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Abstract

We explore the creative problem-solving ca-001
pabilities of modern LLMs in a constrained002
setting. To this end, we create MACGYVER,003
an automatically generated dataset consisting004
of 1,600 real-world problems deliberately de-005
signed to trigger innovative usage of objects006
and necessitate out-of-the-box thinking. We007
then present our collection to both LLMs and008
humans to compare and contrast their problem-009
solving abilities. MACGYVER is challeng-010
ing for both groups, but in unique and com-011
plementary ways. For instance, humans ex-012
cel in tasks they are familiar with but strug-013
gle with domain-specific knowledge, leading014
to a higher variance. In contrast, LLMs, ex-015
posed to a variety of specialized knowledge,016
attempt broader problems but fail by propos-017
ing physically-infeasible actions. Finally, we018
provide a detailed error analysis of LLMs, and019
demonstrate the potential of enhancing their020
problem-solving ability with novel prompting021
techniques such as iterative step-wise reflection022
and divergent-convergent thinking. This work023
introduces a fresh arena for intelligent agents024
focusing on intricate aspects of physical rea-025
soning, planning, and creativity, and provides026
insight into the constrained problem-solving027
capabilities of both humans and AI.028

1 Introduction029

Creativity has long been considered the driving030

force behind modern civilization, and one of the031

hallmarks of human intelligence (Guilford, 1967b;032

Hennessey, 1995). As large language models033

(LLMs) have become increasingly powerful, re-034

searchers have begun to investigate their reasoning035

ability in problem-solving tasks (Yao et al., 2022;036

Brahman et al., 2023) and their capacity for cre-037

ativity as demonstrated by expressing humor and038

generating artistic content (Mittal et al., 2022; Hes-039

sel et al., 2023; Ramesh et al., 2022; Chakrabarty040

et al., 2022; Tian et al., 2023). However, everyday041

Problem (a): I need to roll out dough evenly but 
don't have a rolling pin. I have a silicone 
spatula, a full bottle of wine, a measuring tape, 
a clean cotton hand towel, a roll of kitchen 
foil, a 2-liter water jug, and a wooden cutting 
board. How should I proceed?

“Take the cotton towel and 
roll it up tightly to form a 

cylindrical shape!”

Problem (b): I have a flat tire, but my lug 
wrench is broken. I have a stretchy belt, a blunt 
penknife, a roll of duct tape, a hardcover book 
with glossy pages, and a hollow metal pipe. The 
metal pipe is rusted, breaking under force. How 
to replace the flat tire?

“Strengthen the pipe with 
duct tape. Use the 

reinforced pipe as a lever.”

“Use the bottle of wine as
a makeshift rolling pin!”

“None of the tools is
strong enough for … ”

Figure 1: Examples of the problems in our MACGYVER
dataset with the GPT-4 and human answers (continued
in Figure 11). Pictures, drawn by DALL·E 3, are solely
for illustration purposes. In our experiment, all inputs
to human and LLMs are natural language texts.

activities that involve creative thinking have not 042

been studied to the same extent. In this work, we 043

contribute a benchmark for creative problem solv- 044

ing, hoping to critically assess modern LLMs when 045

it comes to ‘thinking out-of-the-box’. 046

To bridge this gap, we curate MACGYVER, 047

a novel unconventional problem-solving dataset 048

consisting of 1,683 sets of verbal problems that re- 049

quire human-like creativity in the realm of physical 050

reasoning. Drawing inspiration from the cognitive 051

science literature (Duncker and Lees, 1945), we 052

collect problem scenarios that deliberately push 053

against functional fixedness—a cognitive bias that 054

limits an agent from employing familiar tools in 055

innovative ways. Notably, leveraging the genera- 056

tive strength of LLMs and the verification strength 057

of humans, we design a novel and labor-efficient 058

pipeline to collect progressively more challenging 059
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scenarios (§2). These scenarios are verified by060

humans as requiring unconventional usage of ob-061

jects to find a solution. For example, solving prob-062

lem (a) in Figure 1 requires using the wine bottle063

as a makeshift rolling pin.1 Each problem in our064

dataset is paired with at least one human-provided065

or verified solution. To the best of our knowledge,066

MACGYVER is the first dataset of unconventional067

everyday problems requiring two key elements of068

creativity (Guilford, 1967a): divergent thinking (to069

come up with creative or unconventional usage of070

objects) and convergent thinking (to accomplish a071

goal efficiently).072

Next, we use the resulting dataset as a bench-073

mark to evaluate the creative problem-solving abil-074

ities of both human participants and recent LLMs,075

including GPT-3.5, GPT-4, PaLM2, Claude2, and076

Llama2 (OpenAI, 2022, 2023; Anil et al., 2023;077

Touvron et al., 2023; Anthropic, 2023). Our results078

in §4 reveal a substantial gap between most LMs079

and human. While the best performing LM, GPT-4,080

complements the capability of an arbitrary human081

under certain domain-specific settings (e.g., fixing082

a hole on the wall), humans’ collective wisdom is083

so far still invincible. Additionally, LLMs struggle084

to identify unsolvable problems and either exhibit085

misleading helpfulness or are ultraconservative in086

inappropriate cases. In §5, we present detailed087

comparison between human and machine.088

Finally, a qualitative analysis of LLM responses089

reveals two common failure modes: (1) mod-090

els propose physically infeasible, unnecessary, or091

wrong solution steps that deviate from the intended092

goal, and 2) models hallucinate unavailable tools093

or do not adhere to constraints specified. We pro-094

pose two prompting strategies to mitigate these095

common error types: (1) a self-reflection based096

strategy to iteratively verify the feasibility of each097

generated step and then modify as necessary, and098

2) a cognitive-science-inspired strategy of first di-099

vergently exploring the potential use of presented100

tools and then converging on the problem solu-101

tion. Experimental results show the efficacy of both102

strategies in boosting models performance (§6).103

2 MACGYVER Dataset104

LLMs have demonstrated utility for idea genera-105

tion (Girotra et al., 2023). Therefore, instead of106

1If the problem is unsolvable given the presented tools and
constraints (problem b in Figure 1), we expect the agent to
identify such infeasibility and provide a short justification.

asking humans to come up with thousands of con- 107

strained scenarios from scratch, we design a pro- 108

gressive refinement pipeline to explore LLMs’ po- 109

tential to generate problem settings quickly and at 110

scale (§2.1). Human annotators then verify that 111

each problem is concrete and requires creativity 112

(§2.2). Each instance in our dataset includes a con- 113

strained problem setting paired with at least one 114

human-provided or verified solution (§2.2, §C.2). 115

2.1 Progressive Problem Refinement for 116

Dataset Creation 117

Figure 2 provides an illustration of our problem col- 118

lection pipeline, showing how we combine human 119

and machine inputs. Specifically, we propose a 120

progressive problem refinement approach that grad- 121

ually increases problem complexity by 1) adding 122

specific object properties (e.g., material, size, etc.) 123

as constraints to eliminate a previous solution and 124

2) adding distracting objects that are not involved 125

in the solution. From a cognitive perspective on 126

problem-solving (Knoblock, 1991), the first refine- 127

ment step removes the most straightforward solu- 128

tion path, while the second step further complicates 129

the problem by adding branches to the search space. 130

We implement this pipeline through a dialogue 131

interaction with GPT-4. Human assessment results 132

(detailed in appendix C.3) confirm that both steps 133

within the progressive refinement approach pose 134

additional challenges to LLMs, and after the two 135

iterations, the original problem requires more cre- 136

ativity and becomes more challenging. 137

2.2 Human Verification Process 138

After the refinement process, we involve human 139

verifiers to judge if the final versions of the prob- 140

lems 1) are solvable, unsolvable, or need more 141

clarification (e.g., the setup is vague, which will be 142

discarded), and 2) for those solvable, whether solv- 143

ing them efficiently requires creative thinking (i.e., 144

using objects to achieve goals they were not origi- 145

nally designed for —unconventional usage). Each 146

problem is annotated by three human verifiers, with 147

average inter-annotator agreement (IAA, measured 148

by Cohen’s Kappa) of 0.67 and 0.77 for tasks 1) 149

and 2), respectively. Finally, we pair each problem 150

with a gold answer. For the solvable subset, it is 151

a step-by-step feasible solution. For the unsolv- 152

able subset, it is an explanation why the stated goal 153

cannot be achieved (detailed in §C.2). 154

In total, we created 1,683 problems, with a de- 155

tailed breakdown in Table 1. Of those, 78% are 156
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Solution: use the
kitchen tongs!

[Iteration 3]
Add additional items 

as distractors.

[Iteration 2]
Add constraints to 
veto the solution

Constraint added: The 
tongs are also slightly 
shorter than the jar.

Problem: You have a tall and narrow cookie 
jar, a pair of chopsticks, a roll of 
sticky tape, rubber bands and a pair of 
kitchen tongs. The jar is too narrow for 
your hand to fit in and the chopsticks are 
slightly shorter than the jar. How can you 
retrieve the cookies using only these 
items?

[Iteration 1]
Generate the 

vanilla scenario

The Cookie 
Jar Problem 

You have a tall and narrow cookie jar, a
piece of string, a plastic straw, a pair of
kitchen tongs, some napkins, a pair of
chopsticks, a roll of sticky tape, rubber
bands and a magnet. The jar is too narrow
for your hand to fit in and both the
chopsticks and tongs are slightly shorter
than the jar. How can you retrieve the
cookies using only these items?

GPT-4

Human

Figure 2: Progressive problem refinement with GPT-4. Starting from a vanilla version (i.e., Iteration 1), we carefully
design refinement steps that gradually increase the problem’s complexity by adding specific object properties as
constraints to veto a previous solution (i.e., Iteration 2), and adding distracting objects that are (likely) not involved
in the solution the problem (i.e., Iteration 3). After that, human verifiers judge the quality of refined problems.

Problem (All) Solvable Unsolvable Total

Count 1,306 377 1,683
Percentage 77.6% 22.4% 100%

Problem
(Solvable Subset) Unconv. Conv. Total

Count 1,073 233 1,306
Percentage 82.2% 17.8% 100.0%

Table 1: Statistics of the entire MACGYVER dataset
(top). Number of solvable problems that require uncon-
ventional use of tools (bottom).

solvable and 22% are unsolvable. Another 7% of157

all problems were discarded after being annotated158

by at least one annotator to be ambiguous or contra-159

dictory. For solvable problems, 82% require using160

tools in an innovative or unconventional manner.161

2.3 Diversity Control and Check162

Intuitively, we want to avoid generating multiple163

problems with familiar goals and constraints. In164

this section, we summarize our measures to ensure165

the collected problems are diverse, comprehensive,166

and free of repetitive patterns.167

Diversity Control We hand-craft more than 50168

tags of locations and activities, aiming to ensure169

that our data collection pipeline delves into a vari-170

ety of topics. These predefined tags are integrated171

into the prompt that we used to query GPT-4 for172

problem curation at Iteration 1. The detailed list of173

all tags can be found in Table 6.174

Diversity Check After the final iteration, we175

parse the objects presented as tools among all gen-176

erated problems. Intuitively, we consider two sim-177

ilar objects with different properties (e.g., plastic178

knife and metal knife; eyeglasses and magnifying179
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Affordance of Presented Tools

Figure 3: Affordances of the presented tools in our
MACGYVER dataset and their frequency (and count).
Note that one object may have multiple affordances
(e.g., paddle boards can be used for boating, reaching
high areas, and exercise).

glass) to be different. In total, 3,800 unique tools 180

were identified. We compute their frequency and 181

use GPT-4 to analyze their affordances (Appendix 182

Table 8; Figure 3). We found that holding items and 183

covering are the top two types, followed by tying 184

or connecting and cleaning. The long tails in both 185

illustrations signify a desirable level of diversity.2 186

3 Assessing the Task Difficulty 187

To gauge the challenge of our task posed to the 188

most recent LLMs, we evaluate the zero-shot per- 189

formance of GPT-4 (OpenAI, 2023). Nevertheless, 190

2Refer to Appendix C.4 for more details such as the de-
tailed list of all tags, the most frequent tools and their affor-
dances, and the prompt used to analyze tool affordance.
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1,306 Solvable 377 Unsolvable

38.8%
2.9%

58.2%

Correct (↑)
Right Reason

Correct
Wrong Reason

Wrongly Says
Solv. (↓)

18.9%
42.5% 37.5%

1.1%

Efficient 
Solution (↑)

Inefficient
Solution

Infeasible 
Solution (↓)

Wrongly Says
Unsolv. (↓)

Figure 4: Left: Human-evaluated GPT-4 performance
on all 1,306 problems from the MACGYVER that hu-
mans think are solvable. Right: GPT-4 performance
on all 377 problems that humans think are unsolvable.
Correct for the right reason means that the LLM cor-
rectly identifies the problem is unsolvable, and gives the
right justification. Correct for the wrong reason means
that it correctly identifies the problem is unsolvable, but
gives an incorrect justification.

existing automatic evaluations fall short to assess191

the efficacy of a presented solution. Therefore, we192

recruit human annotators to evaluate the quality of193

the GPT-4’s answers on the entire MACGYVER.194

Assessment Setup. For a solvable problem, hu-195

man annotators are asked to judge if the presented196

solution is 1.1 feasible and efficient, 1.2 feasible197

yet inefficient, or 1.3 infeasible. The machine-198

generated answer may also wrongly assume the199

problem is unsolvable and gives a wrong justifica-200

tion (1.4). For an unsolvable problem, they need201

to judge if the presented answer 2.1 correctly iden-202

tifies the problem as unsolvable, and 2.2 gives the203

right justification. Similarly, the answer may also204

wrongly assume the problem is solvable and give a205

wrong solution (2.3).206

GPT-4 Performance. We report the perfor-207

mance on the solvable and unsolvable subset in208

Figure 4. Our preliminary findings indicate that,209

firstly, LLMs as strong as GPT-4 still exhibit lim-210

itations in solving unconventional problems, with211

only 18.9% likelihood of providing an efficient212

solution, while 37.5% likelihood of providing an213

infeasible solution. Analysis in the later section214

(§6) shows that one common mistake is it failing215

to realize the consequences of actions and tool af-216

fordances in the given context (e.g., proposing to217

use chopsticks to lift up the egg yolk). Secondly,218

GPT-4 displays overconfidence, often suggesting219

solutions to problems that are inherently unsolv-220

able. This could be partially due to GPT-4 being221

trained with RLHF (Ouyang et al., 2022), maximiz-222

ing its helpfulness. Moreover, the model struggles223

to discern whether a problem description is suffi-224

ciently concrete for resolution or too ambiguous,225

necessitating additional context (Liu et al., 2023).226

4 Benchmarking Humans and LLMs 227

A natural follow-up question is how well modern 228

LLMs perform on this task, as compared to humans. 229

We thus evaluate the performance of several recent 230

LLMs (i.e., PaLM2, Claude2, Llama2, GPT-3.5 231

and GPT-4) on a representative sample of the entire 232

MACGYVER dataset which contains 323 problems. 233

In addition, we gauge the capability of average 234

humans on the same set of tasks. 235

4.1 Collecting Independent Human Responses 236

We assessed human capability by recruiting par- 237

ticipants who are new to this task. To this end, 238

independent solutions were collected from a pool 239

of N = 252 UK participants on Prolific. We inten- 240

tionally used a different platform and target pop- 241

ulation from those of the human evaluators (i.e., 242

MTurk and US) to minimize any chances of over- 243

lap. For a given problem, participants indicated 244

whether they believed the problem is solvable, un- 245

solvable, or required further clarification. If solv- 246

able, they provided a step-by-step solution, and oth- 247

erwise explained why the problem was unsolvable. 248

Overall, we elicited an average of six responses per 249

problem and each participant contribute to up to 250

five different problems. 251

4.2 Collecting Machine Responses 252

We collected solutions from seven different LLMs 253

using Nucleus sampling (Holtzman et al., 2020) 254

and return the top one sequence (T=0.7 and 255

p=0.95). In the prompt, we instruct an LLM to 256

either provide a feasible and efficient solution to 257

a problem when it believes the problem is solv- 258

able, or otherwise a justification explaining why the 259

given problem is unsolvable. To explore whether 260

different sizes of the same model plays a role 261

in its problem solving ability, we include three 262

variations of Llama2 (i.e., -7b, -13b, -70b), as 263

well as two variants of GPT model family (i.e., 264

gpt-3.5-turbo, gpt-4-0613). 265

Additional GPT-4 Responses For a fair com- 266

parison with humans, we emulate the same setup 267

in §4.1 by obtaining multiple solutions per prob- 268

lem from a single LLM. Since exhaustive human 269

evaluation is costly, we opted to elicit multiple so- 270

lutions exclusively from the most capable LLM, 271

GPT-4. Multiple manually-designed instructions 272

are used to prompt GPT-4 in order to reduce repe- 273

tition among separate sessions of API calls. More 274

details can be found in Appendix D.1. 275
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Figure 5: Left: Benchmark results of seven LLMs and human with a single effort. For human participants, since
there is no single participant who worked on all problems, we take a random response from each problem. We
color-code the three categories indicating fine-grained aspects of correctness or falseness. Right: Comparison
between GPT-4 and human where we evaluated multiple solutions per problem. The best performance, which can
be viewed as an upper bound, is computed by taking the individual best answer (out of 6) for each problem. The
actual numbers are reported in Table 4 in appendix A.2.

4.3 Human Evaluation276

Human annotators were asked to evaluate if a pre-277

sented answer is correct by selecting one out of six278

fine-grained categories: A (or B) correctly giving a279

feasible and efficient (or less efficient) solution to280

a solvable problem; C correctly identifying an un-281

solvable problem and giving the right justification;282

D giving a partially incorrect answer; E giving a283

mostly or entirely wrong answer; and F failing to284

identify the correct solvability status. 3285

4.4 Benchmark Results286

We report the benchmark results in Figure 5. Cat-287

egory A, B, and C are the three aspects of correct288

responses, while the remaining D, E, and F are as-289

pects of the wrong ones. At a glance, despite vary-290

ing in their characteristics, all of the benchmarked291

LLMs lag behind the performance of humans.292

4.4.1 Performance with Single Effort293

As is mentioned in §4.2, only the top one response294

is collected for a LLM per problem. Hence, we295

first list the LLMs’ performances with their single296

best answers on left of Figure 5.For human partici-297

pants, there is no single person who approached all298

problems. Therefore, to simulate an arbitrary per-299

son’s individual performance, we take a random300

response from each problem.301

We see that most recent LLMs achieve a mere302

35% to 42% chance of success. Although GPT-303

3Screenshots of the human evaluation interface can be
found in Appendix Figure 23 and 24.

4 and Claude3 stand out among the tested LLMs, 304

their best attempts still under-perform an arbitrary 305

average person with total correct rate of 65.1% 306

(sum of category A, B and C). 307

We observe that different families of LLMs ex- 308

hibit dissimilar behaviors. For example, PaLM2 309

and GPT-4 are overly verbose and often suggest so- 310

lutions to problems that are inherently unsolvable 311

(as seen by their remarkably low performance in 312

category C: correctly identify an unsolvable prob- 313

lem). In contrast, Llama2-7b, Claude2, and GPT- 314

3.5 are more conservative and fail to realize a con- 315

strained problem can still be solvable (reflected in 316

their high numbers in category F). Comparing the 317

three variants of Llama2, we find that the larger 318

models (13b, 70b) excel in correctly identifying 319

solvability (category F). The smaller model (7b) is 320

more subject to falsely recognizing a constrained 321

problem as unsolvable. Beyond this, however, it ap- 322

pears that scale alone does not significantly unleash 323

any creative problem-solving capabilities. 324

4.4.2 Performance with Multiple Efforts 325

Recall that we collect multiple solutions per prob- 326

lem for GPT-4 and humans. With these, we com- 327

pute the average and best performance. The best 328

performance, which can be viewed as an upper 329

bound, is computed by taking the individual best 330

answer for each problem. The results are shown 331

on the right of the same figure. In addition, we 332

compute the majority performance by considering 333

a binary annotation (i.e., correct or wrong) of each 334

problem. We find that the majority of humans are 335
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Figure 6: The kernel density estimate of individual hu-
man and GPT-4 answers.

79.3% correct, surpassing that of GPT-4 (73.3%).336

We see that on average human participants are337

slightly worse than GPT-4 in coming up with a cor-338

rect solution (especially inefficient ones, category339

B), which is potentially owing to functional fixed-340

ness. In general, humans still out-perform GPT-4341

due to the fact that GPT-4 seldom correctly identi-342

fies an unsolvable problem. Moreover, the best of343

the four human answers, which can be considered344

as a form of collective wisdom, clearly leads to a345

near perfect performance.346

Finally, humans seem to struggle with certain347

problems (category F). We hypothesize that an in-348

dividual person, who likely does not have domain-349

specific knowledge in all aspects of life, may not350

outperform a single LLM such as GPT-4, which351

is trained on massive amount of data and a wide352

variety of tasks. However, when considered col-353

lectively as a group, with each person contributing354

their unique expertise and wisdom, human intelli-355

gence exceeds that of LLMs. To verify our hypoth-356

esis and gain deeper insights into the relationship357

between the intelligence of humans and LLMs, we358

conduct further analyses in the next section.359

5 Comparing GPT-4 with Humans360

5.1 Humans have higher variance than LLMs.361

We plot the kernel density estimate (KDE) of in-362

dividual human and GPT-4 responses in Figure 6.363

We can see that humans either approach a prob-364

lem perfectly or fail totally. Namely, once humans365

understand the task and acquire the relevant knowl-366

edge, they can always propose a feasible and often367

the most efficient solution. On the contrary, GPT-4368

responses fall more into the middle (mostly/par-369

tially wrong, or inefficient), owning to its ability to370

aggregate information from a wide range of sources371

it has been trained on. However, GPT-4 is some-372
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Category
seaside/snow/beach
camping/in the wild
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fishing

Figure 7: 2D visualization of human (x-axis) and GPT-
4 (y-axis) performance on individual problems. Each
dot represents a problem, with its color representing
seven different categories. Humans are better at solving
problems that they are familiar with (e.g., household),
than those requiring domain-specific knowledge (e.g.,
gardening/farming/fishing).

times ignorant of tool affordances or consequences 373

of its proposed actions, lacking the depth of under- 374

standing that humans possess (see more detailed 375

error analysis in §6.1). 376

5.2 Humans possess better general everyday 377

knowledge, but less domain-specifically. 378

Next, we visualize the capability of humans and 379

GPT-4 on individual problems in a 2D plot (Figure 380

7). Accordingly, we convert categorical labels into 381

numerical scores ranging from 0 (Fail) to 1 (Per- 382

fect), and take the average score across solutions. 383

We also plot the diagonal line: the farther away 384

a point is from this, the larger the gap between 385

human and GPT-4 performance. 386

We find that humans are better at solving tasks 387

in categories likely to be familiar to them, such 388

as household and personal life. For those requir- 389

ing domain-specific knowledge such as gardening/- 390

farming/fishing, GPT-4 performs better. The same 391

holds when we manually inspect the outliers: those 392

few problems that belongs to everyday categories 393

yet humans are poor at. Unsurprisingly, they are 394

problems such as demonstrating the concept of re- 395

fraction without a prism (category: school), and 396

making a sundial (category: beach), which an aver- 397

age person might have little experience with. Refer 398

to §A.1 for examples and other comparisons. 399

Overall, the different creative strengths of hu- 400
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Error Description Example Freq.

(1) Wrong tool usage. Using tools in ways that are physically
infeasible or not afforded

Using the stapler to staple the duct tape on top of
broken glasses.

42.4%

(2) Not achieving the goal. The proposed approach contains
unnecessary or wrong steps towards the stated goal

To save space when packing, use the scissors to
cut the comforter into smaller pieces.

17.7%

(3) Using unavailable tools. - 16.9%

(4) Wrong spatial understanding Putting the shoe box inside the empty DVD case. 10.8%

(5) Unfaithful to constraints. Ignoring constraints added to
a tool or a situation

- 9.5%

Table 2: Categories of common errors made by GPT-4. It is highly prone to coming up with actions that are
physically infeasible, unnecessary, or wrong. An erroneous solution may have more than one type of mistake.

mans and AI systems suggests that the most effec-401

tive solutions to tasks requiring thinking “out-of-402

the-box” might arise from a collaborative approach403

leveraging the strengths of both parties.404

6 Enhancing LLMs’ Problem Solving405

Here, we investigate whether different prompting406

strategies can enhance the problem-solving abilities407

of existing LLMs. In §6.1, we conduct a detailed408

error analysis on GPT-4, showing it is weakest at409

identifying the correct tool affordance and physical410

feasibility. In §6.2, we propose two new prompting411

strategies that effectively reduce its mistakes.412

6.1 Error Analysis for GPT-4413

To better understand the limitations of LLMs and414

provide insight for potential improvement, we man-415

ually analyze 200 solutions generated by GPT-4416

marked as infeasible by human annotators. We417

identified five common failure modes in Table 2.418

We find that GPT-4 is highly prone to proposing419

physically infeasible, unwanted, or wrong actions.420

In Table 2, error type (1) wrong tool usage accounts421

for ∼half of all the errors made (42.4%), followed422

by (2) not achieving the goal (17.7%). It is crucial423

to highlight that LLMs act in a fictional setting,424

failing to realize the consequences of their pro-425

posed actions and the affordances of tools in the426

given unconventional context. While one can argue427

that LLMs lack direct interaction with the physical428

world, the human solvers similarly contemplate the429

same task purely in their minds, without any visual430

or physical cues. We also observe two types of431

hallucination: (3) using unavailable tools and (5)432

unfaithful to constraints, which account for 16.9%433

+ 9.5% = 26.4% of all the errors made.434

6.2 Improving LLMs via Prompting435

The common error types in Table 2 motivates us436

to explore techniques to enhance LLMs’ problem437

solving abilities. Specifically, we explore two 438

prompting strategies as illustrated in Figure 8: 439

• Iterative Step-Wise Reflection : A self- 440

reflection-based strategy. After the LLM gen- 441

erates an initial solution, we prompt it to verify 442

if each step is physically feasible and afforded. 443

Subsequently, it modifies the original solution it- 444

eratively until no more modifications are needed. 445

• Divergent-Convergent Thinking: A cognitive- 446

science-inspired strategy. The LLM is prompted 447

to first enumerate the affordance of each object 448

(i.e., divergent thinking) and conclude whether 449

they are useful, followed by generating the steps 450

towards the goal (i.e., convergent thinking). 451

We implement both prompting strategies with 452

GPT-4, Claude2, and Llama2-13b on 180 453

randomly-sampled solvable problems that do not 454

overlap with those used in §6.1. The performance 455

of the standard prompting and two proposed im- 456

provements for GPT-4 are shown in Figure 9.4 In 457

short, both proposed prompting methods contribute 458

to a reduction in infeasible solutions. Intuitively, 459

Iterative Step-Wise Reflection, which is de- 460

signed to verify the feasibility of steps, has a larger 461

improvement in reducing infeasible solutions (9.7% 462

vs 4.3% drop); while Divergent-Convergent 463

Thinking, which is designed for better preparation 464

before generating the solution, is more helpful in 465

generating efficient solutions (6.5% vs 2.2% gain). 466

7 Related Work 467

Creativity Theory Guilford (1967a) defines a 468

meaningful creative process as an interplay be- 469

tween spontaneous (divergent, to come up with 470

novel ideas) and controlled (convergent, to satisfy 471

the demand of the task) modes of thinking. Kauf- 472

man and Beghetto (2009) categorize human cre- 473

4We report the results for the remaining two LLMs and
original prompts used for both strategies in Appendix A.3.
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Solution with 
Vanilla Prompting: 
Use the chopstick 
to gently lift the 
yolk out of the 

bowl, leaving the 
egg white behind. 
Be careful not to 
break the yolk.

Figure 8: Proposed prompting methods: iterative step-wise reflection (left), divergent-convergent thinking (right).

30.1

38.7
31.2

0.0

32.3

45.7

21.5

0.5

36.6 36.0
26.9

0.5

Efficient (↑) Inefficient Infeasible (↓) Says Impossible (↓)

Vanilla Self-Reflect Div-Conv

Figure 9: Results of different prompting strategies with
GPT-4 in a zero-shot fashion: 1) vanilla prompting,
2) iterative step-wise reflection (self-reflect), and 3)
divergent-convergent thinking (div-conv).

ative activities into four dimensions (Table 5), rang-474

ing from everyday innovation that ordinary people475

have knowledge of (e.g., removing wrinkles on a476

shirt without possession of an iron) to highly emi-477

nent innovation that few people engage with.478

In the AI-related creativity community, every-479

day innovation which better reflects the activities480

that most people may engage in, is under-explored481

possibly due to the lack of a sizable dataset. For482

example, recent work (Koivisto and Grassini, 2023)483

study problems with four objects: rope, box, pencil,484

and candle. We bridge this gap by contributing a485

dataset with 1,600 everyday problems.486

Cognitive Bias Functional fixedness is a cogni-487

tive bias limiting our ability to use familiar objects488

in novel ways. For example, struggling to see a489

chair as anything other than a seat exemplifies this.490

These biases subtly impact our daily decisions, of-491

ten unconsciously. Over 82% of the solvable prob-492

lems in MACGYVER require using tools unconven-493

tionally to bypass such a bias.494

Machine Physical Reasoning Previous research495

such as Hong et al. (2021) and Bakhtin et al. (2019)496

investigated physical reasoning in visual contexts.497

In the realm of language-based physical reason-498

ing, prior studies primarily focused on understand-499

ing physical concepts and attributes of various ob- 500

jects, such as PROST (Aroca-Ouellette et al., 2021), 501

and NEWTON (Wang et al., 2023). Relatedly, 502

SWAG (Zellers et al., 2018) introduced the task 503

of grounded commonsense inference about phys- 504

ical situations. PIQA (Bisk et al., 2020), which 505

tests machines’ physical commonsense reasoning 506

ability is most similar. While proficiency in ad- 507

dressing problems in MACGYVER involves all the 508

above abilities, our emphasis extends beyond. We 509

focus on unconventional tool usage, reasoning over 510

the affordance of tools and ruling out unnecessary 511

ones, and how individual objects can be used in 512

combination to achieve a complex goal. 513

8 Conclusion and Future Work 514

We propose a novel task and the accompanying 515

MACGYVER dataset for creative problem solving, 516

focusing on everyday activities. We evaluate and 517

compare both LLM and human performance on 518

the MACGYVER benchmark, and highlight failure 519

modes of LLMs in proposing physically feasible 520

actions towards a goal. Nonetheless, we find LLM 521

capabilities to be complementary to human capa- 522

bilities under certain domain-specific settings. We 523

propose two new prompting methods that effec- 524

tively improve this reasoning ability in LLMs. 525

We hope the MACGYVER dataset opens the door 526

to future investigation into planning and reasoning 527

strategies to enhance LLMs with physical knowl- 528

edge and spatial understanding, and to reduce hallu- 529

cination. To further ameliorate the mistakes made 530

by models in a fictional setting, future work are 531

encouraged to build agents that can interact with 532

physical or simulated worlds and receive feedback 533

from the environment. Finally, we encourage auto- 534

matic evaluation methods for this reasoning task. 535
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Limitations536

Measuring how well a model can solve creative537

problems is hard due to the lack of standardized538

automated metrics. For example, assuming the539

availability of multiple references, popular auto-540

matic NLG metrics exhibit a weak correlation with541

human judgment, with Pearson correlation coeffi-542

cients of 0.07 for BLEU-2/BLEU-3 (Papineni et al.,543

2002) and 0.12 for BertScore (Zhang et al., 2019).544

Our experiments thus rely on human evaluation pro-545

cess, which is relatively slow and costly. Therefore,546

new proposals for efficient and automatic evalua-547

tion framework for creative and sequential planning548

could be a compelling future direction.549

Another limitation of our study lies in the na-550

ture of our problems being generated by an LLM,551

GPT-4. Despite its strengths in exploring a unique552

and novel angle of problem-solving, it might also553

exhibit inherent biases and tendencies of the under-554

lying model. Given GPT-4’s predominant training555

on English-speaking data, we may inadvertently556

reflect the cultural nuances of North American and557

European contexts.558
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Figure 10: Number of problems (out of 323) that at least
20%, 40%, 60%, 80%, 100% human participants (or
GPT-4) answer correctly.

A Additional Results715

A.1 Comparing GPT-4 with Humans716

What percentage of individual humans outper-717

form AI? Figure 10 compares human and ma-718

chine by showing the number of problems (out719

of 323) that at least 20%, 40%, 60%, 80%, and720

100% human participants (or GPT-4) answer cor-721

rectly. Given the unique strengths and knowledge722

scopes of different individuals, it is less likely that723

all human participants can answer the same prob-724

lem correctly. However, there is a higher chance725

where at least 60% human participants know the726

answer.727

Complementary capabilities of human and AI.728

Figure 11 presents two examples showing the com-729

plementary capabilities of human and AI in cre-730

ative problem solving. In problem (c), human par-731

ticipants find a more efficient solution to heat the732

pizza than GPT-4. In problem (d) requiring do-733

main knowledge gardening, humans fail to solve734

this highly-specialized task, whereas the LLM has735

equipped itself with such domain knowledge dur-736

ing massive pre-training.737

What tools are human more proficient at? Re-738

call that in §5.2 we convert the categorical labels739

into numerical scores ranging from 0 (Fail) to 1740

(Perfect) to conduct problem-wise analysis. Simi-741

larly, we conduct object-wise analysis by first pars-742

ing the tools presented in each problem, and then743

calculating the same numerical scores for each tool.744

Note that we opt to parse all the tools presented in745

the problem setting instead of those actually used746

in a proposed solution, because being able to rea-747

son about the potential usage of presented tools and748

conclude to not a possible tool is also an keystone749

towards intelligence. We identify several tools that750

humans and GPT-4 attempt most differently and re-751

Problem (c): You want to heat your leftover pizza 
in the hotel room but there is no microwave. 
Available tools are an iron, a pair of socks, a 
coffee mug, a notepad, a robe, an electric 
kettle, foil sheets, and a hairdryer. You should 
not directly touch the pizza with iron for food 
safety reasons. How to 
heat the pizza using 
these items only?

“Boil the water with 
kettle. Wrap pizza with 
foil. Use the steam to 

heat the pizza!”
“Wrap pizza with foil. It 

is now safe to iron!”

Problem (d): Your short-stemmed flowers are being 
invaded by small aphids. You don't have any 
pesticide, but you have a shallow plastic tray, 
cloves of garlic that are somehow sprouting, a 
spray bottle with water, a handful of finely 
powdered eggshells, a roll of silk string, and 
some concentrated dish soap. How can you protect 
your plants without harming them? 

“Tough. I don’t know how 
to repel aphids …”

Garlic contains natural sulfur 
compounds that are effective 

against pests like aphids. Strain 
and add finely powdered 

eggshells for extra plant health.”

“Crush garlic cloves and 
soak them in water.

Figure 11: Detailed examples showing the complemen-
tary capabilities of human and GPT-4. In problem (c),
human participants find a more efficient solution to heat
the pizza than AI. In problem (d), humans fail to solve
this highly-specialized task to repel aphids, whereas the
LLM has equipped itself with domain knowledge on
gardening during massive pre-training.

port them in Table 3. For example, humans are 752

more proficient at attempting magnifying glass, 753

rocks, calculators, knifes, etc., whereas AIs are 754

better attempting mirrors, gloves, and scarves. In 755

general, there are more tools humans are proficient 756

at. 757

A.2 Benchmark Results 758

We report the benchmark results in Table 4. Cate- 759

gory A, B, and C are the three aspects of correct 760

responses, while the remaining D, E, and F are as- 761

pects of the wrong ones. At a glance, despite vary- 762

ing in their characteristics, all of the benchmarked 763

LLMs lag behind the performance of humans. 764

A.3 Enhancing LLMs’ Problem Solving 765

Results with Claude2 and Llama2 We report 766

the performance of the standard, zero-shot prompt- 767

ing and two proposed improvements for Claude2 768

and Llama2-13b in Figure 12 and Figure 13. 769
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Object Human-AI
Difference

A. human>AI

magnifying glass 0.602
rock 0.447
calculator 0.405
kitchen knife 0.386
hair tie 0.359
paper cup 0.292
zip ties 0.283
pen 0.281
kettle 0.273
old t-shirt 0.252
sunscreen 0.25

B. human<AI

mirror -0.314
gardening gloves -0.311
scarf -0.307
tablecloth -0.289
clothespins -0.253

Table 3: Tools that human are more proficient at lever-
aging or deciding to not leverage than AI (GPT-4 in our
case), and vice versa.
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23.9

33.6
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33.9
38.8

10.0

25.6 26.4
29.8

18.2

Efficient (↑) Inefficient Infeasible (↓) Says Impossible (↓)

Vanilla Self-Reflect Div-Conv

Figure 12: Results of different prompting strategies
with Claude2. We compare 1) vanilla prompting, 2)
iterative step-wise reflection (reflect), and 3) divergent-
convergent thinking (div-conv).

Different from GPT-4 (shown in Figure 9), the770

self-reflection strategy does not help any of771

these two models to reduce infeasible answers.772

When prompted to reflect on its previous answer,773

Llama2 always claims that its original answer is774

mistaken and attempts to correct itself blindly. We775

hypothesize that these two LLMs are weaker than776

GPT-4 and lack the inherent ability to faithfully777

conduct complicated physical reasoning. On the778

other hand, we see that Divergent-Convergent779

Thinking is beneficial for all LLMs across all di-780

mensions.781

B The Four-C Creativity Model782

Kaufman and Beghetto (2009) propose the Four-C783

model (Table 5), categorizing human creative activ-784

ities into Mini-C: developmental creativity in the785

learning process, Little-C: everyday innovation786

that ordinary people have knowledge of and engage787

5.3

27.7

61.7

5.33.2
11.8

84.9

0.1
10.1

29.3

58.6

2.0

Efficient (↑) Inefficient Infeasible (↓) Says Impossible (↓)

Vanilla Self-Reflect Div-Conv

Figure 13: Results of different prompting strategies
with Llama2-13b. We compare 1) vanilla prompting, 2)
iterative step-wise reflection (reflect), and 3) divergent-
convergent thinking (div-conv).

with (such as removing wrinkles on a shirt without 788

possession of an iron) , Pro-C: professional exper- 789

tise such as writing poems or painting artwork, and 790

Big-C: highly eminent innovation that few people 791

engage with. 792

C More Information on the MACGYVER 793

Dataset 794

C.1 Human Verification Process 795

After generating the challenging scenarios, we in- 796

volve human verifiers to judge if the final versions 797

of the problems 1) are solvable (i.e., it is possible 798

to find a reasonable solution using the presented 799

tools), unsolvable, or need more clarification (i.e., 800

the setup is vague or contradictory, which will 801

be discarded), and 2) for those solvable, whether 802

solving them efficiently requires creative thinking 803

(i.e., using objects to achieve goals they were not 804

originally designed for —unconventional usage). 805

Each problem is annotated by three human veri- 806

fiers from Amazon Mechanical Turk. The detailed 807

verification interface can be found in Appendix 808

D.4. The average inter-annotator agreement (IAA), 809

measured by Cohen’s Kappa, are 0.67 and 0.77 for 810

tasks 1) and 2), respectively. 811

C.2 Collecting Gold Solutions 812

We provide more details on the final step of our 813

data collection —to pair each problem with a gold 814

answer. For the solvable subset, the answer is a 815

feasible solution written step by step. For the un- 816

solvable subset, the answer is a correct explanation 817

for why the stated goal cannot be achieved. 818

To save human effort, we start by leveraging the 819

generative strengths of a powerful LLM, i.e., GPT- 820

4. Specifically, we first prompt GPT-4 to generate 821

a solution for each problem in the MACGYVER 822

dataset. Then, human verifiers assess whether the 823
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Correct (%) Wrong (%)
A. Eff-
icient

B. Less
Efficient

C. Uns-
olvable

Correct in
Total (↑) D. Partial E. Mostly F. Fail to

Identify

Wrong in
Total (↓)

Single Effort

Llama2-7b 8.9 18.1 8.5 35.5 6.9 27 30.6 64.5
Llama2-13b 11.7 28 2.3 42.0 12.1 32.3 13.6 58.0
Llama2-70b 11.6 24 5.6 41.2 14.0 27.2 17.6 58.8
PaLM2 14.7 25.9 0.0 40.6 10.8 35.5 13.1 59.4
Claude2 14.0 22.2 16.5 52.7 8.2 12.3 26.7 47.2
GPT-3.5 13.8 15.4 11.4 40.6 10.2 11.4 37.8 59.4
GPT-4 (Random) 24.8 35.5 2.1 62.4 11.9 14.9 10.8 37.6
Human (Random) 27.6 27.6 9.9 65.1 5.6 10.8 18.6 35.0

Multiple Efforts

Average GPT-4 24.8 33.2 5.0 63.0 12.5 15.7 8.7 36.9
Average Human 26.2 28.7 12.9 67.8 5.1 10.2 16.9 32.2
Best GPT-4 62.5 21.1 8.7 92.3 2.2 4.3 1.2 7.7
Best Human 72.8 15.2 10.8 98.8 0.6 0.6 0.0 1.2

Table 4: Top: Benchmark results of seven LLMs and human with a single effort. For human participants, there is
no single participant who worked on all problems. So we take a random response from each problem. Bottom:
Comparison between GPT-4 and human where we evaluated multiple solutions per problem. The best performance,
which can be viewed as an upper bound, is computed by taking the individual best answer (out of 4) for each
problem. We use boldface to denote the best performance and underline to denote the second best.

Model Description Example

Mini-C
Developmental achievement
in the learning process.

A pupil applying a strategy
learned in a math class into
her science project.

Little-C
Everyday innovation that
ordinary people engage with.

Removing wrinkles on a
shirt without possession of
an iron.

Pro-C Professional expertise
Writing poems or stories
that receive professional
recognition.

Big-C
Legendary innovation that
redirect a field.

Albert Einstein arriving at
general relativity.

Table 5: The Four-C model of creativity.

generated solutions are valid. Only if all three ver-824

ifiers agree that a solution is valid, it becomes part825

of our dataset. Otherwise, we ask human workers826

to write down a solution (for solvable subset) or a827

justification (for unsolvable subset).828

C.3 Does the data collection pipeline result in829

progressively challenging problems?830

To test whether our data creation pipeline (in Fig-831

ure 2) is indeed iteratively posing challenge to a832

previous iteration, we collect GPT-4 answers to833

iteration 1, 2, and 3 of 200 problems, and run the834

same human evaluation process described in §4.3.835

GPT-4’s performance on all three iterations of836

the same set of problems can be found in Table 7.837

As the problems get iteratively refined, the ratio of838

feasible and efficient solutions decrease, and the839

ratio of infeasible answers increase. This reflects840

that most potent LLM, GPT-4, indeed finds the841

problems increasingly challenging.842

C.4 Diversity Control 843

Tags used for Diversity Control Before the first 844

iteration, we hand craft more than 50 tags of lo- 845

cations and activities, aiming to ensure that our 846

data collection pipeline delves into a variety of 847

topics. The tags cover diverse range of human 848

activities, from indoor ones such as home arrange- 849

ment and working in the office, to outdoor ones 850

such as hiking, gardening, and playing with wa- 851

ter. These predefined tags are integrated into the 852

prompt that we used to query GPT-4 for problem 853

curation at Iteration 1. We list all the tags (i.e., lo- 854

cations and activities) used to curate the dataset in 855

Table 6. They are introduced to prompt the LLM 856

for diversity control, and can be broadly divided 857

into Indoors/Household, Neutral, and Outdoors. 858

Generation in Batch All problems are gener- 859

ated and refined in batches of 15 rather than one 860

by one, as we find out the former results in signifi- 861

cantly higher diversity. We then leverage a widely- 862

used sentence transformer (Reimers and Gurevych, 863

2020) to filter out any newly generated problem 864

that is semantically similar to the existing ones in 865

our database. 866

Analyzing Tool Affordance We leverage GPT- 867

4 to analyze the affordance of presented tools in 868

the MACGYVER dataset. Specifically, we start 869

with a small set of hand-crafted affordance as seed. 870

Despite being required to choose only from this 871

fixed list of affordances, GPT-4 does not strictly 872

follow our instruction, and sometimes returns new 873

types that are not included in the seed list. We then 874
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Indoors/Household Neutral Outdoors

bedroom at a party at the beach
closet or storage organization classroom and university lecture hall backyard gardening
cooking a complex dish dog training beach cleanups, or planning a beach event
dining room garage boat trip
fitness workouts going out for a meal campsite setting
gym and sports facilities plants, flowers and garden city streets and sidewalks
hair styling and care public speaking construction work
home improvement recycling and waste management desert survival
in a hotel room school and student activity exploring a cave
indoors arrangement school science fair farm duties
kitchen science laboratory forest and jungle
library swimming hiking, camping, and traveling
living room university campus in the parks
office and work vehicle maintenance in the rain
packing things up weather preparation and response in the winter
personal grooming and beauty routine in the zoo
shopping on the playground

playing with snow
playing with water
rooftop terrace

Table 6: The tags (i.e., locations and activities) used to curate the dataset for diversity control. They can be broadly
divided into Indoors/Household, Neutral, and Outdoors.

Solutions Feasible
& eff. (↑)

Feasible
& ineff.

Infeasible
(↓)

LLM says
unsolv. (↓)

Iteration 1 39.1% 36.8% 24.0% 0.1%
Iteration 2 34.7% 32.2% 31.7% 1.4%
Iteration 3 25.4% 37.9% 35.7% 1.0%

Table 7: GPT-4 performance on iteration 1, 2, and 3 of
200 problems. Numbers in each row add up too 100%.

gradually expand the list of affordances with newly875

generated ones.876

For eliciting tool affordances, we use the prompt877

shown in Figure 14.878

Commonly-presented tools and their frequen-879

cies In total, more than 3,800 different tools ap-880

pear in our MACGYVER dataset. We list in Table 8881

16 commonly-presented tools, their featured affor-882

dances, and frequency. The number of unique tools883

and the long tails in distribution signify a desirable884

level of diversity.885

D Experimental Details886

D.1 Benchmark Setup887

Recruiting MTurk Evaluators We used qualifi-888

cation tasks to recruit 160 qualified annotators on889

Mechanical Turk. They are paid over 18 USD per890

hour for all the evaluation and verification tasks.891

Collecting Human Solutions on Prolific All par-892

ticipants of human study provide informed consent893

in accordance with an approved institutional re- 894

view board (IRB) protocol. For a given problem, 895

participants indicated whether they believed the 896

problem is solvable, unsolvable, or required further 897

clarification. If solvable, they provided a step-by- 898

step solution, and otherwise they explained why 899

the problem was unsolvable. A screenshot of the 900

elicitation interface is shown in Figure 22. 901

Collecting Multiple GPT-4 Responses in Bench- 902

mark Recall that in §4.2, we elicit multiple solu- 903

tions exclusively from the most potent LLM, GPT- 904

4, to emulate the same setup of human study. To 905

align with the varying number of human responses 906

for different problems, we adjusted the quantity of 907

collected GPT-4 answers to match that of human 908

answers. On average, we elicited four GPT-4 so- 909

lutions per problem through separate API call. To 910

this end, four manually-designed instructions are 911

used to prompt GPT-4 to reduce repetition among 912

separate sessions. For each API call, we still adopt 913

Nucleus sampling and return the top one sequence. 914

D.2 Analyzing Results 915

Each machine-generated or human-written answer 916

is annotated by three Mturk workers, with an aver- 917

age IAA of 0.71 as measured by Cohen’s Kappa, 918

indicating a substantially strong agreement. Inter- 919

estingly, we notice that human workers disagree 920

more often when deciding whether a solution is 921

efficient or inefficient. Upon further investigation, 922

we realize this is partially due to the limitation of 923
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1 <−− Instruction . −−>
2 You need to write the most common affordances of an

item. Please choose one or more options from the
following :

3 <−− Seed list to expand with . −−>
4 Container / holding items , covering , heating , measuring,

drawing/ writing , cleaning , sitting / stepping ,
tying or connecting , illumination , stretching ,
starting fire , sealing , cutting , separation ,
reaching high areas , powering devices , digging ,
making noise , flatten , cutting , gripping things ,
reflecting , eaten as food.

5

6 <−− Examples. −−>
7 Here are some examples:
8 rice : eaten as food
9 case : container / holding items , protection , covering

10 ruler : measuring, straightening
11 box: container / holding items
12 pencil : drawing/ writing ,
13

14 <−− Actual Task. −−>
15 Please write the common types of affordances of the

following tools .
16

17 1. {Tool 1}.
18 ...
19 N. {Tool N}.

Figure 14: The prompt used to analyze tool affordance.
We start with a list of affordances as seed. We gradually
expand our list thanks to the fact that GPT-4 does cannot
strictly follow our instruction and occasionally gener-
ates other affordances not belonging the predefined set.

individual annotator’s capability – a person who is924

unaware of the most efficient solution might label a925

sub-optimal one as highly efficient. Therefore, for926

those generated solutions linked to solvable prob-927

lems, instead of taking the majority vote, we take928

the worse labels as the golden label (e.g., taking ‘in-929

eff.’ from [‘eff.’, ‘ineff.’, ‘eff.’]). For all other cases,930

we still take the majority votes as gold labels. We931

find such modification leads to a more accurate set932

of labels.933

D.3 The Prompts for Improving LLM’s934

Ability935

Figure 15 and Figure 16 list the actual prompts for936

Self-Reflection and Divergent-Convergent937

Thinking.938

D.4 Human Task Interfaces939

Data Collection and Difficulty Assessment. In940

practice, we combine the questions of data collec-941

tion (§2) and difficulty assessment (§3) into one942

single task. The detailed human annotation inter-943

face, including the instructions, examples, and the944

actual task and be found in Figure 17 to Figure 21.945

Tool Affordance Freq.

duct tape sealing; tying or connecting 2.0%

plastic bag container or holding items;
covering 0.7%

flashlight illumination 0.7%
aluminum foil covering; heating; sealing 0.6%
hairdryer heating; drying; making noise 0.5%
ruler measuring; straightening 0.4%

broom cleaning; sweeping; reaching
high areas 0.4%

spoon eating; stirring; measuring 0.4%
toothbrush cleaning; spraying 0.4%
mag. glass magnifying; starting fire 0.4%

rope tying or connecting; reaching
high areas 0.4%

hammer flattening; gripping things;
making noise 0.3%

yoga mat stretching; sitting/stepping;
covering 0.3%

towel wetting; covering; absorbing 0.3%
frisbee playing; throwing 0.3%
toothpick cleaning; separating 0.3%

Table 8: Examples of most commonly presented tools,
their featured affordances, and frequency of these tools
in the entire dataset. We randomly pick 16 tools from
the top 40 frequent ones in the MACGYVER dataset.
In total, more than 3,800 different tools appear in our
dataset.

Human Study A screenshot of the interface to 946

elicit independent human responses is shown in 947

Figure 22. For a given problem, participants in- 948

dicate whether they believe the problem is solv- 949

able, unsolvable, or required further clarification. 950

If solvable, they provide a step-by-step solution, 951

and otherwise they explain why the problem was 952

unsolvable. 953

Benchmark Evaluation The screenshots of our 954

human evaluation interface for the benchmark ex- 955

periment can be found in Figure 23 and 24. 956
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1 <−− Round 1: −−>
2 User: {Problem Statement}
3 If the problem is solvable , provide a concise solution . Use step1 , step2 , etc , and mention the tools to achieve

each step . Use as few steps as possible and the answer should ideally be less than 100 words.
4

5 If you cannot find a feasible solution , just say that it is not possible and give a very short justification .
6

7 Assistant : {Answer}
8

9 <−− Round 2: −−>
10 User: Now, please verify if each step is physically feasible and afforded . After that , modify the solution if

needed.
11 Use the following format :
12 Step 1: ...
13 Step 2: ...
14 ...
15 Conclusion 1: Whether the problem is indeed solvable given all the constraints
16 Conclusion 2: ( If still solvable ) No modification needed/ Modification needed.
17

18

19 Modified solution :
20 Assistant : {Response and Updated solution }
21 <−− Repeat until no modification is needed.−−>

Figure 15: Prompt used for the step-by-step verify strategy.

1 User: {Problem Statement}
2 Give a feasible solution very concisely . Note that some tools are not useful , so please analyze the affordance

of each presented object , and rule out unnecessary ones first .
3

4

5 Use the following format :
6 1. List the affordance of presented items and whether they are useful
7 2. Summary: list useful tools
8 3. If the problem is solvable under all these constraints , write the solution . Use step1 , step2 , etc , and

mention the tools to achieve each step . Use as few steps as possible and the answer should ideally be less
than 100 words.

9

10 If you cannot find a feasible solution , just say that it is not possible and give a very short justification .
11

12 Assistant : {Analysis of the affordance and the main answer}

Figure 16: Prompt used for the divergent-convergent thinking strategy.
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Figure 17: Human Annotation Interface for Data Collection and Difficulty Assessment, Page 1.
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Figure 18: Human Annotation Interface for Data Collection and Difficulty Assessment, Page 2.

Figure 19: Human Annotation Interface for Data Collection and Difficulty Assessment, Page 3.
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Figure 20: Human Annotation Interface for Data Collection and Difficulty Assessment, Page 4.

Figure 21: Human Annotation Interface for Data Collection and Difficulty Assessment, Page 5.

19



Figure 22: Human Study Interface to Collect Independent Human Responses.

Figure 23: Human Evaluation Interface for Benchmarking, Page 1.
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Figure 24: Human Evaluation Interface for Benchmarking, Page 2.
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