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Abstract

Diagnosis of cancer often relies on the time-consuming examination of histopathology slides
by expert pathologists. Automation via supervised deep learning methods require large
amounts of pixel-wise annotated data that is costly to acquire. Unsupervised density
estimation methods that rely only on the availability of healthy examples could cut down
the cost of annotation. We propose to use residual flows as density estimator and compare
different tests for out-of-distribution (OOD) detection. Our results suggest that unsupervised
OOD detection is a viable approach for detecting suspicious regions in histopathology slides.

1. Out-of-distribution detection for histopathology

Current state-of-the-art methods in machine learning for histopathology use deep learning
methods and are often trained on extracted patches from large pixel-wise annotated datasets
(Ehteshami Bejnordi et al., 2017). Methods that work with image-level labels only have to
overcome challenges which arise from large image size, as well as the low ratio of objects
of interest (cancerous cells) to background in those images (Katharopoulos and Fleuret,
2019; Pawlowski et al., 2019). We aim to reframe this task as an out-of-distribution (OOD)
detection task that detects pathologies as outliers under a statistical model of healthy data
(Chen et al., 2018). We show that recent deep learning-based density estimation methods
achieve competitive performance to fully supervised methods.

Recent work on normalising flows (Dinh et al., 2016) allows for density estimation on high
dimensional image data. Normalising flows model a complex probability density p(x) using
a bijective transformation f of a base distribution π(u) as x = f(u) | u ∼ π(u). However, it
has been shown that the estimated likelihood is not guaranteed to be a reliable estimate for
detecting OOD samples (Nalisnick et al., 2018; Le Lan and Dinh, 2020; Kirichenko et al.,
2020) and other OOD scoring metrics have been proposed (Choi et al., 2018; Nalisnick et al.;
Ren et al., 2019). However, these methods either require to train multiple density estimation
models (Choi et al., 2018; Ren et al., 2019) or can only handle batch-wise OOD detection.
Instead we propose to cut down compute requirements during training by interpreting
different points along the training trajectory as different models, similar to (Huang et al.,
2017; Pawlowski et al., 2017; Maddox et al., 2019).

Given multiple density estimators pφ1 , . . . , pφn , we consider the following OOD scores:
log-likelihood: log pφi ; expected log-likelihood: Ei[log pφi ], WAIC (Choi et al., 2018):
Ei[log pφi(x)] − Vari[log pφi(x)]; a variation on the typicality test from (Nalisnick et al.):
|Ei[− log pφi(x) − Ex′∼Xtrain

[− log pφi(x
′)]]|; and lastly the variance of the log-likelihood
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Vari[log pφi ]. Note that, different to the other scores, we expect the variance of inliers to
be higher than that of outliers as we expect training of the models to mainly impact the
behaviour for inlier samples, whereas the likelihood of outlier samples will mainly depend
on the inductive biases of the model (Kirichenko et al., 2020).

2. Experiments & Discussion

We use the PatchCamelyon (PCam) dataset (Veeling et al., 2018) to test our concept of
using normalising flows for OOD detection on histopathology images. We train our density
estimator on all negative examples from the training set. We then calculate the area under
the ROC curve (AUROC) to estimate the separability and classification performance of
positive and negative patches. We train Residual Flows (Chen et al., 2019) using the original
codeas a density estimator on the 32×32 px centre patches for 60 epochs and use the
checkpoints at epochs 52-60 as the different density estimators. We compare our proposed
method to a statistical baseline as well as a fully supervised learning method with varying
amounts of positive patches. The statistical baseline estimates the probability of an inlier
as p(x) = N (x[:, 1] | µ1, σ1)N (x[:, 2] | µ2, σ2)N (x[:, 3] | µ3, σ3), where x[:, i] denotes the ith
colour channel of the patch x and µi, σi the corresponding empirical mean and variance.

Table 1: Comparison of AUROCs of correctly classified patches from the PCam test set. The
single log-likelihood result is computed using the last model checkpoint. Typ. refers
to our variation on the typicality test. GDensenet refers to the official baseline.

Method log pφ Ei[log pφi ] Vari[log pφi ] WAIC Typ. Gaussian GDensenet

AUROC [%] 53.4 81.6 92.4 25.3 61.8 31.8 96.3

Consistent with previous work we find that density estimation alone is not a reliable
OOD detection metric, as seen with the performance of the Gaussian estimator and the
regular log-likelihood. However, more sophisticated OOD scoring metrics achieve superior
performance. Specifically, using the variance of the log-likelihood achieves an AUROC of
92.4%, being competitive compared to fully supervised methods such as GDensenet.

The current work is limited as it lacks thorough tuning of the Residual Flow and relies
on the PatchCamelyon dataset which is derived from WSI that all contain regions with
lesions. Future evaluations will therefore look into training on crops from the CAMELYON17
dataset and examine the performance of methods on whole-slide histopathology images to
showcase their real-world applicability. Furthermore, it currently is not clear whether the
suggested OOD scoring metric of the likelihood variance during training generalises to other
problem domains or is specific to this particular dataset. Initial experiments on synthetic
data as well as more common computer vision datasets suggest that this point requires more
investigation as the computer vision experiments showed little separation using this metric.
Nevertheless, we believe that observing the model behaviour over the course of training
warrants future research into new ways of constructing OOD metrics.
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