze-large-bias 0.0 63.9
antmaze-large-noisy 0.0 54.3

The third set of experiments illustrates the importance of weighing the value function in the policy275

objective by the probability computed by the discriminator, as described in Eq. 11. Doing so provides276

a second layer of protection against exploitation of errors in the value function by the policy. Table 6277

illustrates that this is very important for the AntMaze tasks, which require combining optimal and278

sub-optimal trajectories to obtain good performance. Perhaps this is because learning from such279

trajectories necessitates many rounds of offline policy evaluation and improvement steps, with each280

round creating an opportunity for the policy to exploit the errors in the value estimates. On the other281

hand, the dynamic weight is less important in the Gym locomotion tasks, presumably because a282

significant fraction of the corresponding offline datasets has high returns and therefore incorporating283

sub-optimal data is less criticial to obtain high performance.284

Table 6: Ablation for dynamic weighting of value function estimates in the policy objective. When
learning from datasets that require combining actions across trajectories, such as the AntMaze tasks,

using the dynamic weighting is vital to obtaining good performance.

Dataset Without With
halfcheetah-medium-expert 89.7 94.3
hopper-medium-expert 110.8 111.4
antmaze-large-play 0.0 56.0
antmaze-large-diverse 0.0 74.1

6 Conclusions285

In this paper, we introduced DASCO, a GAN-based offline RL method that addresses the challenges286

of training policies as generators with a discriminator to minimize deviation from the behavior policy287
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by means of two modifications: an auxiliary generator to turn the GAN loss into a support constraint,288

and a value function weight in the policy objective. The auxiliary generator makes it possible for289

the policy to focus on maximizing the value function without needing to match the entirety of the290

data distribution, only that part of it that has high value, effectively turning the standard distributional291

constraint that would be enforced by a conventional GAN into a kind of support constraint. This292

technique may in fact be of interest in other settings where there is a need to maximize some objective293

in addition to fooling a discriminator, and applications of this approach outside of reinforcement294

learning are an exciting direction for future work. Further, since our method enables GAN-based295

strategies to attain good results on a range of offline RL benchmark tasks, it would also be interesting296

in future work to consider other types of GAN losses that induce different divergence measures. We297

also plan to explore robust methods for offline policy and hyper-parameter selection in the future.298
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Appendices418

A Proofs for theorems in Section 4.1419

A.1 Proof for Theorem 4.1420

In the following proof, we use pdata to refer to the real data distribution, instead of pD as in Section 4.1,421

to avoid confusion with the discriminator distribution.422

We recall Theorem 4.1:423

Theorem 4.1 The optimal generator of Eq. 4 induces a distribution p∗g(x) = pD(x)
e−f(x)−ν

2− e−f(x)−ν
,424

where ν > 0 is the Lagrange multiplier that ensures that p∗g(x) is normalized to 1.425

The optimization problem in Eq. 4 is:426

min
G

max
D

V (G,D) = Ex∼pdata [log(D(x))] + Ez∼p(z)[log(1−D(G(z)))] + Ez∼p(z)[f(G(z))]

The proof proceeds as follows: We first simplify the objective function into two terms. The first term427

is the Jensen–Shannon divergence between the data distribution and the distribution induced by the428

generator [11]. The second term is the expected value of the secondary objective function f . We then429

show that the problem is convex, where strong duality holds. We then use the KKT conditions to find430

the functional form of the optimal solution, which gives us Theorem 4.1.431

We only prove the statement for discrete sample space, and we let n be the size of the sample space –432

the random variable x can take on n different values.433

Proof. Since the third term in the objective function is not a function of the discriminator D, for G434

fixed, the optimal discriminator of Eq. 4 is D∗
G(x) =

pdata(x)

pdata(x) + pg(x)
where pg is the distribution435

induced by the generator G. (similar to Prop 1 in [11] ).436

Similarly to how [11] shows that the GAN objective in Eq. 1 minimizes the JS divergence between437

the data distribution and the distribution induced by the generator, we can now rewrite the objective438

in Eq. 4 as:439

V (G,D∗
G) (14)

= Ex∼pdata [log(D
∗
G(x))] + Ez∼p(z)[log(1−D∗

G(G(z)))] + Ez∼p(z)[f(G(z))] (15)

= 2JSD(pdata||pg) + Ex∼pg [f(x)]− log 4 (16)

For conciseness, let g(i) = pg(xi) be the probability that pg assigns to xi and g = [g(1), . . . , g(n)]T440

be a column vector containing the probabilities that pg assigns to each possible values of x, from x1441

to xn.442

Similarly, let f (i) = f(xi) be the value that the secondary objective f assigns to xi. We also overload443

the notation to let f = [f (1), . . . , f (n)]T be a column vector containing the values that the secondary444

objective f assigns to each possible value of the random variable x, from x1 to xn.445

Also let p(i)data = pdata(xi) be the probability that the data distribution assigns to xi.446

We can then rewrite the problem in Eq. 4 in a standard form [2] as:447

min
g

2JSD(pdata||pg) + gT f (17)

s.t. − g(i) ≤ 0 (18)

1T g − 1 = 0 (19)

where 1 is a column vector of 1, which has the same number of entries as the vector g. The constraint448

18 ensures that the probability that pg assigns to any x is non-negative and the constraint 19 ensures449

the probabilities sum up to 1.450
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The problem is convex because the objective function is a nonnegative weighted sum of two convex451

functions (JSD is convex because JSD is itself a nonnegative weighted sum of KL, which is a convex452

function).453

Strong duality also holds because Slater’s condition holds. A strictly feasible point for Slater’s454

condition to hold is the uniform distribution, i.e. g(i) =
1

n
,∀i.455

The Lagrangian is:456

L = 2JSD(pdata||pg) + gT f −
∑
i

λ(i)g(i) + ν(1T g − 1) (20)

where λ(i) and ν are the Lagrangian multipliers.457

For any i ∈ [1, n], the partial derivative of the Lagrangian with respect to g(i) is:458

∂L

∂g(i)
= log

(
2g(i)

p
(i)
data + g(i)

)
+ f (i) − λ(i) + ν (21)

Let g∗ and (λ∗, ν∗) be the primal and dual optimal solutions of the optimization problem. As the459

strong duality holds, the variables g∗ and (λ∗, ν∗) must satisfy the KKT conditions. For any i ∈ [1, n],460

the following holds:461

−g(i)∗ ≤ 0 (22)

1T g∗ − 1 = 0 (23)

λ
(i)
∗ ≥ 0 (24)

λ
(i)
∗ g

(i)
∗ = 0 (25)

∂L

∂g(i)
= log

(
2g

(i)
∗

p
(i)
data + g

(i)
∗

)
+ f (i) − λ(i)∗ + ν∗ = 0 (26)

From Equation 26, we have λ(i)∗ = log

(
2g

(i)
∗

p
(i)
data + g

(i)
∗

)
+ f (i) + ν∗, and substitute into Equation 25:462

[
log

(
2g

(i)
∗

p
(i)
data + g

(i)
∗

)
+ f (i) + ν∗

]
g∗i = 0 (27)

We consider what happens when g∗i > 0, due to complementary slackness, we have:463

log

(
2g

(i)
∗

p
(i)
data + g

(i)
∗

)
+ f (i) + ν∗ = 0 (28)

=⇒ g
(i)
∗ =

p
(i)
datae

−f(i)−ν∗

(2− e−f(i)−ν∗)
(29)

p∗g(xi) = pdata(xi)
e−f(xi)−ν∗

2− e−f(xi)−ν∗
(30)

We can then pick an appropriate value for the Lagrange multiplier ν such that the probabilities p∗g(xi)464

normalize to 1. QED.465

A.2 Proof for Theorem 4.2466

In the following proof, we use pdata to refer to the real data distribution, instead of pD as in Section 4.1,467

to avoid confusion with the discriminator distribution.468
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Recall that we define pmix as pmix =
pg + paux

2
. Theorem 4.2 is stated in reference to the469

optimization problem in Eq. 5, which we restate here:470

min
G,Gaux

max
D

V (G,Gaux, D) = Ex∼pdata [log(D(x))] + Ex∼pmix
[log(1−D(x))] + Ex∼pg [f(x)]

(31)

where the first two terms in the objective function are the GAN objective and the last term is the471

secondary objective function.472

Similar to the proof for Theorem 4.1, we can rewrite the objective function in Eq. 31 as [11]:473

V (G,Gaux, D
∗) (32)

= 2JSD(pdata||
pg + paux

2
) + Ex∼pg [f(x)]− log 4 (33)

We are only interested in optimizing for the secondary objective function f in the space of optimal474

GAN solutions. We therefore enforce that pmix =
pg + paux

2
= pdata, which makes the JSD term475

vanish in Eq. 33 and allows us to solve the following optimization problem.476

min
G

Ex∼pg [f(x)] (34)

s.t. pg ≤ 2pdata (35)
paux = 2pdata − pg (36)

We claim that the solution to the optimization problem above is as follows. We define x0 to be the477

element inside the support of the data distribution pdata that minimizes f , i.e. x0 = argmin
x∈Supp(pdata)

f(x).478

The optimal primary generator p∗g assigns the following probability to x0:479

p∗g(x0) =

{
2pdata(x0) if 2pdata(x0) < 1

1 otherwise
(37)

If the global maximum x0 is not taking the full probability mass, the rest of the probability mass is480

redistributed to the next best in-support maxima, which we can define recursively:481

For xi ∈ argmin
x∈Supp(pdata)\{xj}i−1

j=0

f(x), p∗g(xi) =


2pdata(xi) if

∑i
j=0 p

∗
g(xj) < 1

1−
∑i−1
j=0 p

∗
g(xj) if

∑i
j=0 p

∗
g(xj) > 1

0 if
∑i−1
j=0 p

∗
g(xj) = 1

(38)

Proof.482

We show the proof by contradiction. That is, assume that there exists another distribution pag with the483

following properties:484

• There exists x where pag(x) ̸= p∗g(x)485

• pag satisfies the constraint (35)-(36)486

• The value of the objective function achieved by pag is better than the value achieved by p∗g.487

That is, Ex∼pag [f(x)] < Ex∼p∗g [f(x)].488

We will show that the existence of such a distribution pag will lead to contradiction,489

We separate the analyses into three different cases, depending on the property of p∗g:490

• Case 1: p∗g assigns all probability mass to x0491

• Case 2: If p∗g assigns non-zero probability to x, then p∗g = 2pdata(x)492
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• Case 3: There exists an x where 2pdata(x) > p∗g(x) > 0493

We will walk through the three cases independently and show the contradiction in each case.494

Case 1: p∗g assigns the full probability mass to x0, that is p∗g(x0) = 1, and assigns zero probability to495

every x not equal to x0. Without loss of generality, we consider pg that assigns non-zero probability496

to a xk ̸= x0, assigns the remaining probability mass to x0, and assigns zero probability to all x that497

is not equal to either x0 or xk. That is, assume there exists pag such that:498

0 > pag(x0) > 1 (39)

pag(xk) = 1− pag(x0) > 0 for some xk ∈ Supp(pdata) (40)

Ex∼p∗g [f(x)]− Ex∼pag [f(x)] > 0 (41)

where xk ∈ Supp(pdata) follows from constraint 35 (pg ≤ 2pdata, and thus pag can only assign non-zero499

probability to x within the support of pdata). We can then show that:500

Ex∼p∗g [f(x)]− Ex∼pag [f(x)] (42)

=f(x0)− pag(x0)f(x0)− pag(xk)f(xk) (43)

=(1− pag(x0))f(x0)− pag(xk)f(xk) (44)

=pag(xk)f(x0)− pag(xk)f(xk) (45)

=pag(xk)[f(x0)− f(xk)] ≤ 0 (contradiction with Eq.41) (46)

where the last inequity follows from these two facts:501

x0 = argmin
x∈Supp(pdata)

f(x) (47)

xk ∈ Supp(pdata) (48)

Case 2:502

p∗g(x) =

{
2pdata(x) if p∗g(x) > 0

0 otherwise
(49)

Let {x0, . . . , xi} be the set of x where p∗g(x) > 0, then we also require that
∑i
j=0 p

∗
g(x) = 1.503

Without loss of generality, we assume a distribution pag exists with the following properties. There504

exists xm, xn such that:505

p∗g(xm) = 2pdata(xm) > 0 and pag(xm) < 2pdata(xm) (50)

p∗g(xn) = 0 and pag(xn) = 2pdata(xm)− pag(xm) > 0 (51)

p∗g(x) = pag(x) otherwise (that is, for all x /∈ {xm, xn}) (52)

Ex∼p∗g [f(x)]− Ex∼pag [f(x)] > 0 (53)

We note that f(xm) ≤ f(xn) since p∗g assigns non-zero probability to xm and assigns zero probability506

to xn.507

We can show that:508

Ex∼p∗g [f(x)]− Ex∼pag [f(x)] (54)

=p∗g(xm)f(xm)− pag(xm)f(xm)− pag(xn)f(xn) (55)

=p∗g(xm)f(xm)− pag(xm)f(xm)− pag(xn)f(xn) (56)

=p∗g(xm)f(xm)− pag(xm)f(xm)− (2pdata(xm)− pag(xm))f(xn) (57)

=p∗g(xm)f(xm)− pag(xm)f(xm)− 2pdata(xm)f(xn) + pag(xm)f(xn) (58)

=p∗g(xm)f(xm)− pag(xm)f(xm)− p∗g(xm)f(xn) + pag(xm)f(xn) (59)

=p∗g(xm)[f(xm)− f(xn)]− pag(xm)[f(xm)− f(xn)] (60)

=[f(xm)− f(xn)][p∗g(xm)− pag(xm)] ≤ 0 (contradiction with Eq.53) (61)
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where the last inequality is true because f(xm) ≤ f(xn) as we noted above, and p∗g(xm) =509

2pdata(xm) > pag(xm).510

Case 3:511

There exists xi such that 2pdata(xi) > p∗g(xi) > 0. For all x ̸= xi:512

p∗g(x) =

{
2pdata(x) if p∗g(x) > 0

0 otherwise
(62)

Let {x0, . . . , xi} be the set of x where p∗g(x) > 0, we also require
∑i
j=0 p

∗
g(x) = 1.513

Without loss of generality, there are three cases we need to consider for the distribution pag , each514

yielding a contradiction:515

• pag(xi) = p∗g(xi), but there exists x such that pag(x) ̸= p∗g(x).516

• pag(xi) > p∗g(xi).517

• pag(xi) < p∗g(xi).518

In each case, the proof by contradiction is similar to the proof in Case 2 above, where we pick a pair519

of xm, xn and shows that pag can not achieve a lower value of the objective function than p∗g . We thus520

do not repeat the argument here. QED521

B Description of the offline dataset generation procedure for the noisy and522

biased AntMaze datasets523

In the experiments section, we introduce the bias and noisy datasets for the AntMaze tasks. In this524

section, we provide more details on how the datasets were generated in the form of Python syntax in525

Code Listing 1. We plan to open-source both the datasets and the code to generate the datasets upon526

acceptance.527

Code Listing 1: Illustration of the dataset generation procedure for the bias and noisy datasets.
Given an action computed by the behavior_policy, we add noise and bias to the action. The

magnitudes of the noise and bias depend on the x-values of the position of the Ant in the 2D maze.
528

NOISES = [0.1, 0.0, 0.2, 0.05 , 0.3, 0.1, 0.4, 0.2]529

BIASES = [0.1, -0.1, 0.2, 0.0, 0.2, -0.3, 0.2, 0.0]530

POSITION = [-20.0, 0.0, 4.0, 8.0, 12.0, 16.0, 20.0, 24.0]531

532

action = behavior_policy.get_action(obs)533

534

x_position = get_x_position(obs)535

536

pos = [idx for idx in range(len(POSITION)) if POSITION[idx] <=537

x_position]538

pos = max(pos)539

540

noise = NOISES[pos]541

bias = BIASES[pos]542

543

action = action + np.random.normal(size=action.shape) * noise - bias *544

np.ones_like(action)545

action = np.clip(action , -1.0, 1.0)546547

C Additional experimental details548

For all tasks, we average mean returns overs 20 evaluation trajectories. Similar to the pre-processing549

steps in previous works [20], we standardize MuJoCo locomotion task rewards by dividing by the550

difference of returns of the best and worst trajectories in each dataset. For the AntMaze datasets,551
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we subtract 1 from rewards for all transitions. We use Adam optimizer [19] with a learning rate552

of 0.0003. For the value functions, we use an MLP with 3 hidden layers of size 256. For both the553

GAN discriminator and auxiliary generator, we use an MLP with 1 hidden layer of size 750. The554

auxiliary generator takes a state as an input, and a noise vector and output actions deterministically as555

a function of the input state and noise vector. For the policy, which is also the primary generator, we556

use an MLP with 4 hidden layers of size 256. The policy takes a state as an input and outputs the557

parameters of a diagonal Gaussian, from which we sample an action. We update the target network558

with soft updates with parameter 0.005.559

For the discriminator loss function, we use the mean-squared error loss, inspired by LSGAN [31].560

For the auxiliary generator, we use the standard vanilla GAN loss. The loss functions and how they561

are used are further illustrated in Section D. We also use instance noise [39] where we sample the562

instance noise from a Gaussian distribution for each action dimension independently. The Gaussian563

is zero-center and has an initial standard deviation of 0.3 at the beginning of training. We anneal the564

magnitude of the noise over time and also clamp the instance noise to have a maximum magnitude of565

0.3.566

In the policy objective (Eq. 11), we also use a hyper-parameter w to weight the contribution of the567

value function and the discriminator probability to the policy update. That is, we use Eq. 63 to update568

the policy. We fix the value of w throughout training. For the AntMaze tasks, we set w = 0.025. For569

the Mujoco locomotation task, we set w = 1.0.570

πk+1 ← argmax
π

Es,aD∼D,a∼πk(a|s)

[
1

w

Dk(s, a)

Dk(s, aD(s))
Qk+1(s, a) + logDk(s, a)

]
, (63)

The results with standard deviation of the mean episode return for the AntMaze tasks when learning571

from the noisy and biased datasets are illustrated in Table 7.572

Table 7: Performance comparison to distribution-constrained baselines when learning from the
noisy and biased datasets of the AntMaze tasks. Our method outperforms the baselines by a large
margin. The value in parenthesis indicates the standard deviation of mean episode return, computed

over 3 different runs.

Dataset CQL IQL DASCO (Ours)
antmaze-large-bias 50.0 (5.3) 41.0 (7.9) 63.9 (6.0)
antmaze-large-noisy 41.7 (4.6) 39.0 (6.4) 54.3 (2.0)
antmaze-medium-bias 72.7 (7.0) 48.0 (5.9) 90.2 (2.4)
antmaze-medium-noisy 55.0 (5.3) 44.3 (1.7) 86.3 (4.5)
noisy and biased antmaze-v2 total 219.4 172.3 294.7

D Detailed algorithm description573

Algorithm 1 provides a summary of the training step given a batch of transitions from the offline574

dataset. In this section, we provide the description of how the different networks in our algorithms575

are trained using Python syntax. We include four Code Listings below, each illustrating the details of576

an update step in Algorithm 1.577
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Code Listing 2: Value networks training step given a batch of data, corresponding to step 4 in
Algorithm 1

578
rewards = batch[’rewards ’]579

terminals = batch[’terminals ’]580

obs = batch[’observations ’]581

actions = batch[’actions ’]582

next_obs = batch[’next_observations ’]583

584

# Computing target Q values585

next_obs_target_actions = policy(next_obs)586

587

target_Q1 = target_qf1(next_obs , next_obs_target_actions)588

target_Q2 = target_qf2(next_obs , next_obs_target_actions)589

target_Q = torch.min(target_Q1 , target_Q2)590

target_Q = rewards + (1 - terminals) * discount * target_Q591

592

# Obtain loss function593

current_Q1 , current_Q2 = qf1(obs , actions), qf2(obs , actions)594

595

qf1_loss = F.mse_loss(current_Q1 , target_Q)596

qf2_loss = F.mse_loss(current_Q2 , target_Q)597

598

# Update parameters of value functions599

qf1_optimizer.zero_grad ()600

qf1_loss.backward ()601

qf1_optimizer.step()602

603

qf2_optimizer.zero_grad ()604

qf2_loss.backward ()605

qf2_optimizer.step()606

607

# Update Target Networks608

soft_update_from_to(qf1 , target_qf1 , tau)609

soft_update_from_to(qf2 , target_qf2 , tau)610611
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Code Listing 3: Policy network training step given a batch of data, corresponding to step 5 in
Algorithm 1

612
obs = batch[’observations ’]613

real_actions = batch[’actions ’]614

615

actor_actions = policy(obs)616

617

# Compute value estimate618

Q_pi_actions = qf1(obs , actor_actions)619

620

# Compute log probability under discrimator621

D_actor_actions_logit = discriminator(622

obs ,623

actor_actions ,624

return_logit=True625

)626

627

log_D_actor_actions = F.logsigmoid(D_actor_actions_logit)628

629

# Compute probability ratio630

probs = discriminator(obs , actor_actions)631

real_actions_probs = discriminator(obs , real_actions)632

633

probs = torch.min(real_actions_probs , probs)634

635

# min (D(s, a), D(s, a_dataset)) / D(s, a_dataset)636

probs = probs / real_actions_probs637

638

probs = probs.detach ()639

640

# Compute loss and update policy641

policy_loss = - (642

probs * Q_pi_actions / w + log_D_actor_actions643

).mean()644

645

policy_optimizer.zero_grad ()646

policy_loss.backward ()647

policy_optimizer.step()648649
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Code Listing 4: Auxiliary generator training step given a batch of data, corresponding to step 6 in
Algorithm 1

650
obs = batch[’observations ’]651

652

# Calculate loss653

b_size = obs.size(0)654

real_label = torch.full(655

(b_size ,),656

1)657

658

actions_fake = auxiliary_generator(obs)659

660

logits = discriminator(661

obs ,662

actions_fake ,663

return_logit=True)664

665

err = F.binary_cross_entropy_with_logits(666

logits ,667

real_label)668

669

# Update auxiliary generator670

auxiliary_generator_optimizer.zero_grad ()671

err.backward ()672

auxiliary_generator_optimizer.step()673674
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Code Listing 5: Discriminator training step given a batch of data, corresponding to step 7 in
Algorithm 1

675
obs = batch[’observations ’]676

actions = batch[’actions ’]677

678

b_size = obs.size(0)679

680

# Calculate loss on real action681

D_real_logits = discriminator(682

obs ,683

actions + get_instance_noise(actions),684

return_logit=True685

)686

687

real_label = torch.full(688

(b_size ,),689

1)690

691

errD_real = F.mse_loss(692

F.sigmoid(D_real_logits),693

real_label694

) / 2.695

696

# Calculate loss on fake action697

def loss_fake_action(fake_action):698

fake_label = torch.full(699

(b_size ,),700

0,701

)702

703

D_fake_logits = discriminator(704

obs ,705

fake_action.detach () + get_instance_noise(fake_action),706

return_logit=True707

)708

709

errD_fake = F.mse_loss(710

F.sigmoid(D_fake_logits),711

fake_label712

) / 2.713

714

return errD_fake715

716

fake_action_aux = auxiliary_generator(obs)717

fake_action_policy = policy(obs)718

719

err_D_fake = loss_fake_action(fake_action_aux) \720

+ loss_fake_action(fake_action_policy)721

722

# Compute gradient and update the discriminator723

discriminator_optimizer.zero_grad ()724

(errD_real + err_D_fake).backward ()725

discriminator_optimizer.update ()726727
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