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Does Form Follow Function? An Empirical Exploration of the
Impact of Deep Neural Network Architecture Design on

Hardware-Specific Acceleration
Anonymous Author(s)

ABSTRACT
Advances in deep learning during the last decade have led to state-
of-the-art performance across a wide variety of tasks. However,
one of the biggest challenges with the widespread adoption of
deep learning in an operational manner has been high computa-
tional complexity. This challenge is particularly important to tackle
given the recent proliferation of smart sensors and edge devices.
This has led to hardware-specific acceleration platforms designed
specifically to accelerate deep neural network inference based on
microprocessor architectural traits. While promising, the degree
of inference speed gains achieved via hardware-specific software
acceleration can vary significantly depending on the design of
the deep neural network architecture and the microprocessor be-
ing leveraged for inference. The fine-grained relationship between
form and function with respect to deep neural network architecture
design and hardware-specific acceleration is one area that is not
well studied in the research literature, with form often dictated by
accuracy as opposed to hardware function. In this study, a com-
prehensive empirical exploration is conducted to investigate the
impact of deep neural network architecture design on the degree
of inference speedup that can be achieved via hardware-specific
acceleration. More specifically, we empirically study the impact of
a variety of commonly used macro-architecture design patterns
across different architectural depths through the lens of OpenVINO
microprocessor-specific and GPU-specific acceleration. Experimen-
tal results showed that while leveraging hardware-specific acceler-
ation achieved an average inference speed-up of 380%, the degree
of inference speed-up varied drastically depending on the macro-
architecture design pattern, with the greatest speedup achieved
on the depthwise bottleneck convolution design pattern at 550%.
Furthermore, we conduct an in-depth exploration of the correlation
between FLOPs requirement, level 3 cache efficacy, and network
latency with increasing architectural depth and width. Finally, we
analyze the inference time reductions using hardware-specific ac-
celeration when compared to native deep learning frameworks
across a wide variety of hand-crafted deep convolutional neural
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network architecture designs as well as ones found via neural archi-
tecture search strategies. We found that the DARTS-derived archi-
tecture to benefit from the greatest improvement from hardware-
specific software acceleration (1200%) while the depthwise bottle-
neck convolution-based MobileNet-V2 to have the lowest overall
inference time of around 2.4 ms. These findings illustrate the impor-
tance of tailoring network architecture design to account for the
intricacies of microprocessor architecture traits to enable greater
hardware-specific acceleration.
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1 INTRODUCTION
The past decade has witnessed significant advances in deep learn-
ing [18, 19], with deep neural networks matching or even exceed-
ing human performance in a wide variety of areas such as image
classification [12, 14, 17], object detection [8, 21, 26], and image
segmentation [7, 10]. Until recently, deep neural networks were typ-
ically designed with accuracy as the overriding metric rather than
hardware efficiency. This design principle has led to increasingly
complex models that require large computational resources to func-
tion [1, 3, 27–29]. The increasing complexity of modern deep neural
networks poses significant operational challenges for widespread
deployment on small edge devices used in different applications
such as autonomous vehicles and IoT consumer devices where
computational resources are limited. These challenges significantly
hinder the applications of deep learning and become particularly
important to tackle as edge devices continue to proliferate.

To mitigate the complexity of neural networks, a variety of
macro-architecture design patterns have been introduced in recent
years, which aim to reduce computational complexity for efficient
inference [12, 13, 15, 23, 25, 31]. For example, grouped convolu-
tions have been employed by ResNext [29] to reduce the number
of computations required compared to a standard convolution. The
premise behind grouped convolutions is to have a filter operating
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on only a smaller group of input channels to significantly reduce
the number of convolutions that need to be performed. An extreme
version of grouped convolution, depthwise separable convolution,
has been used with greaxft efficacy with MobileNet [13]. Depthwise
separable convolution are similar to grouped convolutions, with
the major difference being that the number of groups equaling the
number of input channels. Bottleneck convolutions are another
example of efficient convolutions and have been used successfully
to design neural networks such as DARTS [20], ResNet architec-
tures [12] and Squeezenets [15], where pointwise convolutions are
leveraged to decrease and increase channel dimensionality before
and after a spatial convolution, respectively. Depthwise convolution
and bottleneck convolution can be combined for a further improve-
ment in network efficiency and have been used in MobileNet-V2
for a drastic reduction in inference time [25]. Convolutions can also
be factorized to lower the amount of multiplication-accumulation
counts required [13, 25]. For example, a 3 × 3 kernel can be broken
into a 1× 3 and 3× 1 convolutions. However, this presumes that the
original kernel can be factorized which may not always be possible.

Another key development towards operational deep learning
deployment has been that of hardware-specific acceleration plat-
forms [2, 9, 11, 22, 30]. Such acceleration platforms take advan-
tage of the underlying hardware’s architectural traits to speed up
neural network inference. For example, an acceleration platform
can utilize a microprocessor’s vector processing unit or optimize
the use of processor cache for optimal network execution. While
hardware-specific acceleration is a promising development for de-
ploying deep neural networks on edge devices, the fine-grained
relationship between form and function with respect to network
architecture design and hardware-specific acceleration is an area
that has not been widely studied in the literature.

Motivated to gain a better understanding between form and
function from this perspective, we conduct a comprehensive empir-
ical exploration on the impact of deep neural network architecture
design on hardware-specific acceleration. Specifically, we investi-
gate the impact of a variety of commonly used macro-architecture
design patterns across different architectural depths and convolu-
tional widths on hardware-specific acceleration through the lens of
OpenVINO, a software platform designed specifically for hardware-
software acceleration of deep neural networks. Furthermore, we
examine the impact of level 3 (L3) cache optimization on network
latency as well as investigate the correlation between FLOPs re-
quirement, network latency, and L3 cache efficacy. Finally, we study
the inference time reductions using hardware-specific acceleration
on a variety of hand-crafted deep neural network designs as well as
ones found via neural architecture search (NAS) techniques. Finally,
based on the findings of this empirical exploration, we present prac-
tical considerations in designing efficient deep neural networks
tailored for the intricacies of CPU and GPU architecture traits to
enable greater hardware-specific acceleration.

2 EMPIRICAL EXPLORATION
This study provides a fine-grained empirical exploration on the im-
pact of network architecture design on hardware-specific accelera-
tion. Specifically, this study considers the impact of microprocessor-
specific acceleration with an Intel Core i5-7600K, as well as GPU-
specific acceleration with an integrated GPU (Intel HD Graphics
630).

This study is comprised of three experiments. In the first ex-
periment explained in Section 2.1, we measure the impact of six
different macro-architecture design patterns on hardware-specific
acceleration. We conduct this experiment in a parametric fashion by
studying the trend of inference speedup gained through hardware-
specific acceleration under different architectural depth scenarios.
Additionally, this experiment also considers the impact of hardware
acceleration under different network widths. Studying the impact
of hardware acceleration under different architectural depths is
important as we hypothesize that, unlike theoretical complexity
analysis using metrics such as the number of floating point opera-
tions (FLOPs), hardware-specific inference speedups will likely not
follow a simple trend for all design patterns as the depth increases.
Similarly, the impact of network width on hardware acceleration is
also important to investigate as the efficiency of different macro-
architectures may vary with the width of the network architecture.
For instance, some design patterns may be more computationally
efficient with a wider width and as such would be preferred choices
in the deeper layers of a deep convolutional neural network where
the channel widths are typically wider.

Building upon the first experiment, we subsequently investigate
the relationship between network execution time, FLOPs require-
ment, and L3 cache access, and the impact of hardware-specific
acceleration in Section 2.2. Specifically, we measure the number
of times the microprocessor does not find data in the L3 cache
and has to fetch data from the much slower DRAM. The primary
purpose of this experiment is to gain a deeper understanding on
how hardware-acceleration reduces the network latency. Similar
to the first experiment, we construct several neural networks with
architectural depths ranging from 10 to 50 layers and measure
the amount of times the L3 cache does not hold the required data.
Similarly, we also increase the architectural width of the neural
networks and measure the efficacy of the L3 cache access with
and without hardware-specific acceleration. Finally, we correlate
the measured L3 miss rate from these experiments with the net-
work execution time and FLOPs requirement of each design pattern
investigated in this study.

Finally, the third experiment reported in Section 2.3, measures
the inference speedups gained through hardware-specific acceler-
ation on a wide variety of hand-crafted deep neural networks as
well as ones found via NAS approaches. Many of these deep neural
networks employ the macro-architecture design patterns studied in
the first experiment, and thus will give us additional insights under
a more complex scenario where additional architecture components
are in place to form the well-defined network architecture.

All three experiments are conducted on an Intel Core i5-7600K
microprocessor operating at 3.8 GHz as well as an integrated In-
tel HD Graphics 630 GPU. These devices are leveraged via the
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hardware-specific acceleration platform, OpenVINO. The Core i5-
7600K processor features Advanced Vector Extensions 2 (AVX2)
which enables hardware-specific acceleration platforms to optimize
or ‘vectorize’ network execution. AVX allows for ‘single-instruction
multiple data’ (SIMD) operations where multiple data can be loaded
onto the physical registers and operated onwith a single instruction,
resulting in much faster execution.

The PyTorch [24] microprocessor-specific accelerated models
were executed with 32-bit floating point precision. Experimental
results showed that quantizing the microprocessor-specific acceler-
ated models to 16-bit did not provide any speed up on the CPU. This
is due to the fact that the Intel Core i5-7600K processor promotes
16-bit floats to 32-bit floats [5]. Nevertheless, the integrated GPU
(iGPU) does support 16-bit floating point operations and as such
the iGPU accelerated models were first quantized to half floats prior
to deployment [4].

2.1 Form vs. Function: Design Pattern Choices
on Hardware-specific Acceleration

The first experiment of this study examines the impact of net-
work architecture design choices on the inference speedup gains
through hardware-specific acceleration. For this experiment, we
construct a large number of deep neural network architectures
using a wide variety of commonly-used macro-architecture design
patterns, with architectural depths ranging from 10 to 50 layers. The
six macro-architecture design patterns studied in this experiment
include: i) standard spatial convolution, ii) factorized convolution,
iii) bottleneck convolution, iv) depthwise separable convolution,
v) depthwise bottleneck convolution, and vi) grouped convolution.
The execution time is measured for each deep neural network archi-
tecture against the native deep learning framework (i.e., PyTorch),
microprocessor-specific acceleration, and GPU-specific accelera-
tion using OpenVINO. The network execution time is measured
with increasing batch sizes to investigate the impact of batch size
on hardware-specific acceleration.

As seen in Figure 1, hardware-specific acceleration universally
improves network inference speed across all evaluated deep neural
network architectures with different macro-architecture design pat-
terns and different architectural depths. Although the greatest gains
are provided by the GPU-specific acceleration, the microprocessor-
specific acceleration also provides a significant speed up over the
native framework. This is made very apparent by the significant
speed up of hardware-specific acceleration deployment and the gap
between the inference time of the native framework and hardware-
specific acceleration as architectural depth increases in all cases.
The microprocessor-specific acceleration is particularly promising
as many embedded devices do not have a dedicated GPU available.
More interestingly, the speed gains from hardware-specific acceler-
ation improve as the network complexity increases for all evaluated
macro-architecture design patterns.

Furthermore, it can be observed that the degree of inference
speed gains through hardware-specific acceleration varies signifi-
cantly depending on the macro-architecture design pattern used,
with each exhibiting a different speedup trend. More specifically,
deep neural network architectures leveraging the depthwise sepa-
rable convolution design pattern demonstrated the greatest level of

speedup from hardware-specific acceleration; this speed upwith the
execution time of a 50-layer network architecture under hardware-
specific acceleration is at the same level as a much shallower, 10-
layer network, architecture under the native framework. Moreover,
the speed gains provided by the hardware-specific acceleration gen-
erally increases with the batch size. However, the native framework
generally slows down as the batch sizes increase. An example of
this is with standard convolutions, where the per-image inference
time increases from 300 ms to 500 ms as the batch size is increased
from 1 to 32 with the native framework. In contrast, the hardware
accelerated neural networks provide similar per-image inference
time for different batch sizes, resulting in greater and greater speed
gains as the batch size increases.

The impact of network width on network execution latency is
investigated by constructing several neural network architectures
with different network widths ranging from 32 to 512. Similar to the
architectural depth study, these networks are implemented with
aforementioned commonly used design patterns. As seen in Fig-
ure 2, all macro-architectures again benefit from hardware-specific
acceleration. In general, all design patterns perform similarly with
a narrow channel width. Bottleneck convolution scales poorly with
increasing network width, posting even worse numbers than stan-
dard convolution. However, standard convolution does not improve
significantlywithmicroprocessor-specific acceleration and required
GPU-specific acceleration to scale well. Standard convolution, fac-
torized convolution and bottleneck convolution scale with roughly
the square root of the channel width. In contrast, depthwise sepa-
rable convolution, depthwise bottleneck convolution and grouped
convolution stay almost linear, resulting in significantly more effi-
cient network execution. Indeed, the microprocessor accelerated
model variants perform on par with GPU-accelerated models. This
is especially promising for network architectures designed for de-
ployment on embedded systems where a dedicated GPUmay not be
available. Importantly, these design patterns should thus be the pre-
ferred choices for the deeper and wider layers of a deep convolution
neural network.

These speed gain variations observed in Figure 1 and Figure 2
are primarily due to the way OpenVINO performs software and
hardware-specific acceleration. More specifically, OpenVINO first
fuses common operations together to streamline operations. For
example, ReLU operations are typically fused with the preceding
convolution layers and executed as a single operation. OpenVINO
applies the ReLU activation while the convolution operation is
already in cache memory, thereby preventing a performance hit
by an avoidable access of DDR memory; and as such, the network
execution is optimized by taking advantage of efficiently using the
underlying memory hierarchy. In the case of the microprocessor,
OpenVINO optimizes the execution of all layers by running them
via the on-board vector processing unit (AVX2 on the Intel Core
i5-7600K).

2.2 The Impact of Hardware-Specific
Acceleration on Cache Access Efficacy

In this section, we investigate the relationship between FLOPs re-
quirement, network latency, and L3 cache efficacy, and the impact
of hardware-specific L3 cache optimization. As seen in Figure 1,
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Figure 1: The impact of macro-architecture design choices on hardware-specific acceleration across different architectural
depths. Notably, speed gains are seen from hardware-specific acceleration in all cases. More interestingly, the speed gains
from hardware-specific acceleration increases as the network complexity increases in all cases. This is observed by noting
that the inference time gap between the native framework and the hardware-specific acceleration increases significantly as
architectural depth increases. Furthermore, it can be observed that the depthwise bottleneck convolution design pattern is
accelerated the most out of the six macro-architecture design patterns studied here, yielding an improvement of about 550%
with a 50-layer network. Finally, it is observed that FLOPs requirement does not necessarily correlate with the network exe-
cution time. For example, depthwise separable convolution has one of the lowest FLOPs requirements yet reports one of the
highest inference times with native framework. This implies that the speed of computation is being limited in such cases by
software implementation. All plots share the same vertical and horizontal scale to allow for a quick visual comparison across
the different macro-architectures as well as batch sizes.

the FLOPs requirement for a design pattern does not necessarily
predict the network execution speed. For example, depthwise bot-
tleneck convolution requires the lowest amount of multiplication-
accumulation operations yet it reports one of the highest latency in
Figure 1 with native frameworks. To assess the impact of optimized

cache access, we construct several neural networks with architec-
tural depth of 10 to 50 layers. For each neural network architecture,
we measure the number of times the microprocessor was not able
to find data in the L3 cache and had to resort to fetching data from
the significantly slower DRAM. Figure 3 shows the number of L3
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Figure 2: The impact of hardware-specific acceleration on
network inference speed across different networkwidths. In
particular, hardware-acceleration improves network execu-
tion across all convolutional widths with all six design pat-
terns. We find that in the case of increasing convolutional
widths, the network execution time is correlated with the
number of floating point operations for each design pattern.
This implies that the number of FLOPS quickly becomes the
primary limitation for network execution speed as the num-
ber of output channels increases.

cache miss events, as well as the network latency against the archi-
tectural depth for all design patterns explored in this study. The
dashed lines denote the number of times the CPU did not find data
in the L3 cache. We can note that hardware-specific acceleration
improves L3 cache efficacy in all cases to a varying degree. In the
case of depthwise bottleneck convolution, the number of missed
L3 cache events drops by about an order of magnitude. The im-
proved L3 cache unleashes the true potential of depthwise bottle
convolution, improving the network execution by approximately

520%. Similar improvements are noted for depthwise separable con-
volution. In contrast, for standard convolution the L3 miss rate is
also reduced though not to the same degree. This difference in op-
timization is due to the significantly higher FLOPs requirement of
standard convolution. Although the L3 access rate is optimized, the
main limitation becomes the computational complexity of standard
convolution as well as the microprocessor speed.

The Intel Core i5-7600K processor features a 4 MB shared Last
Level Cache (LLC), which acts as an L3 cache for the CPU and the
primary cache for the integrated iGPU. Thus, Figure 3 also includes
measurements of L3 cache missed events for the integrated GPU
as well. Similar to Section 2.1, networks were quantized to 16-bit
floating point precision before deploying to the integrated GPU. We
note that when most design patterns are executed on the integrated
GPU in FP16, the LLC access efficacy is not as beneficial as it is
on the CPU using FP32. Despite this, the GPU-specific accelerated
models still exhibit lower network latency when compared to the
microprocessor-specific accelerated variants.

Figure 4 examines the impact of increasing the architectural
width on network latency. In contrast to increasing architectural
depth, network latency correlates well with the number of FLOPS
when width is varied. However, we can still note improvement in
network latency when the L3 cache access is optimized. Again, in
particular, depthwise bottleneck convolution and depthwise sepa-
rable convolution exhibit the highest speedups. Since increasing
the number of output channels roughly quadruples the number of
FLOPS, the network latency is quickly bounded by the computa-
tional complexity rather than the memory.

2.3 The Impact of Hardware-specific
Acceleration on Handcrafted &
NAS-derived Architectures

As the last experiment, we examine the degree of inference speed
gains from hardware-specific acceleration across 12 hand-crafted
deep neural networks and NAS-derived deep neural network ar-
chitectures. The evaluated architectures can be grouped based on
core macro-architecture design pattern they leverage including:
i) standard convolution (ResNet18, ResNet34), ii) bottleneck con-
volution (ResNet50, ResNet101, ResNet152, DARTS ImageNet, Op-
timized DARTS ImageNet), iii) grouped convolution (ResNext50,
ResNext101), iv) depthwise bottleneck convolution (MobileNetv2),
v) bottleneck depthwise convolution and factorized convolution
(Inceptionv3), and vi) NAS design (NasNet-A (large)). Figure 5 re-
ports the network inference times for both native framework and
hardware-specific acceleration.

As seen in Figure 5, the inference time improvements is at least
200-300% for all tested network architectures when they deployed
via hardware-specific acceleration compared to native framework.
More specifically, MobileNetv2 achieves the lowest inference times
of 2.4 ms, with a speed gain of approximately 700% under hardware-
specific acceleration compared towhen is deployed via native frame-
work. This improvement can be attributed to the significant speed
gains achievedwhen leveraging a depthwise bottleneck convolution
design pattern as observed in the first experiment explained Sec-
tion 2.1. The network architecture with the greatest speed gain from
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Figure 3: Relationship between network architectural depth,
the number of L3 cache miss rates, and network execution
speed. The vertical axes share the same scale and are log-
arithmic. The hardware-specific acceleration reduces the
amount of the number of L3 cachemisses significantly in all
cases. Improving the L3 cache efficacy improves the network
execution speed to a varying degree. Depthwise bottleneck
convolution benefits the most in terms of execution speed
as the network execution improves by about 520%.

hardware-specific acceleration is the DARTS-derived network ar-
chitecture, which saw an improvement of around 1200%. This large
speed gain can be attributed to two main reasons. First, DARTS
uses separable convolutions exclusively which see significantly
greater hardware-specific acceleration when compared to standard
convolution (see Figure 1). Secondly, DARTS also employs dilated
convolutions in its operations space. However, presently native
frameworks such as PyTorch do not optimally execute dilated con-
volutions. PyTorch only takes advantage of Intel’s oneAPI Deep
Neural Network library (oneDNN) [6] for non-dilated convolutions
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Figure 4: Relationship between network architectural width,
the number of L3 cache miss rates and network execution
time. The vertical axes share the same scale and are logarith-
mic. Similar to increase in architectural depth, the L3 cache
miss rate improves in all cases with hardware-specific accel-
eration. However, the improvement is not to the same de-
gree as it was in the case of increasing network depth shown
in Figure 3. This is because, in case of increasing convolu-
tional channels, the computation is quickly limited by the
number of FLOPS.

only. Thus, when the network undergoes hardware-specific accel-
eration (i.e., OpenVINO), the performance is improved significantly.
By modifying the PyTorch model to explicitly use oneDNN for all
supported operations, the performance difference reduces to about
500%. Nevertheless, the modified model still has significant over-
heads in terms of changing channel order. Specifically, sometimes
PyTorch will change the native layout to match what the math
library prefers depending on the operation and operands. Some
popular formats are NCHW (channels-first) and NHWC (channels-
last) where 𝑁 is the batch size, 𝐻 and𝑊 are the height and width,
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Figure 5: Inference speed of handcrafted networks and those found via NAS-based strategies under the native framework
and hardware-specific acceleration. The bold text adjacent to the bars is the improvement of the inference speed for the
corresponding model. All networks were tested with PyTorch. MobileNetv2 model achieved the lowest inference time under
hardware-specific acceleration (2.4 ms) due to its use of the depthwise bottleneck convolution design pattern. The DARTS
derived architecture benefits the greatest from hardware-specific acceleration with an improvement of about 1200% over the
native framework. This is partly due to use of dilated convolution and also due to its use of bottleneck convolution which
benefits greatly from hardware-acceleration.

and 𝐶 is number of channels. Thus, as the data flows between op-
timized oneDNN operators and PyTorch operators, the channel
ordering is changed automatically by PyTorch at the cost of over-
head to satisfy the underlying math library. OpenVINO does not
suffer from memory layout overheads as the toolkit transforms the
input to the most efficient layout for the operation.

It is worth noting that the experiments in this study were per-
formed in 32-bit floating point precision. As such, network quanti-
zation down to 8-bit integers may further enhance the inference
speedup provided by OpenVINO. Finally, it can be observed that
the degree of speed gain from hardware-specific acceleration varies
significantly across different examined architectures, but correlates
well with the observations seen in the first experiment based on
their core design pattern.

The findings in the conducted experiments illustrate that the
choice of architectural design can have a high significant impact on
hardware-specific acceleration and thus an essential consideration
when designing network architectures tailored to edge deployment.
More specifically, based on the findings across the two experiments
in this study, the use of depthwise bottleneck convolutions when
designing efficient deep neural networks results in the greatest
speed gains from the examined hardware-specific acceleration in
microprocessor-based deployments, and enables one to build deeper

neural networks to achieve a stronger balance between modeling
accuracy and efficiency.

3 CONCLUSION
The efficient design and acceleration of deep neural networks
are key for widespread deployment of deep learning applications.
We explored empirically the fine-grained relationship between
form and function from the perspective of architecture design and
hardware-specific acceleration. The inference speed of a large num-
ber of deep neural network configurations with six different macro-
architecture design patterns ranging from 10 to 50 layers depth
as well as convolutional widths ranging from 32 to 512 were stud-
ied. The experimental results showed that the degree of inference
speed gains achieved with hardware-specific acceleration can vary
greatly depending on the macro-architecture design pattern choice.
However, depthwise bottleneck convolution and depthwise sepa-
rable convolution design patterns achieve the greatest degrees of
acceleration especially at greater architecture depths. Additionally,
the relationship between L3 cache optimization, network latency,
FLOPs requirement, and architectural depth and width was investi-
gated. It was noted that to take full advantage of computationally
inexpensive design patterns, such as depthwise bottleneck convolu-
tion, it was necessary to optimize the L3 cache access such that the
CPU does not have to fetch data from the DRAM. Finally, by further
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studying 12 different hand-crafted and architecture-searched deep
neural network under hardware-specific acceleration as well as
the native framework, we found that inference speed gains also
vary greatly depending on the overall network architecture. The
results showed that the speed gain correlates well with the design
patterns leveraged in their overall architecture design, as well as
the use of operations (e.g., dilated convolutions) that are greatly ac-
celerated via hardware-specific acceleration. One limitation of this
study is that the empirical exploration focuses on microprocessor
(FP32) and integrated-GPU (FP16) specific acceleration, and thus
future work involves studying the impact of architecture design on
hardware-specific acceleration for different hardware designs such
as INT8 and BFloat16 [16] acceleration on CPUs, variable precision
on FPGAs and other hardware acceleration on discrete GPUs. Fur-
thermore, we aim to incorporate such insights into the construct of
neural architecture search to enable more efficient identification
of deep neural network architectures with great balance between
accuracy and real-world efficiency.
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