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Abstract

Understanding and explaining the decisions of neural networks is of great impor-
tance, for safe deployment as well as for legal reasons. In this paper, we consider
visual explanations for deep image classifiers that are both informative and un-
derstandable by humans. Motivated by the recent FullGrad method, we find that
bringing information from multiple layers is very effective in producing expla-
nations. Based on this observation, we propose a new method, DeepMaps, that
combines information from hidden activities. We show that our method outranks
alternative explanations with respect to metrics established in the literature, which
are based on pixel perturbations. While these evaluations are based on changes
in the class scores, we propose to directly consider the change in the network’s
decisions. Noting that perturbation-based metrics can fail to distinguish random
explanations from sensible ones, we propose to measure the quality of a given ex-
planation by comparing it to explanations for randomly selected other images. We
demonstrate through experiments that DeepMaps outperforms existing methods
according to the resulting evaluation metrics as well.

1 Introduction

Neural networks are well-established tools in a wide range of applications, such as image recogni-
tion, natural language understanding, recommendation systems, to name a few. Their deployment,
however, is in some cases met with reservation, and comes with its own challenges (e.g. legal or
safety-related), given how little guarantees are available about their generalisation properties, or
about their robustness to changes in the input data. Therefore, there is an increasing demand for
explanations (Goodman & Flaxman, 2017), especially urgent where machine learning algorithms
support human decisions, e.g., in medical diagnosis, law, banking, among other domains.

In this paper, we add to the explainable AI effort by focusing on explaining decisions of deep image
classifiers. More precisely, we consider trained networks rather than the problem of image classi-
fication itself (cf. Rieger & Hansen, 2019; Kindermans et al., 2017), and we study instance-based
explanations (Baehrens et al., 2010), i.e. explanations for a given image. Supplying such visual ex-
planations together with network decisions might increase trust of the end user, or, contrarily, help to
spot deficiencies in the network’s decisions. Thus, our work is relevant for deciding which networks
are safe to deploy (cf. Adebayo et al., 2020).

∗During this work, O. Rivasplata was an intern at DeepMind.
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Figure 1: Saliency maps. Example visual explanations were produced by one of the �rst methods
(GRADIENTS), a popular one (GRADCAM ), a recent one (FULL GRAD) and ours (DEEPMAPS).

What we call avisual explanationtakes the form of an image that matches the shape (array of
pixels) of the given input image. Such explanations can be easily visualised and even overlaid over
the input image, boosting interpretability. Speci�cally, we focus onsaliency maps, which are visual
explanations that highlight pixels that are most relevant for the network's decision, such as shown
in Fig. 1. As one can see, different saliency maps range from scattered points to big blobs through
shapes which highlight the most relevant content in the image.

The �rst attempts to produce visual explanations were based on input gradients (see, e.g. Fig. 1, Gra-
dients), showing the local sensitivity of the class score, which is rather hard to interpret (Baehrens
et al., 2010; Simonyan et al., 2014). To address this issue, Selvaraju et al. (2016) proposed to analyse
the information obtained from the last convolutional layer rather than the input. Their method yields
explanations of lower resolution, which, while desirable, also tends to remove the �ne details of the
object shape (Fig. 1, GradCAM). We advocate for explanations that are of suf�ciently low resolu-
tion to be localised around the object of interest, and at the same time suf�ciently high resolution to
keep the distinctive details of its shape. Recent work by Srinivas & Fleuret (2019) goes in this di-
rection, and argues that methods for extracting visual explanations should take bias parameters into
account (see also Kindermans et al., 2017). Applying their method to the original VGG-16 network
(Simonyan & Zisserman, 2014) results in a vast improvement over the input-based saliency maps
(Fig. 1, FullGrad). However, an analysis of the behaviour of VGG-16 shows that the bias parameters
contribute very little to the class scores and have negligible effect in the �nal decisions. Thus, the
success of the FULL GRAD method of Srinivas & Fleuret (2019) must be for some other reason. We
hypothesise that it is rather due to aggregating explanations over different depths, and propose a new
method, DEEPMAPS, that produces saliency maps based on hidden activities instead of biases.

Apart from producing better explanations, on which many studies have focused, developing eval-
uations for network explanations remains challenging. We often rely on visual comparison to the
ground truth images as a way to rank methods. While such an evaluation is easy to understand, it is
biased towards human perception and results in the introduction of many heuristics for smoothing
or sharpening the saliency maps. It is therefore hard to tell which part of the resulting explana-
tions is related to the network behaviour and which part is related to the method heuristics, and so
developing quantitative measures that are unambiguous as well as principled is of high interest.

Popular quantitative measures are built on image perturbation as a means for evaluating saliency
maps. In the most common pixel-removal approach, image regions are masked while the change
in the class scores is monitored (Samek et al., 2016). The masks are chosen according to the given
saliency map, either selecting the most or least important pixels. However, existing approaches have
multiple drawbacks: they care about class scores instead of the actual classi�cation performance,
and they are not always able to distinguish sensible explanations from obscure ones; for example,
high frequency random perturbations are likely to confuse state-of-the-art neural networks (Samek
et al., 2016; Fong & Vedaldi, 2017; Dabkowski & Gal, 2017), and hence can achieve high scores as
explanations when considering the removal of the most important pixels.

To overcome the above dif�culties, we propose new evaluation approaches. First, rather than moni-
toring the score change while removing pixels, we monitor the change in decisions. In addition, we
propose a new evaluation method that is constructed to distinguish meaningful explanations from
random ones. This new evaluation method measures the quality of a given explanation by comparing
it to a set of other explanations obtained by the same explanation method for random images from
the dataset of interest.

We analyse the performance of DEEPMAPS through extensive experiments and compare it to FULL -
GRAD and other existing methods (see also Appendix E). Arguably, it produces explanations that
are visually more convincing, as they particularly highlight the �ne details of the object shape that
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are important to the predicted class (see, e.g. Fig. 1, DeepMaps). We also demonstrate that in VGG-
16, DEEPMAPS outperforms previous explanations with respect to evaluation metrics commonly
used in the literature, and the new ones proposed in this paper. We also analyse DEEPMAPS for
ResNet-50 (He et al., 2016), showing a competitive performance to previous methods.

To summarize, our contributions come in two angles: (i) We challenge the use of biases for visual
explanations and propose a new method that aggregates information from hidden activations instead.
(ii) We rethink the evaluation of visual explanations and propose new metrics, and a novel evaluation
paradigm, which have intuitively desirable properties. The rest of the paper is organised as follows.
Previous work is presented inx2. The analysis leading to the development of DEEPMAPS and the
description of the method are presented inx3. Existing and new quality metrics are described in
x4, together with an in-depth analysis of the performance of the different methods according to the
different metrics.

2 Notation and background

We consider feed-forward (convolutional) ReLU networks for image classi�cation, as sketched in
Fig. 2 (top). A ReLU network composed ofL layers takes an input imagex 2 Rm � n � � of width m,
heightn, and composed of� colour channels, and progressively maps this image into subsequent
hidden layers, which gives the “images”x l for l 2 f 1; : : : ; L � 1g de�ned byx l =

�
W l x l � 1 + bl

�
+ ,

wherex0 = x is the original input,x l 2 Rm l � n l � � l for suitable dimensions,W l is a weight matrix
of appropriate size,bl is a tensor with the same size asx l (although, in practice, bias values are often
shared across space), and[�]+ is the positive part function (applied entrywise to a tensor).2 The
network computes class scoresf c for all possible classesc 2 f 1; : : : ; Cg by f c = wL

c xL � 1 + bL
c .

The predicted label forx is given by the class corresponding to the highest score. Throughout the
paper, each entry of a vector corresponding to a neuron in a layer (such asx l ) is indexed by its
spatial position(i; j ) and its channel� .

2.1 From gradient-based to attribution-based explanations

The �rst attempts to produce explanations were based on the study of the gradients, coinciding
with the weights for the case of linear models. Gradient visualisations provide insight into how the
classi�er works locally, by quantifying how each class weighs every pixel in a small neighborhood
of the input image. This is especially true for ReLU networks, as the class scores are piecewise
linear functions of the inputx.

The earliest methods for producing visual explanations based on this concept of gradient back-
propagation are due to (Baehrens et al., 2010; Simonyan et al., 2014). Such methods simply compute
the gradients@fc (x )

@xij�
(note that they exist in ReLU networks for almost all images, apart from a set

of Lebesgue measure zero), and produce a saliency maps of the same size as the input imagex, by

taking, for example,sij (x) =
P

�

�
�
� @fc (x )

@xij�

�
�
� . We refer to this method as GRADIENTS. In a similar

vein, a large family of attribution methods were developed, devising rules for decomposing the
class score and back-propagating the decomposition to the input space (Bach et al., 2015; Selvaraju
et al., 2016; Sundararajan et al., 2017; Smilkov et al., 2017; Shrikumar et al., 2017; Lundberg &
Lee, 2017). Of those, particularly relevant to this work are gradient� input attributions (Srinivas &
Fleuret, 2019), de�ned as

acij (x) =
�X

� =1

x ij�
@fc(x)
@xij�

: (1)

While these explanations are easy to compute, are intuitively related to the network behaviour, and
result in saliency maps showing signal around the objects of interest; they are typically scattered
and noisy-looking (similarly to the panel Gradients in Fig. 1). In view of this, from a human-centric
perspective, such explanations are hard to interpret.

2With a slight abuse of notation, tensors are treated in the equations as their one-dimensional �attened
versions.
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Figure 2: Example attributions in VGG-16. An image of a gazelle is fed into the VGG-16 classi�er,
which outputs the scoref c = 23:7 in favour of that class. Per layer activity attributions (ah;l ,
middle) and bias attributions (ab;l , bottom) are shown in color (red positive, blue negative), with
their gross sum (Ah;l

c , Ab;l
c ) displayed over each panel. Biases from nearly all convolutional layers

contribute less than a percentage of the overall score. The last convolutional layer contributes most
value (4.03), but in that layer, attributions lose focus from the gazelle. If the biases were all zero,
hidden-layer attributions would sum to the same value in every single layer.

One of the �rst and most popular methods to produce low-resolution explanations isGRADCAM
(Selvaraju et al., 2016), which uses the gradients with respect to the activations in the last convo-
lutional layer. While the saliency maps produced by this method (e.g. Fig. 1, GradCAM) are more
centered around the object of interest, they tend to render a low resolution signal, losing the shape
of the object.

The concepts humans tend to look for lie in the spectrum of explanations in-between these two
extremes. More recently, Srinivas & Fleuret (2019) proposed the FULL GRAD method that incorpo-
rates information from the biases. Their method is derived by looking at complete decompositions
of the class scores, i.e. attributions that sum up to the score. For a network with zero-biases, due to
the piecewise linearity of the output, this is obtained from gradient� input attributions:

f c(x) =
X

i;j;�

x ij�
@fc(x)
@xij�

=
X

i;j

acij (x): (2)

In general, a complete decomposition of a class score requires taking bias parameters into account.
De�ning bias attributions as

ab;l
cij� = bl

ij�
@fc(x)
@blij�

; (3)

Srinivas & Fleuret (2019) noted thatf c(x) =
P

i;j acij (x) +
P

l;� ab;l
c� . Mapping the biases back to

a single image of the original size (m � n), they proposed the saliency map

sij = 	( ac) ij +
LX

l =1

X

� 2 � l

	( ab;l
c� ) ij ; (4)

whereac = ( acij ) i;j is the matrix of input attributions (Eq. (1)). Srinivas & Fleuret (2019) recom-
mended using

	( a) = bilinearUpscale(normalize(jaj)) (5)

wherebilinearUpscaleis a typical image resizing operation mapping its input image to sizem � n,
andj:j andnormalize are applied entrywise withnormalize(aij ) = ( aij � min(a))=(max(a) �
min(a)) for a matrixa.

The resulting explanation is shown in Fig. 1 (FullGrad). There is a clear improvement over saliency
maps based on input attributions, which look just like the Gradients, Fig. 1. In the next section, we
look into the sources of this improvement, and based on our �ndings we propose a new explanation
method.

4



3 DeepMaps: rethinking attributions

We illustrate the decomposition of the class score for an example image of a gazelle in Fig. 2 for a
VGG-16 network. Note that our network was trained without layer normalisations, so there are no
other parameters we need to take into account beyond the biasesbl . For each layerl , we sum up bias
attributions over all channels,ab;l

cij =
P

� ab;l
cij� . We show the bias attributionsab;l

cij in the bottom

row of Fig. 2, with their sumAb;l
c =

P
i;j ab;l

cij shown above the corresponding images. From left
to right, attributions decrease in size, re�ecting the size of the corresponding convolutional layers
(sketched on top), but are shown upscaled to the original size, similarly to the operation in	 above.

In the middle row of Fig. 2, we plot input attributions (left), as well as attributions of hidden activa-
tions in every layer, de�ned as

ah;l
cij =

X

� 2 � l

x l
ij�

@fc
@xlij�

=
X

� 2 � l

ah;l
cij� (6)

with ah; 0
cij = acij . Similarly to the biases, above the attributions of each layer we note their sum

Ah;l
c (x) =

X

i;j;�

x l
ij�

@fc(x)
@xlij�

=
X

i;j

al
cij (x): (7)

Similarly to (2), in a bias-free network we havef c(x) = Ah;l
c (x), that is, the class scores can be

decomposed using the hidden-layer attributions. For such a network, the numbersAh;l
c over each

ah;l panel would be identical and equal to the network output (top right).

From Fig. 2, we can make two important observations, which are generally true for other images,
as well: (i) The noisy-looking input attribution has a signi�cantly higher value than the bias attri-
butions, and the sum of attributions for each hidden layer is approximately the same, showing that
the biases over these layers have little effect. The most important bias attribution comes from the
last convolutional layer and does not make sense from a visual perspective. (ii) All the hidden-layer
attributions focus on or around the gazelle, while the bias attributions seem less focused in the last
layers. In general, the attributions from the hidden layers seem to be of superior quality.

To summarise, for the studied VGG-16, the information conveyed by the biases seems to have a low
impact on the class scores and the �nal decision. Despite this little impact on the score, FULL GRAD
explanations seem visually convincing (see Fig. 1). Therefore, it is natural to ask:What is the
key operation that makes the strength ofFULL GRAD? Our hypothesis is that, rather than relying
on biases, the crucial contribution of FULL GRAD is the aggregation of information from all the
hidden layers of the network. Hidden activations in deeper layers depend on correlations in larger
input patches and hence shed some light on the non-linear structure of the network. Furthermore,
attributions derived from the hidden activations seem to be visually more convincing than those
derived from the biases (as in Fig. 2). Based on these observations, we propose DEEPMAPS, a new
method to generate explanations.

DeepMaps: combining attributions from multiple layers: Inspired by the superior quality of
ah;l over ab;l attributions and the advantages of taking explanations from multiple layers (i.e. of
multiple resolution), DEEPMAPS aggregates hidden-layer attributions as

sij =
LX

l = l 0

	
�
ah;l

c

�
ij (8)

where the transformation	 is de�ned in Eq. (5).

Transforming attributions into saliency maps is mostly governed by heuristics. Other than the trans-
formation	 , there are also different choices for the level at which it is applied. Note that we apply
	( �) to ah;l , rather than to every feature map as in FULL GRAD (cf. Eq. (4)). Thus, our approach
emphasises attributions per layer, rather than per feature. Commonly, the number of features grows
for spatially smaller layers (Fig. 2 top), which means FULL GRAD effectively overemphasises low-
resolution visual explanations. Note that in Fig. 2, hidden-layer attributions seem to have a similar
scale (Ah;l

c (x)) to the input attribution. DEEPMAPS then corresponds, for this example, to giving
explanations with equal weight on every resolution, which in turn leads to an explanation dominated
by the important resolutions. In Appendix D, we compare single-layer explanations generated by
these two approaches.
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4 Evaluating explanations

In this section, we analyse the explanations produced by DEEPMAPSand compare them to previous
methods. We �rst extensively analyse the original VGG-16 architecture Simonyan & Zisserman
(2014), for which we observed a limited contribution of the biases. We then extend our analysis to
ResNet-50, a network in which biases have a more important role (Appendix A). In the sequel, all
the visualizations and quantitative evaluations use images from the validation set of ImageNet. All
the metrics are evaluated over 5000 images taken from classes 0..99 (50 images per class). Whenever
we plot con�dence intervals, they refer to one standard deviation of the class-wide mean (n = 50).

Figure 3: Saliency maps for VGG-16.

Figure 4: Existing metrics. AverageAOPC and
AFOC values as a function of the amount of pix-
els removed (shaded areas show one standard de-
viation of the mean over classes).

We start with visually inspecting some outputs of DEEPMAPSas well as some of the previous expla-
nation methods for VGG-16. Fig. 3 shows saliency maps obtained by computing the input gradients,
GRADCAM (Selvaraju et al., 2016), FULL GRAD (Srinivas & Fleuret, 2019) and DEEPMAPS.3 Those
panels con�rm the tendency of the gradients to yield very scattered explanations and ofGRADCAM
to produce blobby saliency maps. FULL GRAD and DEEPMAPS are both a compromise between
the noisy local explanations and the rough delineation of the object of interest. They both highlight
accurately the edges and the �ne details of the shapes. However, if we look, for example, at the bird
example in the fourth row, it appears that FULL GRAD shows an almost uniform signal all over the
bird, while DEEPMAPS emphasizes more the beak and the eyes and at a lower level the rest of the
animal. Considering the number of birds categories in ImageNet (59), it is expected that the network
focuses on �ner details than the body to distinguish between the different species, while the body
is important to distinguish birds from other super-categories. In addition, in the second row, FULL -
GRAD seems to pick up some of the background with the �shes, while DEEPMAPS focuses more
precisely on the latter, with again a higher emphasis on the eyes. In general, DEEPMAPS seems to
produce saliency maps that are easy to analyse and that highlight the distinctive details of the object
of interest. These observations, however, are subjective and need to be supported by quantitative
evaluations, which we provide below.

4.1 Score-based pixel removal metrics

In the literature, explanations are usually evaluated using image perturbations, that is, measuring
how sensitive the network is to modifying the input image according to the ranking provided by a
given saliency map (Samek et al., 2016; Srinivas & Fleuret, 2019; Tomsett et al., 2020). To introduce
a mild perturbation (and avoid introducing adversarial effects), selected pixels are usually masked
out with their values (over all input channels) replaced with an average value computed over the
dataset, in effect “removing” the pixel from the input image. Pixel-removal strategies can be divided
into two families (Samek et al., 2016): (i) strategies where the most salient pixels are removed,

3While arguably there are more saliency methods in the literature we could compare to, such as Layerwise
Relevance Propagation (Bach et al., 2015) and its numerous variations, Gur et al. (2021) demonstrated that
FULL GRAD is one of the best methods (see their Fig. 3), thus our comparisons are meaningful.
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