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Abstract

Structured point process data harvested from various platforms poses new chal-
lenges to the machine learning community. To cluster repeatedly observed marked
point processes, we propose a novel mixture model of multi-level marked point
processes for identifying potential heterogeneity in the observed data. Specifically,
we study a matrix whose entries are marked log-Gaussian Cox processes and cluster
rows of such a matrix. An efficient semi-parametric Expectation-Solution (ES)
algorithm combined with functional principal component analysis (FPCA) of point
processes is proposed for model estimation. The effectiveness of the proposed
framework is demonstrated through simulation studies and real data analyses.

1 Introduction

Large-scale, high-resolution, and irregularly scattered event time data has attracted enormous research
interest recently in many applications, including medical visiting records [13], financial transaction
ledgers [28] and server logs [11]. Given a collection of event time sequences, one research thread is
to identify groups displaying similar patterns. In practice, the significance of this task emerges in
multifarious scenarios. For example, matching users with similar activity patterns on social media
platforms is beneficial to ads recommendations; clustering patients by their visiting records may help
predict the course of the disease progression.

Our study is motivated by a dataset we collected from Twitter, which consists of posting times of
500 university official accounts from April 15, to May 14th, 2021. Figure 1 displays posting time
stamps of seven selected accounts in five consecutive days. While the daily posting patterns vary
across different accounts, the posting date seems to also play an important role. Specifically, all
accounts cascade a barrage of postings on April 16th while few postings appear on April 18th. Lastly,
each posting is associated with a specific type of activity, namely, tweet, retweet, or reply. Our main
interest is to cluster these multi-category, dynamic posting patterns into subgroups.

To characterize the highly complex posting patterns, we propose a mixture model of Multi-level
Marked Point Processes (MM-MPP). We assume that the event sequences from each cluster are
realizations of a multi-level log-Gaussian Cox process (LGCP) [16], which has been demonstrated
useful for modeling repeatedly observed event sequences [28]. We here extend their work to the
case of mixture models and propose a semiparametric Expectation-Solution algorithm to learn the
underlying cluster structure. The proposed learning algorithm avoids iterative numerical optimizations
within each ES step and hence is computationally efficient. In particular, the expectation step is
carried out using MCMC samples based on the FPCA of the latent Gaussian processes, which imposes
minimal parametric assumptions on the proposed model. Finally, we design an algorithm that can
take advantage of array programming and GPU acceleration to further speed up computation.
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Figure 1: The activities of selected accounts on Twitter.

2 Related Work

Modelling of Event Sequences Point processes have been widely used to model temporal events [5],
although rarely does existing work focus on repeatedly observed event sequences. One prominent
example is the Hawkes process [8, 32, 33], which accounts for temporal dependence among events
by a self-triggering mechanism. However, the existing Hawkes process may fail to describe our
cases for two reasons. First, many human activities naturally have discontinuity by day. So it is
unclear how to define the triggering mechanism across days with Hawkes processes. Second, the
multivariate Hawkes process characters an overall rate of events for different days. The clustering
methods based on the Hawkes process [15, 14, 30] are more likely to distinguish individuals by
overall event frequency, other than their intra-day behavior patterns.

In our motivating example, there exist multiple variations for the event sequences, both from individual
and day levels. One way to account for variations from multiple sources is to exploit Cox process
models, whose intensities are modeled by latent random functions. One popular class of Cox processes
is the log-Gaussian Cox process (LGCP) [16], whose latent intensity functions are assumed to be
transformed Gaussian processes. Recently, [28] proposed a multi-level LGCP model to account for
different sources of variations for repeatedly observed event data. However, clustering of repeatedly
observed marked event time data was not considered in their work.

Clustering of Event Sequences. Extensive research has been done on this topic. To our knowledge,
clustering models for point processes can be summarized into two major categories: distance-based
clustering [3, 4, 18] and distribution-based clustering [30, 15]. The former measures the closeness
between event sequences based on some extracted features and then uses classical distanced-based
clustering algorithms such as k-means [4, 19] or EM algorithms [27]. The second approach, also
referred to as model-based clustering, assumes that event sequences are derived from a parametric
mixture model of point processes. One notable thread is the mixture model of the Hawkes point
processes. For example, [30] proposed a Dirichlet mixture of Hawkes processes (DMHP) under the
Expectation-Maximization (EM) framework to identify clusters. However, existing EM algorithms
for event sequence clustering have a common issue that they typically require iterative numerical
optimizations within each M-step, which would drastically overburden the computation. This
computational issue will be accentuated when event data are repeatedly observed and have marks.

3 Model-based Row-clustering for a Matrix of Marked Point Processes

Notation. Suppose that we observe daily event sequences from n accounts during m days. For
account i on day j, let Ni,j denote the total number of events, ti,j,l ∈ (0, T ] denote the l-th event
time stamp, and ri,j,l ∈ {1, · · · , R} denote the corresponding event types (marks). The activities of
account i on day j can be summarized by a set Si,j = {(ti,j,l, ri,j,l)}

Ni,j

l=1 , recording the time stamps
and types for all Ni,j events. This general notation can also describe other marked event sequences
which are repeatedly observed on m non-overlapping time slots. We represent the collection of all
marked daily event sequences as an n×m matrix S , whose (i, j)th entry is a marked event sequence
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Si,j . We aim to cluster the rows of S to identify potential heterogeneity in account activity patterns,
while taking into account the dependence across rows and columns to characterize the complex event
patterns and interactions among accounts, days, and event types.

3.1 A Mixture of Multi-level Marked LGCP Model

Given a matrix of daily event sequences S , we can separate each matrix entry Si,j according to their
marks (event types). Let Sr

i,j = {ti,j,l|ri,j,l = r} be the collection of time stamps of event type
r ∈ {1, · · · , R}. We model each Sr

i,j by an inhomogeneous Poisson point process conditional on a
latent intensity function λri,j(t|Λr

i,j) = exp{Λr
i,j(t)}, where Λr

i,j(t) : [0, T ] 7→ R is the random log
intensity function on [0, T ]. Following [28], we assume a multi-level model for Λr

i,j(t):

Λr
i,j(t) = Xr

i (t) + Y r
j (t) + Zr

i,j(t), t ∈ [0, T ], (1)

for i = 1, · · · , n, j = 1, · · · ,m and r = 1, · · · , R. In model (1), Xr
i (t), Y r

j (t) and Zr
i,j(t) are

random functions on [0, T ], characterizing the variations of account-level, day-level and the residual
deviations, respectively. In addition, we also take into account the dependence across event types
when modelling Xr

i (t), Y r
j (t) and Zr

i,j(t), while assuming independence across accounts, that is, for
any (r, r′), Xr

i (t) and Xr′

i′ (t) are independent when i 6= i′, Y r
j (t) and Y r′

j′ (t) are independent when
j 6= j′, and Zr

i,j(t) and Zr′

i′,j′(t) are independent if (i, j) 6= (i′, j′).

We assume that Xi(t) = {Xr
i (t)}Rr=1 is a mixture of multivariate Gaussian processes with C compo-

nents in order to detect heterogeneous clusters. We introduce a binary vector ωi = {ω1,i, · · · , ωC,i}′
to encode the cluster membership for account i, where ωc,i = 1 if account i belongs to the c-th
cluster and 0 otherwise. In analogy to other model-based clustering approaches, the unobserved
cluster membership ωi are treated as missing data and assumed to follow a categorical distribution
with parameter π = {π1, · · · , πC}, where πc indicates the probability that an account belongs
to the c-th cluster. Conditional on π, we assume that Xr

i (t)’s in different clusters have heteroge-
neous behavioral patterns, characterized by their corresponding cluster-specific multivariate Gaus-
sian processes with mean functions µr

x,c(t) = E[Xr
i (t)|ωc,i = 1] and cross covariance functions

Γr,r′

x,c (s, t) = Cov[Xr
i (s), Xr′

i (t)|ωc,i = 1], for s, t ∈ [0, T ], and r, r′ = 1, · · · , R. Here, µr
x,c(t)

characterizes the cluster-specific first-order intensity function, and Γr,r′

x,c (s, t) describes the temporal
dependence patterns within and across event types in the same cluster c, c = 1, · · · , C.

Similarly, we assume that Yj(t) = {Y r
j (t)}Rr=1 and Zi,j(t) = {Zi,j(t)

r}Rr=1 are both mean-zero
multivariate Gaussian processes to account for dependence of day-level and residual random effects
within and across event types, respectively. The covariance functions take the forms: Γr,r′

y (t) =

Cov[Y r
j (t), Y r′

j (t)], and Γr,r′

z (t) = Cov[Zr
i,j(t), Z

r′

i,j(t)]. As the heterogeneity patterns are assumed
to be mainly explained by the account-level effect X, both Γr,r′

y (t) and Γr,r′

z (t) are assumed to be
homogeneous across all clusters.

A Single-level Special Case. When m = 1, our data matrix S only has one column of event
sequences. The multi-level model in (1) reduces to a single-level model:

λri,1(t|Λr
i,1) = exp{Λr

i,1(t)}, Λr
i,1 = Xr

i (t), t ∈ [0, T ] (2)

where Xi(t) = {Xr
i (t)}Rr=1 has the same model specification as in the multi-level case described

earlier. We remark that it is still of importance to consider this special case that has also been studied
in the literature [29], as even in this simpler case limited work has been done for the clustering of
repeatedly observed marked point processes.

3.2 Likelihood Function

We denote the parameters concerning Xi(t) in cluster c as Θx,c and the parameters concerning
Yj(t) and Zi,j(t) as Θy and Θz , respectively. Therefore, the parameters in model (1) consist of
Ω = {π,Θy,Θz,Θx,c, c = 1, · · · , C}. When m = 1, Ω = {π,Θx,c, c = 1, · · · , C} representing
the parameters involved in model (2). The complete data D consists of the observed data S and the
unobserved latent variables

{
{ωi}ni=1,L

}
, where L =

{
{Xi(t)}, {Yi(t)}, {Zi,j(t)}

}
for model (1)
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and L = {{Xi(t)}} for model (2). Let Si be the i-th row of S representing activities of the i-th
account. In our mixture model, the probability of the observed data S can be written as

p(S; Ω) = EωEL

[
n∏

i=1

PP(Si|L) | {ωi}ni=1; Ω

]
, (3)

where the expectations are taken with respect to the conditional distribution of latent variables L and
ωi’s, and PP(Si|L) is the conditional probability of a Poisson point process,

PP(Si | L) =

m∏
j=1

R∏
r=1

 ∏
t∈Sr

i,j

λri,j(t | Λr
i,j) exp

[
−
∫ T

0

λri,j(s | Λr
i,j)ds)

] , (4)

where, conditional on L, Λr
i,j(t) has the form as (1) for m > 1 and as (2) for m = 1.

4 Row-clustering Algorithms

Existing mixture model-based clustering methods typically rely on likelihood-based Expectation-
Maximization algorithms [1] by treating unobserved latent variables,

{
{ωi}ni=1,L

}
in our case, as

missing data. However, standard EM algorithms are computationally intractable for the models we
consider here. One computation bottleneck is the numerical optimizations involved in M-steps, which
require many iterations due to the lack of closed-form solutions when updating parameters. Moreover,
the computation burden is severely aggravated by the fact that the expectations in E-step (see (3) for
an example) involve an intractable multivariate integration.

In Section 4.1, we describe a novel efficient semi-parametric Expectation-Solution algorithm for
the single-level model in (2) to bypass the computation challenges described above. We then show
in Section 4.2 that the learning task of multi-level models in (1) can be transformed and solved by
utilizing an algorithm similar to that of single-level models.

4.1 Learning of Single-level Models

The ES algorithm [6] is a general iterative approach to solving estimating equations involving missing
data or latent variables. The algorithm proceeds by first constructing estimating equations based on
a complete-data summary statistic, which may arise from a likelihood, a quasi-likelihood, or other
generalized estimating equations. Similar to the EM algorithm, the ES algorithm then iterates between
an expectation (E)-step and a solution (S)-step until convergence to obtain parameter estimates. The
detailed steps of a general ES algorithm framework are included in Supplementary S.2. The EM
framework is a special case of ES when estimating equations are constructed from full likelihoods
and using complete data as the summary statistic.

Due to the lack of closed-form for the likelihood function (3), we opt to design our algorithm under
the more flexible and general ES framework for parameter estimations of the single-level models in
(2), i.e., m = 1. The algorithm is summarized in Algorithm 1 and detailed below.

As a preliminary, we give the form of the expectation of the conditional intensity function given
cluster memberships as follows:

ρrc(t) = E[λri,1(t) | ωc,i = 1] = exp[µr
x,c(t) + Γr

x,c(t, t)/2]. (5)

The form of the second-order conditional intensity function is

ρr,r
′

c,i = E[λri (s)λr
′

i (t) | ωc,i = 1] = E{exp[Xr
i (s) +Xr′

i (t)|ωc,i = 1]}

= ρrc(s)ρr
′

c (t) exp[Γr,r′

x,c (s, t)], (6)

for i = 1, · · · , n, r, r′ = 1, · · · , R, where the last equality is derived following the moment generating
function of a Gaussian random variable.

Estimating Equations. We carefully construct estimating equations of unknown parameters with
three considerations in mind: (1) the expectation of the estimating equations over the complete data
should be zero; (2) the conditional expectation of the estimating equation can be solved efficiently in
the S-step; (3) the estimating equations should be fast to calculate.
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Let K(·) be a kernel function and Kh(t) = h−1K(t/h) with a bandwidth h > 0. We define

Ar,r′

c (s, t;h) =

n∑
i=1

ωc,ia
r,r′

i (s, t;h), where ar,r
′

i (s, t;h) =

u6=v∑∑
u∈Sr

i ,v∈Sr′
i

Kh(s− u)Kh(t− v)

ng(s;h)g(t;h)
;

Br
c (t;h) =

n∑
i=1

ωc,ib
r
i (t;h), where bri (t;h) =

∑
u∈Sr

i

Kh(t− u)

ng(t;h)
, (7)

for c = 1, ..., C, and r, r′ = 1, ..., R, where g(x;h) =
∫
Kh(x − t)dt. Using the Campbell’s

Theorem [17] and the moment generating function of the normal distribution, it is straightforward to
show that E

[
Ar,r′

c (s, t;h)|ω
]
≈ πcρ

r
c(s)ρr

′

c (t) exp[Γr,r′

x,c (s, t)] and that E [Br
c (t;h)|ω] ≈ πcρ

r
c(t),

provided that h is sufficiently small. This motivates us to consider the following estimating equations:
Ar,r′

c (s, t;h)− πcρrc(s)ρr
′

c (t) exp[Γr,r′

x,c (s, t)] = 0

Br
c (t;h)− πcρrc(t) = 0

n−1
n∑

i=1

ωc,i − πc = 0.

(8)

Expectation (E-step). Given an observed data S and a current parameter estimate Ω∗, we calculate
the conditional expectation of the estimation equations in (8). Note that, conditioned on S , the three
estimating equations are all linear with respect to {ωc,i, c = 1, · · · , C, i = 1, · · · , n}. Therefore,
the conditional expectations of the estimating equations are obtained by replacing wc,i with its
conditional expectation Eω[ωc,i|S; Ω∗], which has the following form:

Eω[ωc,i|S; Ω∗] =
π∗cf(Si|ωc,i = 1; Ω∗)∑C
c=1 π

∗
cf(Si|ωc,i = 1; Ω∗)

, (9)

where f(Si|ωc,i = 1; Ω∗) = EL[PP(Si|L)|ωc,i = 1; Ω∗]. Here PP(·) is the conditional distribution
function of Si given ωc,i and Ω∗ as defined in (4). We propose to approximate f(Si|ωc,i = 1; Ω∗) by
its Monte Carlo counterpart,

f̂(Si | ωc,i = 1; Ω∗) ≈ Q−1
∑

P̂P(Si |X(q)
c (t)), (10)

where Q is the Monte Carlo sample size,X(q)
c (t)’s are independent samples from the multivariate

Gaussian process with parameters Θ∗x,c (see details below), and P̂P(·) is a numerical quadrature
approximation of PP(·) following [2]:

P̂P(Si|X(t)) = exp
{ R∑

r=1

∑
u∈S̃r

i,1

vu[yuX
r(u)− expXr(u)]

}
, (11)

In the above, S̃r
i,1 is the union of Sr

i,1 and a set of regular grid points, vu is the quadrature weight
corresponding to each u and yu = v−1u ∆u, where ∆u is an indicator of whether u is an observation
(∆u = 1) or a grid point (∆u = 0).

Solution (S-step). In this step, we update the parameters by finding the solutions to the expected
estimating equations from the E-step. For c = 1, · · · , C, r, r′ = 1, · · · , R and r 6= r′, the solutions
take the following closed forms:

π∗c = n−1
n∑

i=1

E[ωc,i|S; Ω∗], (12)

Γr,r′∗
x,c (s, t) = log

π∗cEω[Ar,r′

c (s, t;h)|S; Ω∗]

Eω[Br
c (s;h)|S; Ω∗]Eω[Br′

c (t;h)|S; Ω∗]
, (13)

µr∗
x,c(t) = log

{
π∗−1c Eω[Br

c (t;h)|S; Ω∗]/ exp[Γr∗
x,c(t, t)/2]

}
. (14)
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Sampling Strategies. The multi-dimensional functional form ofX(g)
c renders the sampling proce-

dures in (10) intractable. Given Θx,c, one solution is to find a low-rank representation of Xi with
the functional principal components analysis (FPCA) [20]. Specifically, we approximate the latent
Gaussian process Xi in cluster c nonparametrically using the Karhunen-Lòeve expansion [25] as:
Xr

i (t) = µc + ξTi φ(t), for r = 1, · · · , R, where ξi is a vector of normal random variables, and φ(t)
is a vector of orthogonal eigenfunctions. Using FPCA, we can obtain the samples ofXi by sampling
ξi indirectly. More detailed sampling procedure via FPCA can be seen in Supplementary S.2.

Remarks. The most significant advantage of our method is that it avoids expensive iterations inside
each E-step and S-step, unlike other EM algorithms for mixture point process models [30]. The
elements ar,r

′

i (s, t;h)’s and bri (t;h)’s in (7) can be pre-calculated before E-S iterations to save
computations. Moreover, the S-step is fast to execute thanks to the closed-form solutions. We will
analyze the overall computation complexity of the learning algorithm in Section 4.3.

Algorithm 1 Learning of the Single-level model in (2)
Input: S = {Si}ni=1, the number of clusters C, the bandwidth h;
Output: Estimates of model parameters, π̂, µ̂r

x,c(t), Γ̂r,r′

x,c (s, t), for c = 1, · · · , C, r, r′ = 1, · · · , R;

Calculate the components ar,r
′

i (s, t;h)’s and bri (t;h)’s given in (7);
Initialize Ω∗ = {π∗,Θ∗x,c, c = 1, · · · , C} randomly;
Repeat:

E-Step:
Calculate Eω[ωc,i|S; Ω∗] as (9);
Calculate Eω[Ar,r′

c (s, t)|S; Ω∗] and Eω[Br
c (t)|S; Ω∗] as linear combinations of Eω[ωc,i|S; Ω∗]’s.

S-Step:
Update π∗, µr∗

x,c(t) and Γr,r′∗
x,c (s, t) according to (12), (13) and (14);

End;
Until: Reach the convergence criteria;
π̂ = π∗, µ̂r

x,c = µr∗
x,c(t) and Γ̂r,r′

x,c (s, t) = Γr,r′∗
x,c (s, t);

Model Selection. Algorithm 1 requires choosing a proper number of clusters C and bandwidth h.
In model-based clustering, one popular method for choosing the number of clusters is based on the
Bayes information criterion (BIC) [22], which can be readily computed for our model since the
probability f(S|ω) is already calculated in each iteration. The choice of bandwidth h also plays
an important role in model estimation. A small h may produce unstable clustering results while a
large h would dampen the characteristics of each cluster. With ar,r

′

i (s, t;h)’s and bri (s;h)’s given
in (7) pre-calculated for different candidates of h, we can adaptively choose the h that maximizes the
likelihood in each iteration in a computationally efficient manner.

4.2 Learning of Multi-level Models

We now consider developing the learning algorithm for the multi-level model (1), assuming we
repeatedly observe R types of events from n accounts on m days with m > 1. Below, we propose a
method to transform the learning task of a multi-level model into a problem that can be solved by a
two-step procedure, where the second step is mathematically equivalent to a single-level model and
hence can be conveniently solved by a similar algorithm as in Algorithm 1.

For a given account i, consider the aggregated event sequence S̄r
i· = ∪mj=1S

r
i,j for each row of S

and event type r. If we assume a multi-level model for each Sr
i,j as in (1), conditional on latent

variables L, S̄r
i· is a superposition of m independent Poisson processes and hence can be viewed as

a new Poisson process with intensity functional λri·(t|L) =
∑m

j=1 exp Λr
i,j(t). We approximate the

distribution of S̄r
i· by a Poisson process with a marginal intensity function,

λ̄ri (t) = EY Z{λri·(t|L)|Xi(t)} = m exp{X̃r
i (t)}, (15)

where X̃i = {X̃1
i , · · · , X̃R

i } is a new multivariate mixture Gaussian process with mean function
µ̃r
x,c(t) = µr

x,c + Γr,r
y (t, t)/2 + Γr,r

z (t, t)/2 and covariance function Γ̃r,r′

x,c (s, t) = Γr,r′

x,c (s, t), if
account i belongs to cluster c. When m is large, we expect the above approximation to be accurate.

6



Note that the model in (15) for the aggregated event sequence S̄r
i· is inherently reduced to a single-

level model. It allows us to separate the inference of the multi-level model in (1) into two steps:
(Step I) learn the parameters in Θy and Θz and denote the estimated parameters as Γ̂r,r′

y (s, t) and
Γ̂r,r′

z (s, t); (Step II) learn the clusters of the single-level model in (15) and estimate the parameters π,
µ̃r
x,c and Γ̃r,r′

x,c . Afterwards, the parameters involved in Θx,c can be obtained by

µ̂r
x,c(t) = µ̃r

x,c(t)− Γ̂r,r
y (t, t)/2− Γ̂r,r

z (t, t)/2, Γ̂r,r′

x,c (s, t) = Γ̃r,r′

x,c (s, t).

For the learning task in Step I, [28] developed a semi-parametric algorithm to learn the repeatedly
observed event sequences. In analogy to their work, we propose a similar inference framework to
estimate Θy and Θx in our mixture multi-level model (1) and provide the details in Supplementary
S.1. For step II, we resort to the single-level model algorithm described in Section 4.1.

4.3 Computational Complexity and Acceleration

Assume that the training event sequences belong to n accounts and C clusters and are repeatedly
observed on m time slots. We also assume that the data contains R types of events and each sequence
consists of I time stamps on average. Let Q be the sampling size used in the Monte Carlo integration
in (10). In numerical implementation, we divide the interval [0, T ] into D equally spaced grid points
D = {0 = u1 < · · · < uD = T}. In Step I, it requires O(nmR2D2) computation complexity to
estimate Θy and Θz , according to [28]. Computation complexity to pre-calculate ar,r

′

i (s, t;h)’s and
bri (t;h)’s in (7) for all s, t ∈ D is of the order O(nmR2D2) if we decomposition ar,r

′

i (s, t;h) as:

ar,r
′

i (s, t;h) =

∑
u∈Sr

i

Kh(s− u)

g(s;h)

 ∑
v∈Sr′

i

Kh(t− v)

g(t;h)

− ∑
u∈Sr

i ∩Sr′
i

Kh(s− u)Kh(t− v)

g(s;h)g(t;h)
.

In Step II, for each E-S iteration, we need O(CQR3) for sampling and O(nCIQR2) for other
calculations. Therefore, the overall computational complexity is O(R2(nmD2 + CQR+ nCIQ)).
To further reduce computation, we use array programming and GPU acceleration to calculate the
high-dimensional integration in the Monte Carlo EM framework [26] to reduce the runtime of (9).
The details are included in Supplementary S.2, and a numerical demonstration is given in Section 5.1.

5 Numerical Examples

We examine the performance of our MM-MPP framework for clustering event sequences via synthetic
data examples and real-world applications and compare the performances between the proposed
method and two other state-of-the-art methods. One competing method is a discrete Fréchet distance-
based method (DF) by [18]. Unlike other distance-based clustering methods, the DF cluster can
characterize interactions among events. Another is a model-based clustering method based on the
Dirichlet mixture of Hawkes processes (DMHP) by [30]. DMHP is chosen as a competitor due to its
capability of accounting for complex point patterns while performing clustering and making efficient
variational Bayesian inference algorithms under a nested EM framework.

5.1 Synthetic Data

Setting. We generate the synthetic data from the proposed mixture model of log-Gaussian Cox
processes in (1) and (2), in which there are R = 5 event types and daily time stamps reside in [0, 2].
We set the number of clusters C from 2 to 5 and set the number of accounts in each cluster to 500.
We experiment with an increasing number of replicates (m = 1, 20 or 100), to check the convergence
of our method. When m = 1, we generate event sequences from the single-level model in (2) without
day-level variations. In this case, we compare the clustering results of DF, DMHP with those of the
single-level model (MS-MPP). When m = 20 or 100, we generate data from the multi-level model
in (1) and use the MM-MPP method to model the scenario where event sequences are repeatedly
observed. However, the two competing methods, DF and DMHP, are not directly applicable for
repeated event sequences. Therefore, in this case, we concatenate {Sr

i,j}mj=1 sequentially into a new
event sequence Sr

i· on [0,mT ] and then apply DF and DMGP to this new sequence. The detailed
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settings of Xr
i (t)’s, Y r

j (t)’s and Zr
i,j(t)’s and other details of synthetic data examples are elaborated

in Supplementary S.3.

Results. We evaluate the clustering performance of each method over 100 repeated experiments
under each setting, using clustering purity [21] as a evaluation metric. Table 1 reports the averaged
clustering purity of each method on the synthetic data. When m = 1, MS-MPP obtains the best
clustering result in terms of purity consistently across different numbers of clusters. Especially
when C increases, in which case there are more overlaps among clusters, the advantage of MS-MPP
becomes more prominent. When m = 20, 100, MM-MPP still significantly outperforms the other
two competitors. It is also noticeable that the performance of DF and DMPH, in general, deteriorates
as m increases, although more repeated event sequences offer more information for clustering. One
explanation is that both DF and DMHP may incur bias due to ignoring different sources of variations
for repeatedly observed event times. Another reason may be that many existing Hawkes process
models, such as DMHP, assume a constant triggering function over time, which may not be flexible
enough to characterize the data generated from models (1) and (2).

Table 1: Clustering Purity on Synthetic Data.
m = 1 m = 20 m = 100

C DF DMPH MS-MPP DF DMPH MM-MPP DF DMPH MM-MPP
2 0.597 0.537 0.831 0.536 0.513 0.947 0.532 0.522 0.988
3 0.514 0.466 0.767 0.465 0.423 0.902 0.477 0.394 0.967
4 0.443 0.421 0.714 0.422 0.356 0.874 0.436 0.285 0.944
5 0.379 0.354 0.675 0.351 0.298 0.835 0.333 0.276 0.919

Our code can be accessed via https://github.com/LihaoYin/MMMPP. To show the computational
advantage of the proposed ES algorithm over the EM algorithm, Table 2 gives the computation times
of CPU-based EM, CPU-based ES, and GPU-based ES algorithms for 20 iterations in the estimation
of model (1) with n = 500, 100, m = 20, R = 5 and C = 3. For each iteration, 10, 000 MCMC
samples are drawn to approximate (10). Table 2 demonstrates that with the GPU acceleration, the
computation time of the proposed ES can be reduced by more than 20 folds in this case scenario
compared to the EM algorithm, which is not suitable for array programming [7].

Table 2: Running Time (in seconds) on Synthetic Data
Methods and devices n = 500 n = 1000

GPU-ES (RTX 8000 48G GPU) 30.09 51.42
CPU-ES (i7-7700HQ CPU) 275.87 505.07
CPU-EM (i7-7700HQ CPU) 568.36 1105.46

5.2 Real-world Data

In this section, we apply our method to the following real-world datasets.

Twitter Dataset. The Twitter dataset consists of the postings of the official accounts of America’s
top 500 universities from April 15, 2021, to May 14, 2021. The data set was scraped from Twitter
with the API rtweet [12]. The dataset involves three categories of postings (tweet, retweet, and
reply), indicating R = 3 in this study. As a result, the dataset contains n = 500 Twitter accounts for
m = 30 consecutive days with a total of 233, 465 time stamps.

Chicago City Taxi Dataset The City of Chicago collected the information of all taxi rides in Chicago
since 2013 1. Each trip record in the dataset consists of drivers’ encrypted IDs, pick-up/drop-off time
stamps, and locations (in the form of latitude/longitude coordinates). We gathered the trips of 9,000
randomly selected taxi drivers from Jan 1 to Dec 31, 2016, and more than 19 million trip records
were picked. We mapped the pick-up coordinates to their corresponding zoning types according to
Chicago Zoning Map Dataset2, which divides the city into nine basic zoning districts3, including
Residence (R), Business (B), Commercial (C), Manufacturing (M), etc. For this data set, we have
n = 9000, m = 366, and R = 9.

1https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
2https://data.cityofchicago.org/
3https://secondcityzoning.org/zones/
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Credit Card Transaction Dataset. The dataset contains 641, 914 transaction records of 5, 000
European credit card customers (n = 5000) during the period covering January 1 to December 31,
2016 (m = 366). We applied the univariate model (R = 1) without event marks to the dataset.

We evaluate and compare clustering stability based on a measure called clustering consistency via K-
trial cross-validations [23, 24], as there are no ground truth clustering labels. The detailed definition
of clustering consistency and other real data example details are included in Supplementary S.4.

Results. We compare the performance of DF, DMHP, and MM-MPP in terms of clustering consistency
for three data sets with K = 100 trials. The results in Table 3 suggest that MM-MPP outperforms
its competitors notably, demonstrating that our model can better characterize the postings patterns
and offer a more stable and consistent clustering than other methods. Figure 2 shows the histograms
of the number of learned clusters for each method. For the Twitter dataset, the median numbers of
learned clusters are 3, 5, and 8 for MM-MPP, DMHP, and DF respectively. Besides, the distribution
of the number of clusters from our method seems to be the least variable, indicating robustness in
clustering. The robustness of our method may be partly attributed to the flexibility of the latent
conditional intensity functions that account for multi-level deviations within each account. In contrast,
other methods that fail to account for different sources of deviations may treat them as sources of
heterogeneity and consequently result in more clusters.

Table 3: Clustering Consistency on Real-World Datasets.
Method DF DMHP MM-MPP
Twitter 0.096 0.275 0.394

Credit Card 0.102 0.331 0.378
Chicago Taxi 0.045 0.142 0.153

Figure 2: Histogram of the number of clusters. Left: Twitter dataset; Right: Credit Card dataset;

More stories can be told by the estimated posting patterns. Given a predicted membership of account
i by ci = arg maxc Eω[ωc,i|S; Ω̂], Figure 3 displays the estimated curves of µ̂r

x,c for tweet events
(r = 1), retweet events (r = 2) and reply events (r = 3) respectively for C = 3. Recall µ̂r

x,c is
interpreted as the baseline of intensity functions. This figure shows three different activity modes
for the selected Twitter accounts. The universities in cluster 1 marked by red curves in Figure 3 in
general have a lower frequency of posting retweets and replies, especially during the daytime. This
group includes the most top university in America, such as MIT, Harvard, and Stanford. In contrast,
the accounts in cluster 2 are relatively more active in all three types of postings. We further find that
many accounts in this cluster belong to the universities with middle ranks.

We further applied the proposed MM-MPP to the Chicago Taxi dataset. As suggested by BIC, the
9000 taxi drivers are clustered into 9 groups, whose averaged daily pick-up log intensity functions
are illustrated in Figure 4(a). We can see that the taxi drivers are clustered not only according to their
pick-up frequency but also by their working schedules. For example, the black curves on Figure 4(a)
corresponds to the most dominating group, which occupies 23.2% of the sample. Figure 3(b) displays
the curves of average log intensity (the black line) and log intensity for each driver (gray lines) in the
selected cluster. Figure 4(c-e) show the estimated µ̂x(t) for pick-up in commercial, residence and
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Figure 3: Curves of µ̂r
x,c(t). Left: tweet events; Mid: retweet events; Right: reply events;

manufacturing districts, respectively. While the pick-up events are more likely to occur in commercial
districts for this group during the daytime, they also tend to pick up passengers at the residential
district in the morning and to appear at the manufacturing district in the afternoon. These patterns are
consistent with the schedules of passengers who commute between homes and workplaces.

More results and discussions on chase credit dataset are included in our Supplementary file.

Figure 4: Left: Overall log-intensities for all clusters; Right: Log-intensity for one selected cluster;

6 Concluding Remarks

We propose a mixture of multi-level marked point processes to cluster repeatedly observed marked
event sequences. A novel and efficient learning algorithm is developed based on a semi-parametric
ES algorithm. The proposed method is demonstrated to significantly outperform other competing
methods in simulation experiments and real data analyses.

The current model only focuses on events over temporal domains. However, clustering of spatial
patterns on 2- or 3-dimensional domains has also attracted much research interest [10, 31, 9]. It will
be an interesting research topic to extend the current model to such settings.

This work has no foreseeable negative societal impacts, but users should be cautious when giving
interpretation on clustering results to avoid any misleading conclusions.
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