
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Does Form Follow Function? An Empirical Exploration of the
Impact of Deep Neural Network Architecture Design on

Hardware-Specific Acceleration
Anonymous Author(s)

ABSTRACT
Advances in deep learning during the last decade have led to state-
of-the-art performance across a wide variety of tasks. However,
one of the biggest challenges with the widespread adoption of
deep learning in an operational manner has been high computa-
tional complexity. This challenge is particularly important to tackle
given the recent proliferation of smart sensors and edge devices.
This has led to hardware-specific acceleration platforms designed
specifically to accelerate deep neural network inference based on
microprocessor architectural traits. While promising, the degree
of inference speed gains achieved via hardware-specific software
acceleration can vary significantly depending on the design of
the deep neural network architecture and the microprocessor be-
ing leveraged for inference. The fine-grained relationship between
form and function with respect to deep neural network architecture
design and hardware-specific acceleration is one area that is not
well studied in the research literature, with form often dictated by
accuracy as opposed to hardware function. In this study, a com-
prehensive empirical exploration is conducted to investigate the
impact of deep neural network architecture design on the degree
of inference speedup that can be achieved via hardware-specific
acceleration. More specifically, we empirically study the impact of
a variety of commonly used macro-architecture design patterns
across different architectural depths through the lens of OpenVINO
microprocessor-specific and GPU-specific acceleration. Experimen-
tal results showed that while leveraging hardware-specific acceler-
ation achieved an average inference speed-up of 380%, the degree
of inference speed-up varied drastically depending on the macro-
architecture design pattern, with the greatest speedup achieved
on the depthwise bottleneck convolution design pattern at 550%.
Furthermore, we conduct an in-depth exploration of the correlation
between FLOPs requirement, level 3 cache efficacy, and network
latency with increasing architectural depth and width. Finally, we
analyze the inference time reductions using hardware-specific ac-
celeration when compared to native deep learning frameworks
across a wide variety of hand-crafted deep convolutional neural

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
TinyML ’21, March 22, 2021, Online
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

network architecture designs as well as ones found via neural archi-
tecture search strategies. We found that the DARTS-derived archi-
tecture to benefit from the greatest improvement from hardware-
specific software acceleration (1200%) while the depthwise bottle-
neck convolution-based MobileNet-V2 to have the lowest overall
inference time of around 2.4 ms. These findings illustrate the impor-
tance of tailoring network architecture design to account for the
intricacies of microprocessor architecture traits to enable greater
hardware-specific acceleration.

CCS CONCEPTS
•Computingmethodologies→Machine learning; •Computer
systems organization→ Embedded software.

KEYWORDS
Neural Networks, Edge Devices, Hardware Acceleration, Open-
VINO, Macro-Architectures, Embedded Machine Learning, Design
Patterns

ACM Reference Format:
Anonymous Author(s). 2018. Does Form Follow Function? An Empirical
Exploration of the Impact of Deep Neural Network Architecture Design on
Hardware-Specific Acceleration. In Proceedings of TinyML Research Sympo-
sium (TinyML ’21). ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/1122445.1122456

1 INTRODUCTION
The past decade has witnessed significant advances in deep learn-
ing [18, 19], with deep neural networks matching or even exceed-
ing human performance in a wide variety of areas such as image
classification [12, 14, 17], object detection [8, 21, 26], and image
segmentation [7, 10]. Until recently, deep neural networks were typ-
ically designed with accuracy as the overriding metric rather than
hardware efficiency. This design principle has led to increasingly
complex models that require large computational resources to func-
tion [1, 3, 27–29]. The increasing complexity of modern deep neural
networks poses significant operational challenges for widespread
deployment on small edge devices used in different applications
such as autonomous vehicles and IoT consumer devices where
computational resources are limited. These challenges significantly
hinder the applications of deep learning and become particularly
important to tackle as edge devices continue to proliferate.

To mitigate the complexity of neural networks, a variety of
macro-architecture design patterns have been introduced in recent
years, which aim to reduce computational complexity for efficient
inference [12, 13, 15, 23, 25, 31]. For example, grouped convolu-
tions have been employed by ResNext [29] to reduce the number
of computations required compared to a standard convolution. The
premise behind grouped convolutions is to have a filter operating

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

TinyML ’21, March 22, 2021, Online Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

on only a smaller group of input channels to significantly reduce
the number of convolutions that need to be performed. An extreme
version of grouped convolution, depthwise separable convolution,
has been used with greaxft efficacy with MobileNet [13]. Depthwise
separable convolution are similar to grouped convolutions, with
the major difference being that the number of groups equaling the
number of input channels. Bottleneck convolutions are another
example of efficient convolutions and have been used successfully
to design neural networks such as DARTS [20], ResNet architec-
tures [12] and Squeezenets [15], where pointwise convolutions are
leveraged to decrease and increase channel dimensionality before
and after a spatial convolution, respectively. Depthwise convolution
and bottleneck convolution can be combined for a further improve-
ment in network efficiency and have been used in MobileNet-V2
for a drastic reduction in inference time [25]. Convolutions can also
be factorized to lower the amount of multiplication-accumulation
counts required [13, 25]. For example, a 3 × 3 kernel can be broken
into a 1× 3 and 3× 1 convolutions. However, this presumes that the
original kernel can be factorized which may not always be possible.

Another key development towards operational deep learning
deployment has been that of hardware-specific acceleration plat-
forms [2, 9, 11, 22, 30]. Such acceleration platforms take advan-
tage of the underlying hardware’s architectural traits to speed up
neural network inference. For example, an acceleration platform
can utilize a microprocessor’s vector processing unit or optimize
the use of processor cache for optimal network execution. While
hardware-specific acceleration is a promising development for de-
ploying deep neural networks on edge devices, the fine-grained
relationship between form and function with respect to network
architecture design and hardware-specific acceleration is an area
that has not been widely studied in the literature.

Motivated to gain a better understanding between form and
function from this perspective, we conduct a comprehensive empir-
ical exploration on the impact of deep neural network architecture
design on hardware-specific acceleration. Specifically, we investi-
gate the impact of a variety of commonly used macro-architecture
design patterns across different architectural depths and convolu-
tional widths on hardware-specific acceleration through the lens of
OpenVINO, a software platform designed specifically for hardware-
software acceleration of deep neural networks. Furthermore, we
examine the impact of level 3 (L3) cache optimization on network
latency as well as investigate the correlation between FLOPs re-
quirement, network latency, and L3 cache efficacy. Finally, we study
the inference time reductions using hardware-specific acceleration
on a variety of hand-crafted deep neural network designs as well as
ones found via neural architecture search (NAS) techniques. Finally,
based on the findings of this empirical exploration, we present prac-
tical considerations in designing efficient deep neural networks
tailored for the intricacies of CPU and GPU architecture traits to
enable greater hardware-specific acceleration.

2 EMPIRICAL EXPLORATION
This study provides a fine-grained empirical exploration on the im-
pact of network architecture design on hardware-specific accelera-
tion. Specifically, this study considers the impact of microprocessor-
specific acceleration with an Intel Core i5-7600K, as well as GPU-
specific acceleration with an integrated GPU (Intel HD Graphics
630).

This study is comprised of three experiments. In the first ex-
periment explained in Section 2.1, we measure the impact of six
different macro-architecture design patterns on hardware-specific
acceleration. We conduct this experiment in a parametric fashion by
studying the trend of inference speedup gained through hardware-
specific acceleration under different architectural depth scenarios.
Additionally, this experiment also considers the impact of hardware
acceleration under different network widths. Studying the impact
of hardware acceleration under different architectural depths is
important as we hypothesize that, unlike theoretical complexity
analysis using metrics such as the number of floating point opera-
tions (FLOPs), hardware-specific inference speedups will likely not
follow a simple trend for all design patterns as the depth increases.
Similarly, the impact of network width on hardware acceleration is
also important to investigate as the efficiency of different macro-
architectures may vary with the width of the network architecture.
For instance, some design patterns may be more computationally
efficient with a wider width and as such would be preferred choices
in the deeper layers of a deep convolutional neural network where
the channel widths are typically wider.

Building upon the first experiment, we subsequently investigate
the relationship between network execution time, FLOPs require-
ment, and L3 cache access, and the impact of hardware-specific
acceleration in Section 2.2. Specifically, we measure the number
of times the microprocessor does not find data in the L3 cache
and has to fetch data from the much slower DRAM. The primary
purpose of this experiment is to gain a deeper understanding on
how hardware-acceleration reduces the network latency. Similar
to the first experiment, we construct several neural networks with
architectural depths ranging from 10 to 50 layers and measure
the amount of times the L3 cache does not hold the required data.
Similarly, we also increase the architectural width of the neural
networks and measure the efficacy of the L3 cache access with
and without hardware-specific acceleration. Finally, we correlate
the measured L3 miss rate from these experiments with the net-
work execution time and FLOPs requirement of each design pattern
investigated in this study.

Finally, the third experiment reported in Section 2.3, measures
the inference speedups gained through hardware-specific acceler-
ation on a wide variety of hand-crafted deep neural networks as
well as ones found via NAS approaches. Many of these deep neural
networks employ the macro-architecture design patterns studied in
the first experiment, and thus will give us additional insights under
a more complex scenario where additional architecture components
are in place to form the well-defined network architecture.

All three experiments are conducted on an Intel Core i5-7600K
microprocessor operating at 3.8 GHz as well as an integrated In-
tel HD Graphics 630 GPU. These devices are leveraged via the

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Does Form Follow Function? An Empirical Exploration ... TinyML ’21, March 22, 2021, Online

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

hardware-specific acceleration platform, OpenVINO. The Core i5-
7600K processor features Advanced Vector Extensions 2 (AVX2)
which enables hardware-specific acceleration platforms to optimize
or ‘vectorize’ network execution. AVX allows for ‘single-instruction
multiple data’ (SIMD) operations where multiple data can be loaded
onto the physical registers and operated onwith a single instruction,
resulting in much faster execution.

The PyTorch [24] microprocessor-specific accelerated models
were executed with 32-bit floating point precision. Experimental
results showed that quantizing the microprocessor-specific acceler-
ated models to 16-bit did not provide any speed up on the CPU. This
is due to the fact that the Intel Core i5-7600K processor promotes
16-bit floats to 32-bit floats [5]. Nevertheless, the integrated GPU
(iGPU) does support 16-bit floating point operations and as such
the iGPU accelerated models were first quantized to half floats prior
to deployment [4].

2.1 Form vs. Function: Design Pattern Choices
on Hardware-specific Acceleration

The first experiment of this study examines the impact of net-
work architecture design choices on the inference speedup gains
through hardware-specific acceleration. For this experiment, we
construct a large number of deep neural network architectures
using a wide variety of commonly-used macro-architecture design
patterns, with architectural depths ranging from 10 to 50 layers. The
six macro-architecture design patterns studied in this experiment
include: i) standard spatial convolution, ii) factorized convolution,
iii) bottleneck convolution, iv) depthwise separable convolution,
v) depthwise bottleneck convolution, and vi) grouped convolution.
The execution time is measured for each deep neural network archi-
tecture against the native deep learning framework (i.e., PyTorch),
microprocessor-specific acceleration, and GPU-specific accelera-
tion using OpenVINO. The network execution time is measured
with increasing batch sizes to investigate the impact of batch size
on hardware-specific acceleration.

As seen in Figure 1, hardware-specific acceleration universally
improves network inference speed across all evaluated deep neural
network architectures with different macro-architecture design pat-
terns and different architectural depths. Although the greatest gains
are provided by the GPU-specific acceleration, the microprocessor-
specific acceleration also provides a significant speed up over the
native framework. This is made very apparent by the significant
speed up of hardware-specific acceleration deployment and the gap
between the inference time of the native framework and hardware-
specific acceleration as architectural depth increases in all cases.
The microprocessor-specific acceleration is particularly promising
as many embedded devices do not have a dedicated GPU available.
More interestingly, the speed gains from hardware-specific acceler-
ation improve as the network complexity increases for all evaluated
macro-architecture design patterns.

Furthermore, it can be observed that the degree of inference
speed gains through hardware-specific acceleration varies signifi-
cantly depending on the macro-architecture design pattern used,
with each exhibiting a different speedup trend. More specifically,
deep neural network architectures leveraging the depthwise sepa-
rable convolution design pattern demonstrated the greatest level of

speedup from hardware-specific acceleration; this speed upwith the
execution time of a 50-layer network architecture under hardware-
specific acceleration is at the same level as a much shallower, 10-
layer network, architecture under the native framework. Moreover,
the speed gains provided by the hardware-specific acceleration gen-
erally increases with the batch size. However, the native framework
generally slows down as the batch sizes increase. An example of
this is with standard convolutions, where the per-image inference
time increases from 300 ms to 500 ms as the batch size is increased
from 1 to 32 with the native framework. In contrast, the hardware
accelerated neural networks provide similar per-image inference
time for different batch sizes, resulting in greater and greater speed
gains as the batch size increases.

The impact of network width on network execution latency is
investigated by constructing several neural network architectures
with different network widths ranging from 32 to 512. Similar to the
architectural depth study, these networks are implemented with
aforementioned commonly used design patterns. As seen in Fig-
ure 2, all macro-architectures again benefit from hardware-specific
acceleration. In general, all design patterns perform similarly with
a narrow channel width. Bottleneck convolution scales poorly with
increasing network width, posting even worse numbers than stan-
dard convolution. However, standard convolution does not improve
significantlywithmicroprocessor-specific acceleration and required
GPU-specific acceleration to scale well. Standard convolution, fac-
torized convolution and bottleneck convolution scale with roughly
the square root of the channel width. In contrast, depthwise sepa-
rable convolution, depthwise bottleneck convolution and grouped
convolution stay almost linear, resulting in significantly more effi-
cient network execution. Indeed, the microprocessor accelerated
model variants perform on par with GPU-accelerated models. This
is especially promising for network architectures designed for de-
ployment on embedded systems where a dedicated GPUmay not be
available. Importantly, these design patterns should thus be the pre-
ferred choices for the deeper and wider layers of a deep convolution
neural network.

These speed gain variations observed in Figure 1 and Figure 2
are primarily due to the way OpenVINO performs software and
hardware-specific acceleration. More specifically, OpenVINO first
fuses common operations together to streamline operations. For
example, ReLU operations are typically fused with the preceding
convolution layers and executed as a single operation. OpenVINO
applies the ReLU activation while the convolution operation is
already in cache memory, thereby preventing a performance hit
by an avoidable access of DDR memory; and as such, the network
execution is optimized by taking advantage of efficiently using the
underlying memory hierarchy. In the case of the microprocessor,
OpenVINO optimizes the execution of all layers by running them
via the on-board vector processing unit (AVX2 on the Intel Core
i5-7600K).

2.2 The Impact of Hardware-Specific
Acceleration on Cache Access Efficacy

In this section, we investigate the relationship between FLOPs re-
quirement, network latency, and L3 cache efficacy, and the impact
of hardware-specific L3 cache optimization. As seen in Figure 1,

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

TinyML ’21, March 22, 2021, Online Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

0

250

500

750

1000

Ne
tw

or
k

Ex
ec

. T
im

e
(m

s)

Ba
tc

h
Si

ze
 1

Standard Convolution

0

250

500

750

1000

Ne
tw

or
k

Ex
ec

. T
im

e
(m

s)

Ba
tc

h
Si

ze
 4

0

250

500

750

1000

Ne
tw

or
k

Ex
ec

. T
im

e
(m

s)

Ba
tc

h
Si

ze
 8

0

250

500

750

1000

Ne
tw

or
k

Ex
ec

. T
im

e
(m

s)

Ba
tc

h
Si

ze
 1

6

10 20 30 40 50
No. of Layers

0

250

500

750

1000

Ne
tw

or
k

Ex
ec

. T
im

e
(m

s)

Ba
tc

h
Si

ze
 3

2

Factorized Convolution

10 20 30 40 50
No. of Layers

Depthwise
Separable Convolution

10 20 30 40 50
No. of Layers

Bottleneck Convolution

10 20 30 40 50
No. of Layers

Depthwise
Bottleneck Convolution

10 20 30 40 50
No. of Layers

Grouped Convolution

0

5

10

15

20

No
. o

f G
FL

OP
S

0

5

10

15

20

No
. o

f G
FL

OP
S

0

5

10

15

20

No
. o

f G
FL

OP
S

0

5

10

15

20

No
. o

f G
FL

OP
S

10 20 30 40 50
No. of Layers

0

5

10

15

20

No
. o

f G
FL

OP
S

PyTorch (CPU)
OpenVINO (CPU)

OpenVINO (Integrated Graphics)
Number of floating point operations

Figure 1: The impact of macro-architecture design choices on hardware-specific acceleration across different architectural
depths. Notably, speed gains are seen from hardware-specific acceleration in all cases. More interestingly, the speed gains
from hardware-specific acceleration increases as the network complexity increases in all cases. This is observed by noting
that the inference time gap between the native framework and the hardware-specific acceleration increases significantly as
architectural depth increases. Furthermore, it can be observed that the depthwise bottleneck convolution design pattern is
accelerated the most out of the six macro-architecture design patterns studied here, yielding an improvement of about 550%
with a 50-layer network. Finally, it is observed that FLOPs requirement does not necessarily correlate with the network exe-
cution time. For example, depthwise separable convolution has one of the lowest FLOPs requirements yet reports one of the
highest inference times with native framework. This implies that the speed of computation is being limited in such cases by
software implementation. All plots share the same vertical and horizontal scale to allow for a quick visual comparison across
the different macro-architectures as well as batch sizes.

the FLOPs requirement for a design pattern does not necessarily
predict the network execution speed. For example, depthwise bot-
tleneck convolution requires the lowest amount of multiplication-
accumulation operations yet it reports one of the highest latency in
Figure 1 with native frameworks. To assess the impact of optimized

cache access, we construct several neural networks with architec-
tural depth of 10 to 50 layers. For each neural network architecture,
we measure the number of times the microprocessor was not able
to find data in the L3 cache and had to resort to fetching data from
the significantly slower DRAM. Figure 3 shows the number of L3

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Does Form Follow Function? An Empirical Exploration ... TinyML ’21, March 22, 2021, Online

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

32 128 256 384 512
Channel Width

0

2

4

6

Ne
tw

or
k

Ex
ec

. T
im

e
(s

)

Standard Convolution

32 128 256 384 512
Channel Width

0

2

4

6

Factorized Convolution

32 128 256 384 512
Channel Width

0

2

4

6

Ne
tw

or
k

Ex
ec

. T
im

e
(s

)

Depthwise
Separable Convolution

32 128 256 384 512
Channel Width

0

2

4

6

Bottleneck Convolution

32 128 256 384 512
Channel Width

0

2

4

6

Ne
tw

or
k

Ex
ec

. T
im

e
(s

)

Depthwise
Bottleneck Convolution

32 128 256 384 512
Channel Width

0

2

4

6

Grouped Convolution

0

100

200

300

0

100

200

300

No
. o

f G
FL

OP
S

0

100

200

300

0

100

200

300

No
. o

f G
FL

OP
S

0

100

200

300

0

100

200

300

No
. o

f G
FL

OP
S

PyTorch (CPU)
OpenVINO (CPU)

 OpenVINO (Integrated GPU)
Number of floating point operations

Figure 2: The impact of hardware-specific acceleration on
network inference speed across different networkwidths. In
particular, hardware-acceleration improves network execu-
tion across all convolutional widths with all six design pat-
terns. We find that in the case of increasing convolutional
widths, the network execution time is correlated with the
number of floating point operations for each design pattern.
This implies that the number of FLOPS quickly becomes the
primary limitation for network execution speed as the num-
ber of output channels increases.

cache miss events, as well as the network latency against the archi-
tectural depth for all design patterns explored in this study. The
dashed lines denote the number of times the CPU did not find data
in the L3 cache. We can note that hardware-specific acceleration
improves L3 cache efficacy in all cases to a varying degree. In the
case of depthwise bottleneck convolution, the number of missed
L3 cache events drops by about an order of magnitude. The im-
proved L3 cache unleashes the true potential of depthwise bottle
convolution, improving the network execution by approximately

520%. Similar improvements are noted for depthwise separable con-
volution. In contrast, for standard convolution the L3 miss rate is
also reduced though not to the same degree. This difference in op-
timization is due to the significantly higher FLOPs requirement of
standard convolution. Although the L3 access rate is optimized, the
main limitation becomes the computational complexity of standard
convolution as well as the microprocessor speed.

The Intel Core i5-7600K processor features a 4 MB shared Last
Level Cache (LLC), which acts as an L3 cache for the CPU and the
primary cache for the integrated iGPU. Thus, Figure 3 also includes
measurements of L3 cache missed events for the integrated GPU
as well. Similar to Section 2.1, networks were quantized to 16-bit
floating point precision before deploying to the integrated GPU. We
note that when most design patterns are executed on the integrated
GPU in FP16, the LLC access efficacy is not as beneficial as it is
on the CPU using FP32. Despite this, the GPU-specific accelerated
models still exhibit lower network latency when compared to the
microprocessor-specific accelerated variants.

Figure 4 examines the impact of increasing the architectural
width on network latency. In contrast to increasing architectural
depth, network latency correlates well with the number of FLOPS
when width is varied. However, we can still note improvement in
network latency when the L3 cache access is optimized. Again, in
particular, depthwise bottleneck convolution and depthwise sepa-
rable convolution exhibit the highest speedups. Since increasing
the number of output channels roughly quadruples the number of
FLOPS, the network latency is quickly bounded by the computa-
tional complexity rather than the memory.

2.3 The Impact of Hardware-specific
Acceleration on Handcrafted &
NAS-derived Architectures

As the last experiment, we examine the degree of inference speed
gains from hardware-specific acceleration across 12 hand-crafted
deep neural networks and NAS-derived deep neural network ar-
chitectures. The evaluated architectures can be grouped based on
core macro-architecture design pattern they leverage including:
i) standard convolution (ResNet18, ResNet34), ii) bottleneck con-
volution (ResNet50, ResNet101, ResNet152, DARTS ImageNet, Op-
timized DARTS ImageNet), iii) grouped convolution (ResNext50,
ResNext101), iv) depthwise bottleneck convolution (MobileNetv2),
v) bottleneck depthwise convolution and factorized convolution
(Inceptionv3), and vi) NAS design (NasNet-A (large)). Figure 5 re-
ports the network inference times for both native framework and
hardware-specific acceleration.

As seen in Figure 5, the inference time improvements is at least
200-300% for all tested network architectures when they deployed
via hardware-specific acceleration compared to native framework.
More specifically, MobileNetv2 achieves the lowest inference times
of 2.4 ms, with a speed gain of approximately 700% under hardware-
specific acceleration compared towhen is deployed via native frame-
work. This improvement can be attributed to the significant speed
gains achievedwhen leveraging a depthwise bottleneck convolution
design pattern as observed in the first experiment explained Sec-
tion 2.1. The network architecture with the greatest speed gain from

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

TinyML ’21, March 22, 2021, Online Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

10 20 30 40 50
No. of Layers

104

106

108

1010

1012

No
. o

f L
3

Ca
ch

e
M

iss
 E

ve
nt

s Standard Convolution

10 20 30 40 50
No. of Layers

104

106

108

1010

1012

Factorized Convolution

10 20 30 40 50
No. of Layers

104

106

108

1010

1012

No
. o

f L
3

Ca
ch

e
M

iss
 E

ve
nt

s

Depthwise
Separable Convolution

10 20 30 40 50
No. of Layers

104

106

108

1010

1012

Bottleneck Convolution

10 20 30 40 50
No. of Layers

104

106

108

1010

1012

No
. o

f L
3

Ca
ch

e
M

iss
 E

ve
nt

s

Depthwise
Bottleneck Convolution

10 20 30 40 50
No. of Layers

104

106

108

1010

1012

Grouped Convolution

100

101

102

103

100

101

102

103

Ne
tw

or
k

Ex
ec

. T
im

e
(m

s)
100

101

102

103

100

101

102

103

Ne
tw

or
k

Ex
ec

. T
im

e
(m

s)

100

101

102

103

100

101

102

103

Ne
tw

or
k

Ex
ec

. T
im

e
(m

s)

L3 Cache Miss Events PyTorch (CPU)
L3 Cache Miss Events OpenVINO (CPU)
L3 Cache Miss Events OpenVINO (GPU)

Network Exec. Time PyTorch
Network Exec. Time OpenVINO (CPU)
Network Exec. Time OpenVINO (GPU)

Figure 3: Relationship between network architectural depth,
the number of L3 cache miss rates, and network execution
speed. The vertical axes share the same scale and are log-
arithmic. The hardware-specific acceleration reduces the
amount of the number of L3 cachemisses significantly in all
cases. Improving the L3 cache efficacy improves the network
execution speed to a varying degree. Depthwise bottleneck
convolution benefits the most in terms of execution speed
as the network execution improves by about 520%.

hardware-specific acceleration is the DARTS-derived network ar-
chitecture, which saw an improvement of around 1200%. This large
speed gain can be attributed to two main reasons. First, DARTS
uses separable convolutions exclusively which see significantly
greater hardware-specific acceleration when compared to standard
convolution (see Figure 1). Secondly, DARTS also employs dilated
convolutions in its operations space. However, presently native
frameworks such as PyTorch do not optimally execute dilated con-
volutions. PyTorch only takes advantage of Intel’s oneAPI Deep
Neural Network library (oneDNN) [6] for non-dilated convolutions

32 12
8

25
6

38
4

51
2

No. of Output Channels

106

107

108

109

1010

No
. o

f L
3

Ca
ch

e
M

iss
 E

ve
nt

s Standard Convolution

32 12
8

25
6

38
4

51
2

No. of Output Channels

106

107

108

109

1010
Factorized Convolution

32 12
8

25
6

38
4

51
2

No. of Output Channels

106

107

108

109

1010

No
. o

f L
3

Ca
ch

e
M

iss
 E

ve
nt

s

Depthwise
Separable Convolution

32 12
8

25
6

38
4

51
2

No. of Output Channels

106

107

108

109

1010
Bottleneck Convolution

32 12
8

25
6

38
4

51
2

No. of Output Channels

106

107

108

109

1010
No

. o
f L

3
Ca

ch
e

M
iss

 E
ve

nt
s

Depthwise
Bottleneck Convolution

32 12
8

25
6

38
4

51
2

No. of Output Channels

106

107

108

109

1010
Grouped Convolution

10 2

100

102

104

106

10 2

100

102

104

106

Ne
tw

or
k

Ex
ec

. T
im

e
(m

s)

10 2

100

102

104

106

10 2

100

102

104

106

Ne
tw

or
k

Ex
ec

. T
im

e
(m

s)

10 2

100

102

104

106

10 2

100

102

104

106

Ne
tw

or
k

Ex
ec

. T
im

e
(m

s)

L3 Cache Miss Events PyTorch (CPU)
L3 Cache Miss Events OpenVINO (CPU)
L3 Cache Miss Events OpenVINO (GPU)

Network Exec. Time PyTorch
Network Exec. Time OpenVINO (CPU)
Network Exec. Time OpenVINO (GPU)

Figure 4: Relationship between network architectural width,
the number of L3 cache miss rates and network execution
time. The vertical axes share the same scale and are logarith-
mic. Similar to increase in architectural depth, the L3 cache
miss rate improves in all cases with hardware-specific accel-
eration. However, the improvement is not to the same de-
gree as it was in the case of increasing network depth shown
in Figure 3. This is because, in case of increasing convolu-
tional channels, the computation is quickly limited by the
number of FLOPS.

only. Thus, when the network undergoes hardware-specific accel-
eration (i.e., OpenVINO), the performance is improved significantly.
By modifying the PyTorch model to explicitly use oneDNN for all
supported operations, the performance difference reduces to about
500%. Nevertheless, the modified model still has significant over-
heads in terms of changing channel order. Specifically, sometimes
PyTorch will change the native layout to match what the math
library prefers depending on the operation and operands. Some
popular formats are NCHW (channels-first) and NHWC (channels-
last) where 𝑁 is the batch size, 𝐻 and𝑊 are the height and width,

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Does Form Follow Function? An Empirical Exploration ... TinyML ’21, March 22, 2021, Online

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

0 60 120 180 240 300 360 420 480 540 600
Network Execution Time (ms)

ResNet18

ResNet34

ResNet50

ResNet101

ResNet152

Optimized
DARTS Imagenet

DARTS Imagenet

Inceptionv3

MobileNetv2

ResNext50

ResNext101

NASNet-A (large)

 CPU : 2.5x
iGPU: 3.2x

 CPU : 2.1x
iGPU: 2.8x

 CPU : 2.7x
iGPU: 3.4x

 CPU : 2.4x
iGPU: 3.0x

 CPU : 2.4x
iGPU: 2.9x

 CPU : 4.6x
iGPU: 2.7x

 CPU : 11.8x
iGPU: 6.8x

 CPU : 3.3x
iGPU: 2.7x

 CPU : 7.0x
iGPU: 5.1x

 CPU : 2.6x
iGPU: 3.3x

 CPU : 2.2x
iGPU: 2.8x

 CPU : 2.7x
iGPU: 2.0x

Standard Convolution

Bottleneck Convolution

Depthwise Bottleneck &
Factorized Convolution

Depthwise
Bottleneck Convolution

Grouped Convolution

Native Framework
Microprocessor Optimized (FP32)
Integrated-GPU Optimized (FP16)

Figure 5: Inference speed of handcrafted networks and those found via NAS-based strategies under the native framework
and hardware-specific acceleration. The bold text adjacent to the bars is the improvement of the inference speed for the
corresponding model. All networks were tested with PyTorch. MobileNetv2 model achieved the lowest inference time under
hardware-specific acceleration (2.4 ms) due to its use of the depthwise bottleneck convolution design pattern. The DARTS
derived architecture benefits the greatest from hardware-specific acceleration with an improvement of about 1200% over the
native framework. This is partly due to use of dilated convolution and also due to its use of bottleneck convolution which
benefits greatly from hardware-acceleration.

and 𝐶 is number of channels. Thus, as the data flows between op-
timized oneDNN operators and PyTorch operators, the channel
ordering is changed automatically by PyTorch at the cost of over-
head to satisfy the underlying math library. OpenVINO does not
suffer from memory layout overheads as the toolkit transforms the
input to the most efficient layout for the operation.

It is worth noting that the experiments in this study were per-
formed in 32-bit floating point precision. As such, network quanti-
zation down to 8-bit integers may further enhance the inference
speedup provided by OpenVINO. Finally, it can be observed that
the degree of speed gain from hardware-specific acceleration varies
significantly across different examined architectures, but correlates
well with the observations seen in the first experiment based on
their core design pattern.

The findings in the conducted experiments illustrate that the
choice of architectural design can have a high significant impact on
hardware-specific acceleration and thus an essential consideration
when designing network architectures tailored to edge deployment.
More specifically, based on the findings across the two experiments
in this study, the use of depthwise bottleneck convolutions when
designing efficient deep neural networks results in the greatest
speed gains from the examined hardware-specific acceleration in
microprocessor-based deployments, and enables one to build deeper

neural networks to achieve a stronger balance between modeling
accuracy and efficiency.

3 CONCLUSION
The efficient design and acceleration of deep neural networks
are key for widespread deployment of deep learning applications.
We explored empirically the fine-grained relationship between
form and function from the perspective of architecture design and
hardware-specific acceleration. The inference speed of a large num-
ber of deep neural network configurations with six different macro-
architecture design patterns ranging from 10 to 50 layers depth
as well as convolutional widths ranging from 32 to 512 were stud-
ied. The experimental results showed that the degree of inference
speed gains achieved with hardware-specific acceleration can vary
greatly depending on the macro-architecture design pattern choice.
However, depthwise bottleneck convolution and depthwise sepa-
rable convolution design patterns achieve the greatest degrees of
acceleration especially at greater architecture depths. Additionally,
the relationship between L3 cache optimization, network latency,
FLOPs requirement, and architectural depth and width was investi-
gated. It was noted that to take full advantage of computationally
inexpensive design patterns, such as depthwise bottleneck convolu-
tion, it was necessary to optimize the L3 cache access such that the
CPU does not have to fetch data from the DRAM. Finally, by further

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

TinyML ’21, March 22, 2021, Online Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

studying 12 different hand-crafted and architecture-searched deep
neural network under hardware-specific acceleration as well as
the native framework, we found that inference speed gains also
vary greatly depending on the overall network architecture. The
results showed that the speed gain correlates well with the design
patterns leveraged in their overall architecture design, as well as
the use of operations (e.g., dilated convolutions) that are greatly ac-
celerated via hardware-specific acceleration. One limitation of this
study is that the empirical exploration focuses on microprocessor
(FP32) and integrated-GPU (FP16) specific acceleration, and thus
future work involves studying the impact of architecture design on
hardware-specific acceleration for different hardware designs such
as INT8 and BFloat16 [16] acceleration on CPUs, variable precision
on FPGAs and other hardware acceleration on discrete GPUs. Fur-
thermore, we aim to incorporate such insights into the construct of
neural architecture search to enable more efficient identification
of deep neural network architectures with great balance between
accuracy and real-world efficiency.

REFERENCES
[1] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. 2016. An Analysis of

Deep Neural Network Models for Practical Applications. 1605.07678 (May 24,
2016). https://arxiv.org/abs/1605.07678

[2] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan
Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. 1802.04799 (Feb 12, 2018). https://arxiv.org/abs/
1802.04799

[3] Francois Chollet. Jul 2017. Xception: Deep Learning with Depthwise Separable
Convolutions. Institute of Electrical and Electronics Engineers (IEEE), 1800–1807.
https://doi.org/10.1109/cvpr.2017.195

[4] Intel Corporation. 2015. The Compute Architecture of Intel®Processor Graphics
Gen9 (1 ed.). Intel Corporation, USA. 7 pages.

[5] Intel Corporation. 2020. Intel® 64 and IA-32 Architectures Software Developer’s
Manual. Intel Corporation, USA. 4–17 pages.

[6] Intel Corporation. 2020. oneAPI Deep Neural Network Library (oneDNN) .
[7] Samuel Dodge and Lina Karam. 2017. A study and comparison of human and

deep learning recognition performance under visual distortions. In 2017 26th
international conference on computer communication and networks (ICCCN). IEEE,
1–7.

[8] Ross Girshick. 2015. Fast r-cnn. In Proceedings of the IEEE international conference
on computer vision. 1440–1448.

[9] Yury Gorbachev, Mikhail Fedorov, Iliya Slavutin, Artyom Tugarev, Marat
Fatekhov, and Yaroslav Tarkan. 2019. OpenVINO deep learning workbench:
Comprehensive analysis and tuning of neural networks inference. In Proceedings
of the IEEE International Conference on Computer Vision Workshops. 0.

[10] Alex Graves and Jürgen Schmidhuber. 2005. Framewise phoneme classification
with bidirectional LSTM and other neural network architectures. Neural Networks
18, 5-6 (2005), 602–610.

[11] David Gschwend. 2020. Zynqnet: An fpga-accelerated embedded convolutional
neural network. arXiv preprint arXiv:2005.06892 (2020).

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[13] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[14] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-Excitation Networks. Institute
of Electrical and Electronics Engineers (IEEE), 7132–7141. https://doi.org/10.
1109/cvpr.2018.00745

[15] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J.
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and< 0.5 MBmodel size. arXiv preprint arXiv:1602.07360 (2016).

[16] Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal
Banerjee, Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka,
Jianyu Huang, and Hector Yuen. 2019. A study of bfloat16 for deep learning
training. arXiv preprint arXiv:1905.12322 (2019).

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. Imagenet classi-
fication with deep convolutional neural networks. Commun. ACM 60, 6 (2017),

84–90.
[18] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature

521, 7553 (2015), 436–444.
[19] Yann LeCun, Bernhard Boser, John S. Denker, Donnie Henderson, Richard E.

Howard,Wayne Hubbard, and Lawrence D. Jackel. 1989. Backpropagation applied
to handwritten zip code recognition. Neural computation 1, 4 (1989), 541–551.

[20] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055 (2018).

[21] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C. Berg. 2016. SSD: Single Shot MultiBox Detector.
Springer International Publishing, Cham. 21–37 pages. https://doi.org/10.1007/
978-3-319-46448-0_2

[22] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang. 2018. Op-
timizing CNN Model Inference on CPUs. 1809.02697 (Sep 7, 2018). https:
//arxiv.org/abs/1809.02697

[23] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. 2018. Shufflenet
v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the
European conference on computer vision (ECCV). 116–131.

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. 1912.01703 (Dec 3, 2019). https://arxiv.org/abs/1912.01703

[25] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear Bottlenecks.
Institute of Electrical and Electronics Engineers (IEEE), 4510–4520. https://doi.
org/10.1109/cvpr.2018.00474

[26] Dominik Scherer, Andreas Müller, and Sven Behnke. 2010. Evaluation of pooling
operations in convolutional architectures for object recognition. In International
conference on artificial neural networks. Springer, 92–101.

[27] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. 1409.1556 (Sep 4, 2014). https:
//arxiv.org/abs/1409.1556

[28] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. Institute of Electrical and Electronics Engineers
(IEEE), 1–9. https://doi.org/10.1109/cvpr.2015.7298594

[29] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017.
Aggregated residual transformations for deep neural networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 1492–1500.

[30] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler,
Vivienne Sze, and Hartwig Adam. 2018. Netadapt: Platform-aware neural network
adaptation for mobile applications. In Proceedings of the European Conference on
Computer Vision (ECCV). 285–300.

[31] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shufflenet: An ex-
tremely efficient convolutional neural network for mobile devices. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 6848–6856.

8

https://arxiv.org/abs/1605.07678
https://arxiv.org/abs/1802.04799
https://arxiv.org/abs/1802.04799
https://doi.org/10.1109/cvpr.2017.195
https://doi.org/10.1109/cvpr.2018.00745
https://doi.org/10.1109/cvpr.2018.00745
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://arxiv.org/abs/1809.02697
https://arxiv.org/abs/1809.02697
https://arxiv.org/abs/1912.01703
https://doi.org/10.1109/cvpr.2018.00474
https://doi.org/10.1109/cvpr.2018.00474
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/cvpr.2015.7298594

	Abstract
	1 Introduction
	2 Empirical Exploration
	2.1 Form vs. Function: Design Pattern Choices on Hardware-specific Acceleration
	2.2 The Impact of Hardware-Specific Acceleration on Cache Access Efficacy
	2.3 The Impact of Hardware-specific Acceleration on Handcrafted & NAS-derived Architectures

	3 Conclusion
	References

