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ABSTRACT

A locality-sensitive hash (or LSH) is a function that can efficiently map dataset
points into a latent space while preserving pairwise distances. Such LSH functions
have been used in approximate nearest-neighbor search (ANNS) in the following
classic way, which we call classic hash clustering (CHC): first, the dataset points
are hashed into a low-dimensional binary space using the LSH function; then,
the points are clustered by these hash values. Upon receiving a query, its nearest
neighbors are sought within its hash-cluster and nearby hash-clusters (i.e., multi-
probe). However, CHC mandates a low-dimensional latent space for the LSH
function, which distorts distances from the (high-dimensional) original real space;
this results in inferior recall. This is often mitigated through using multiple hash
tables at additional storage and memory costs.
In this paper, we introduce a better way of using LSH functions for ANNS. Our
method, called the Polar Code Nearest-Neighbor (PCNN) algorithm, uses modern
error-correcting codes (specifically polar codes) to maintain a manageable number
of clusters inside a high-dimensional latent space. Allowing the LSH function to
embed into this high-dimensional latent space results in higher recall, as the em-
bedding faithfully captures distances in the original space. The crux of PCNN is
using polar codes for probing: we present a multi-probe scheme for PCNN which
uses efficient list-decoding methods for polar codes, with time complexity inde-
pendent of the dataset size. Fixing the choice of LSH, experiment results demon-
strate significant performance gains of PCNN over CHC; in particular, PCNN with
a single table outperforms CHC with multiple tables, obviating the need for large
memory and storage.

1 INTRODUCTION

In similarity search, one is first given a dataset D of points, then a set of query points from the same
space. For each query, the goal is to find the closest point (or points) in D to that query, according
to some given metric. The simplest way to find these nearest neighbors of a query is to calculate the
distance of the query from each point in the dataset D; however, when the dataset D is large, this
linear cost in the dataset’s size is prohibitive. Thus, upon query, one would like to consider only a
small subset of D. Since these non-exhaustive algorithms do not consider all points in the dataset,
we are interested in approximate similarity search, with the following relaxations:
• We allow an approximation ratio, i.e., the algorithm is allowed to return neighbors whose distance

to the query is at most some factor α ≥ 1 times the distance of the nearest neighbor to the query1.
• Since the algorithm does not explore all points, it can sometimes return a result which is not within

the desired distance; the fraction of results which are within the desired range is called the recall
of the algorithm.

Clustering Methods. A common technique for approximate similarity search is to divide the dataset
D into clusters. Then, upon receiving a query, the algorithm would only search the points of D that
appear in the clusters which are closest to the query. (If the clusters are represented by points in the
original space, the distance to the query is well defined. Otherwise, a different metric is needed.)
Algorithms based on such clustering are often used in practice, since they allow storing different
clusters on different machines (i.e., sharding) for efficient distributed processing of queries.

1For similarity measures, which should be maximized, we would instead be interested in α ≤ 1.
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In light of these benefits of clustering methods, we would like to study them in our approximate
setting. However, existing clustering methods have some drawbacks in this setting, which motivate
the algorithm presented in this paper. We now explore two popular clustering methods and describe
their drawbacks.

Clustering by Training Cluster Centers. In this method, introduced by Sivic & Zisserman (2003),
cluster centers are trained on the dataset (or some sample of the dataset) using a clustering algorithm
(namely k-means), and each dataset point is mapped to a cluster (e.g., by the nearest cluster center).
Upon query, the clusters corresponding to the closest cluster centers are searched. This common
algorithm is part of the popular Faiss library (Johnson et al., 2021) as the default inverted-file (IVF)
method; we henceforth refer to this method as IVF. Since the cluster centers are unstructured, finding
these closest centers requires a number of distance computations which is linear in the number of
centers. The total number of distance computations (for both centers and dataset points) is therefore
always at least the square root of the dataset’s size. Thus, while popular in general, this method is
less appropriate for an approximate regime in a large dataset, as we would like to get high recall
using a much smaller computational cost, independent of the dataset size.

Clustering by Locality-Sensitive Hashing. Another such clustering method uses Locality-
Sensitive Hashing, or LSH (Indyk & Motwani, 1998). In this method, a locality-sensitive hash
h : Rd → {0, 1}nbit is used to map the dataset to hash codes (nbit-bit strings). Each such hash-code
identifies a cluster which contains the dataset points in the hash-code’s preimage. Upon receiving a
query q, the hashcode h(q) is calculated, and closest points are search only within the clusters iden-
tified with the closest hashcodes to h(q) (Lv et al., 2007). We refer to this simple method, which is
used in most classic LSH papers, as Classic Hash Clustering, or CHC for short. Note that the choice
of the LSH function h is independent from the operation of CHC, and should be chosen such that
distances in the embedding space approximate distances in the original space; two possible choices
(which we also consider in this paper) are hyperplane LSH (Charikar, 2002) and the data-dependent
autoencoder LSH (Tissier et al., 2019).

The fact that CHC uses LSH functions provides some advantages. First, the closest clusters to a
query can be found without calculating its distance to every cluster; this makes CHC more suitable
for the approximate regime than IVF. Second, the index in CHC can be easily augmented with
additional dataset points in an online fashion, as the clustering is not trained on the dataset. In
addition, CHC usually has a low memory/storage footprint. However, using CHC does not usually
achieve high recall; this is usually alleviated by using multiple tables (i.e., multiple clusterings), at
significant memory and storage costs.

Why does CHC achieve low recall? A possible explanation could be that the distances between the
dataset/query points in high-dimensional space Rd are not faithfully captured by the hashing to the
space {0, 1}nbit. This is since the hash-code space must be low-dimensional, as memory and running
time restrictions make it infeasible to use large nbit. For example, if one chooses nbit = 40 (and
thus 240 clusters) for a dataset of a billion points, 99.9% of the clusters would be empty; Thus, nbit
must remain small, and usually does not exceed 32. However, this severely limits the granularity of
distances, as Hamming distances in this low-dimensional binary space only take on one of 32 non-
zero values. This lack of granularity is a property of every low-dimensional embedding, and thus
appears in all LSH functions (including data-dependent functions). In addition, using a low number
of embedding bits could yield a high variance in the distance of any embedded pair of points. For
example, consider hyperplane LSH: in this method, the expected relative Hamming distance of the
hash-codes is equal to the relative angular distance between the original points (Charikar, 2002), but
the bits of the hashcode are generated independently. Thus, the deviations from the expectation are
very significant when the number of bits is low, as mandated by CHC. These drawbacks of CHC
thus call for a different technique, which is able to simultaneously utilize distance information from
a high-dimensional binary embedding, as well as preserve a reasonable number of clusters.

Our Contributions. In this paper, we present a generalization of CHC which uses modern error-
correcting codes (ECCs); we call this method the Polar Code Nearest Neighbor algorithm (or
PCNN). PCNN encapsulates any LSH method H , similar to CHC, but yields superior performance.
CHC uses H to embed into a nbit-dimensional binary space for some low nbit (e.g., nbit = 30);
PCNN instead uses H to embed into a cdim-dimensional binary space, for some cdim ≫ nbit (e.g.,
cdim = 512). Then, the embedded dataset in PCNN is clustered, such that the set of clusters forms
a nbit-dimensional subspace inside the larger cdim-dimensional embedding space. Upon query, the
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probing procedure is performed in the high-dimensional embedding space. As we later discuss,
CHC is a special case of PCNN in which nbit = cdim.

By separating the dimension of the embedding space cdim from the dimension of clusters nbit,
PCNN addresses the previously-discussed shortcoming of CHC, i.e., the low dimensionality of the
resulting embedding which leads to a distortion of distances. PCNN performs probing on a large,
cdim-dimensional space, in which distances between embedded points better approximate the dis-
tances in the original space. At the same time, PCNN maintains the same number of clusters as
CHC (i.e., 2nbit). In addition, PCNN enjoys the benefits of CHC: it has an index which is small and
easily extensible, as well as an efficient probing method whose running time does not depend on the
number of clusters.

Polar codes and List Decoding. The crux of our algorithm is the choice of cluster centers in this
high-dimensional binary space: these centers are chosen to allow efficient mapping from a binary
point to the closest centers, for the sake of multi-probe. This is where we use recent advances in
error-correcting codes, namely the modern polar codes: choosing the centers to be the codewords
of a polar code allows us to use list-decoding, an ECC technique which efficiently maps from a
binary word to the closest nprb codewords, for any parameter nprb. Specifically, list decoding to
the nprb closest codewords (i.e., multi-probe in PCNN to find the nprb closest clusters) runs in time
O(nprb ·cdim log nbit); this is nearly optimal, as nprb ·cdim is the representation size in bits of the
nprb closest cluster centers themselves.2 (See Appendix D for detailed complexity comparison.)

Evaluation. We evaluate PCNN empirically on real-valued real-world datasets, and establish that it
performs significantly better than standard (multi-probe) CHC. As PCNN can be used to encapsulate
any LSH method, we chose to evaluate PCNN against CHC on two very different LSH methods: the
first is the classic hyperplane method (Charikar, 2002), and the second is a data-dependent method
based on the output of an autoencoder (Tissier et al., 2019). Moreover, we also show that PCNN
outperforms CHC with multiple tables, while having a memory and storage footprint identical to
that of single-table CHC. This implies that PCNN is a strong alternative to using CHC with multiple
tables.

We also evaluate PCNN on binary datasets, where both PCNN and CHC run directly on the dataset
points (and thus a real-to-binary LSH is not needed). The baseline here is provided by the IndexBi-
naryMultiHash class from Faiss (Johnson et al., 2021). The results mirror those for real datasets,
showing a clear advantage to PCNN.

In summary, in this paper, we give the following contributions:
• We present the PCNN algorithm as a new clustering method for approximate nearest-neighbor

search. The PCNN algorithm uses error-correcting codes – specifically polar codes – to index
according to a high-dimensional binary embedding while keeping the number of clusters low.

• We provide a multi-probe scheme for PCNN, which is based on efficient list-decoding algorithms
for polar codes.

• We evaluate PCNN vs. multi-probe CHC as a baseline, and show robust performance gains.
Source code of the PCNN algorithm and the evaluations presented in the paper can be found on
https://github.com/amzn/amazon-nearest-neighbor-through-ecc.

2 RELATED WORK

ANNS is fundamental to applications in many domains with various specifications’ trade-offs, in-
cluding preprocess and search time complexity, search quality, memory size, scalability with dataset
size and data dimension, robustness to query workloads and dataset updatability, and more (Li et al.,
2020; Aumüller et al., 2020). Two main categories of ANNS are graph-based methods and inverted
index clustering based methods. Graph-based algorithms such as (Hierarchical) Navigable Small
World graphs (Malkov et al., 2012; 2014; Malkov & Yashunin, 2020), NSG (Fu et al., 2019), and
DiskANN (Jayaram Subramanya et al., 2019) achieve good performance in a non-distributed setting.

This paper focuses on clustering methods for ANNS, in which their support for sharding makes
them commonly used in practice for billion scale updatable datasets with high query workloads. As
outlined in Section 1, clustering methods for ANNS may be divided into two popular types: trainable

2As noted later in the paper, a good choice for cdim is the original real dimension d. In this regime, the cost
of the binary embedding Θ(dcdim) = Θ(cdim2) dominates the cost of the list decoding.
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(a) (b) (c) (d) (e)

Figure 1: A visual illustration of the PCNN algorithm (Algorithms 1 to 3) using the cdim-
dimensional binary cube sketched by a grid of 2cdim points. Sub-figures (a)-(c) deal with initial-
ization and preprocessing and sub-figures (d)-(e) deal with querying. (a) Embedding of the dataset
vectors in D by h : Rd → {0, 1}cdim (green solid). (b) 2nbit polar [cdim,nbit]-code codewords
C ⊆ {0, 1}cdim (purple solid) whose nbit-bits identifiers comprise the index entries. (c) Partition M
of the dataset D, comprised of 2nbit partitions. The partitions correspond to Voronoi cells (rectan-
gles) induced by the codewords in C and computed by LISTDEC with ℓ = 1. (d) Extracted nprb = 3
cluster IDs of focus for a query q. Retrieved by LISTDEC of h(q) (red solid) with ℓ = nprb, using
time proportional to nprb that does not depend on |C|. (e) Find the nearest vectors to q with respect
to the subset of D contained in the extracted nprb clusters of focus.

(data dependent) and structured (data independent). The main line of works for trainable clustering
methods follows from Sivic & Zisserman (2003) through the popular Faiss library (Johnson et al.,
2021) to state-of-the-art algorithms such as SPANN (Chen et al., 2021). Yet, the time complexity of
these algorithms remains dependent in the dataset size (at least square-root in the case of Faiss/IVF
and poly-logarithmic in the case of SPANN). Modern machine learning techniques (such as neural
networks) are also studied lately (e.g., (Kraska et al., 2018; Wang et al., 2018; Dong et al., 2020)),
dealing with space partitioning of the dataset. However, the need to search for closest clusters (for
multi-probe) still remains dependent in the dataset size.

Locality-sensitive hash functions have seen much previous work; see for example Wang et al. (2014);
Jafari et al. (2021); Charikar (2002); Andoni et al. (2015); Terasawa & Tanaka (2007); Laarhoven
(2017). Often, such LSH functions are used for clustering using CHC (and possibly using multi-
probe or multiple tables). Another popular use is binarization for efficient distance computations
(e.g., for speeding up exhaustive search). Notably, recent works on LSH introduced sparse high-
dimensional hash codes for similarity search inspired by the fly’s olfactory circuit Dasgupta et al.
(2017); Sharma & Navlakha (2018); Ryali et al. (2020). However, these hash codes lack a multi-
probe technique in high dimensions which is necessary for high recall, and result to recursively
reduce to low dimensions for multi-probe.

3 THE PCNN ALGORITHM

The main idea of the PCNN algorithm is to embed the real-valued dataset D ⊆ Rd from the orig-
inal real-valued space into a high-dimensional binary space {0, 1}cdim, but only allow some much-
smaller subset C ⊆ {0, 1}cdim to be cluster identifiers, where |C| = 2nbit for nbit ≪ cdim. The
index comprises the cluster identifiers of all points in the dataset. Upon receiving a query q ∈ Rd, the
algorithm would embed q into {0, 1}cdim, find the closest cluster identifiers in C, and search within
those clusters. In such a setting, cdim would be chosen as large enough to faithfully capture dis-
tances in the original real space (as discussed in the introduction for, e.g., hyperplane LSH (Charikar,
2002)), while |C| would be chosen through memory and running-time considerations. For example,
for a dataset D ⊆ R128 such that |D| = 224, one could choose cdim ≃ 128 and nbit = 24.

In implementing this algorithm, a technical problem arises: upon receiving a query, how does one
efficiently find the closest clusters in C to that query? We solve this problem using error-correcting
codes.

Error-Correcting Codes (ECCs) and Polar Codes. A linear, error-correcting [N,K]-code is a
subspace C of dimension K in {0, 1}N . By and large, a good code C should satisfy two properties.
First, the words in C (called the codewords) should be spaced, such that the distance between any
two such words is large. Second, the code should have an algorithm for efficient decoding, i.e.,
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mapping from an arbitrary word in {0, 1}N to the closest codeword in C (in Hamming distance).
Another, more advanced property is efficient list decoding, which is mapping from such a word to
the closest nprb codewords in C, for some parameter nprb. Note that good codes require careful
design. For example, random linear codes have good distance properties, but do not admit efficient
decoding algorithms (specifically, decoding such codes is NP hard (Berlekamp et al., 1978)). Unlike
classical error-correcting codes, modern error-correcting codes have a structure that mimics random
linear codes, but admit efficient probabilistic decoding (Richardson & Urbanke, 2008).

A recent family of such modern codes is polar codes, introduced by Arikan (2009). These codes
support every choice of N and K, which allows for added flexibility. In addition, Tal & Vardy (2015)
gave an efficient list-decoding algorithm for polar codes; this is useful for designing a multi-probe
scheme for our algorithm. Thanks to their performance guarantees and ease of implementation, these
codes have become prevalent in recent years (e.g., as part of the 5G cellular standards), and efficient
implementations for polar codes exist in both hardware and software (Cassagne et al., 2019a;b).
These properties prompted us to choose polar codes for similarity search. More details about polar
codes and the (list-)decoding process can be found in Appendix A.

The PCNN Algorithm. To summarize, we describe the PCNN algorithm on a d-dimensional dataset
D of n points. This algorithm is parameterized by the parameters cdim and nbit, as well as nprb
(the number of clusters to probe upon query). The PCNN algorithm contains 2 main parts: (i) Initial-
ization and preprocessing (Algorithm 1) for generating the index of the PCNN clustering method,
and (ii) querying for the sizenn nearest neighbors to q within nprb clusters of focus (Algorithm 2).
Figure 1 provides a visual illustration of the PCNN algorithm; for presentation purposes we depict
the cdim-dimensional binary cube as a grid of 2cdim points.

During initialization (see Algorithm 1), a code mask r ∈ {0, 1}cdim is generated, where ∥r∥1 = nbit,
which represents the polar [cdim,nbit]-code to be used in the algorithm. This mask is generated
through a genie-aided process (Arikan, 2009). During the preprocessing of the dataset, we cluster
the dataset points according to the nearest codeword to their binary embedding. Specifically, an
empty partition M of the dataset points into 2nbit clusters is created (where each cluster identifier is
a nbit-bit string). Then, each dataset point is embedded into cdim-dimensional binary space using
hyperplane LSH h : Rd → {0, 1}cdim (or any other LSH function). Next, the function LISTDEC
(see Algorithm 3) is called on the binary dataset point with the argument ℓ = 1, to obtain the single
closest codeword c to that binary point. (LISTDEC runs list decoding with slightly-larger list size
ℓ′ ≥ ℓ, then takes the closest ℓ codewords; see Appendix A for more details.) Since there are only
2nbit codewords, the algorithm extracts a nbit-bit cluster identifier a for c; this identifier is a subset of
bits from c, namely those bits whose indices get a value of 1 in the mask r (this identifier is unique;
see Appendix A). The dataset point is then added to the cluster Ma in the partition M . The total
running time of this preprocessing procedure is thus n · (O(embedding cost) +O(cdim · log nbit)).

Upon receiving a query (Algorithm 2), the algorithm first retrieves nprb cluster IDs of focus,
and then searches within for the sizenn nearest neighbors to q. Algorithm 2 embeds the query
into cdim-dimensional binary space (using the same embedding h as used in Algorithm 1), then
calls the function LISTDEC with the argument ℓ = nprb to obtain the nprb closest codewords
c0, · · · , cnprb−1 to the binary dataset point. The cluster identifiers of these points are then extracted
as before, which yields nprb clusters of focus in M to be probed. The algorithm then goes over
all points in the chosen nprb clusters, calculates the distance of the query to each such dataset
point in a chosen cluster, and finds the closest sizenn points to the query. These distance com-
parisons take place in the original real space for maximum accuracy (although quantization meth-
ods, such as product quantization, could be applied as well). The running time for a query is thus
O(embedding cost)+O(nprb ·cdim · log nbit) (plus, of course, the cost of the distance comparisons
within each cluster).

Figure 2 visualizes the process of extracting nprb = 4 cluster IDs of nbit = 8 bits from a query in
R10. The query is embedded to a binary space with cdim = 16, list-decoding with ℓ = nprb = 4
is applied on the embedded vector, where cluster IDs are extracted according to a code mask r =
0000001100111111 (indicated by the red bits).

PCNN as a Generalization of CHC. Note that PCNN is in fact a generalization of CHC: choosing
cdim = nbit would imply C = {0, 1}cdim, i.e., every word is a codeword. In addition, the cluster
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Algorithm 1 PCNN: Initialization and Prepro-
cessing
Parameters:
nbit – the dimension of the binary cluster identifier.
cdim – the length of a codeword.
nprb – the number of clusters to probe upon query.
INITIALIZATION:

Generate a polar code mask r ∈ {0, 1}cdim with
exactly nbit 1-valued entries.
Generate a binary LSH embedding h : Rd →
{0, 1}cdim.
Initialize the index M = (Ma)a∈{0,1}nbit to con-
tain empty sets.

PREPROCESSING(D):
for p ∈ D do

Let b← h(p)
{get the closest codeword to b.}
Let c = (c0, · · · , ccdim−1) ←
LISTDEC(b, 1).
{extract the nbit-bit cluster identifier for c.}
Let a← (ci)i|ri=1.
{add the dataset point to the cluster.}
Add p to Ma

end for

Algorithm 2 PCNN: Upon Query
UPONQUERY(q, sizenn):

Let b← h(q).
{get the closest nprb codewords to b.}
Let c0, . . . , cnprb−1 ← LISTDEC(b, nprb).
Let S be an empty list of (distance, point) pairs.
for i ∈ {0, · · · , nprb− 1} do

Denote ci = (ci0, · · · cicdim−1).
{extract the nbit-bit cluster identifier for ci.}
Let a← (cij)j|rj=1.
for p ∈Ma do

Set δp ← d(q,p).
Add (δp,p) to S.

end for
end for
Choose and return the sizenn entries in S with the
smallest distance.

Algorithm 3 PCNN: List Decoding Wrapper
LISTDEC(b, ℓ):
{ This function returns the ℓ closest codewords in C

to b ∈ {0, 1}cdim (with high probability). For more
details, see Appendix A.}
Define ℓ′ ← f(ℓ) ≥ ℓ, for f as defined in Ap-
pendix A.
Use the list-decoding algorithm of Hashemi et al.
(2016) on b with list size ℓ′ to obtain a set S of code-
words, where |S| = ℓ′.
Return the ℓ nearest codewords to b in S.

Figure 2: Obtaining cluster IDs by PCNN upon query.

ID of a codeword would be the entire codeword, and the closest codewords to a binary-embedded
query q would exactly be those words generated by bit flips in the multi-probe scheme of CHC.

4 EXPERIMENTS

In this section, we empirically evaluate the PCNN algorithm.

4.1 DATASETS

We consider three representative real-world datasets for evaluation as follows.3

1. BIGANN: SIFT descriptors applied to images (Dataset, 2010).

3The datasets and queries are taken from the Billion-Scale Approximate Nearest Neighbor Search Challenge
in NeurIPS’21 (Competition, 2021)
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Dataset Name #Dataset/#Query Dim. Distance Normalized

YandexTTI 10M/5K 200 Cosine Yes

YandexDeep 10M/5K 96 Euclidean Yes

BIGANN 10M/5K 128 Euclidean No

Table 1: Evaluation datasets: main characteristics.

2. Yandex-Deep1B (YandexDeep): image descriptor dataset consisting of the projected and normal-
ized outputs from the last fully-connected layer of the GoogLeNet model (Babenko & Lempitsky,
2016), which was pretrained on the Imagenet classification task (Babenko & Lempitsky, 2016).

3. Yandex Text-to-Image-1B (YandexTTI): A cross-model dataset (text and visual) where the dataset
consists of image embeddings and the queries are textual embeddings (Dataset, 2021).

Table 1 summarizes the main characteristics of each dataset. All datasets consist of 10M points, and
use 5K queries for evaluation. For YandexDeep and BIGANN we use Euclidean distance, while for
YandexTTI we use cosine distance (Appendix C explores the effect of approximate cosine distance
on cosine similarity).

4.2 EVALUATION METRICS

Upon a query for the sizenn nearest neighbors of some point q, an algorithm’s output S consists
of sizenn points in the dataset. Denote the distance function of the chosen dataset by d(·, ·), and
define δqi to be the distance of the i’th closest dataset point to q. For some approximation factor
α ≥ 1, define the α-recall of the algorithm to be |{x∈S|d(x,q)≤α·δqsizenn}|/|S|. (When α is known, we
sometimes refer to α-recall simply as recall.)

The measure we use for the cost of a query is the number of distance calculations made by the
algorithm, denoted by ndis. Indeed, since the algorithms we consider are clustering-based, their
main cost is in comparing the query to the subset of the dataset in the chosen clusters; the number of
distance calculations captures this cost. In this work, we therefore measure the cost and performance
of an algorithm by the pair (ndis, recall). Varying the number of clusters probed by the algorithm,
denoted nprb, controls this performance pair: increasing nprb would probe more points (increase
ndis) but obtain better results (increase recall).

4.3 BASELINES

We compare PCNN to CHC for similarity search. Both clustering methods use an underlying LSH
function; for our experiments, we use the classic hyperplane LSH, introduced by Charikar (2002),
for both PCNN and CHC. Another choice of LSH is autoencoder LSH (Tissier et al., 2019); we
consider this data-dependent LSH in Appendix B.6. For the (randomly-chosen) hyperplane LSH,
we average over 30 different random seeds to reduce undue variance (see Appendix B.3 for more on
this variance).

Note that in our setting of ANNS, high recall on the evaluated datasets that contain 107 points is
achieved by both PCNN and LSH using significantly less than

√
107 distance computations; thus,

k-means-based clustering methods (such as IndexIVFFlat in Faiss (Johnson et al., 2021)) are not
competitive in this regime, as they require at least

√
|D| distance computations for a dataset D.

4.4 EXPERIMENTAL RESULTS

Having described the main ingredients of our experiments, we describe the experiments themselves.
Due to space constraints we refer to Appendix B for further details on some experimental results
outlined herein. The outline of the performance gains of PCNN over CHC is the following. In this
section, we demonstrate the following results.
1. The performance of PCNN improves as cdim grows, thus outperforming CHC (which is the

special case of PCNN in which nbit = cdim). The improvements plateau when cdim ≈ d.
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(a) (b) (c)

Figure 3: recall/ndis performance comparison for sizenn = 1 (using nbit = 28 and hyperplane
LSH) for three datasets: (a) YandexDeep, α = 1.4; (b) BIGANN, α = 1.4; (c) YandexTTI, α = 2.

2. PCNN with large cdim and a single table (ntable = 1) outperforms CHC with multiple tables
(e.g., ntable = 8).

3. The performance gains of PCNN over CHC extend to binary datasets.
In addition, in Appendix B, we establish the following useful robustness properties.
1. The performance gains hold for multiple choices of approximation factor α and nearest neighbor

size sizenn. (See Appendices B.1 and B.2.)
2. An efficient approximate hyperplane embedding, using random sign flips and Hadamard trans-

form (Andoni et al., 2015), can be used for PCNN with negligible performance loss. (See Ap-
pendix B.5.)

3. The variance of PCNN performance curves upon different instantiations of binary embedding
(by seeds) is lower than that of CHC. (See Appendix B.3.)

4. The superiority of PCNN over CHC remains when choosing the best trialed instantiation per
operating point (i.e., performance of convex frontier). (See Appendix B.4.)

5. The performance gains of PCNN over CHC extend to different LSH functions, specifically a
trainable autoencoder LSH of Tissier et al. (2019). (See Appendix B.6).

Performance Gains. With the hyperplane LSH of Charikar (2002) as the underlying hashing
method, we compared PCNN with various choices of cdim to CHC, over the three considered
datasets; see Figure 3. Each curve in Figure 3 shows the average recall/ndis of an algorithm for
various choices of nprb, and averaged over 30 different random seeds. In this experiment, we focus
on sizenn = 1 (i.e., single nearest neighbor). For the approximation ratio, we chose α = 1.4 for L2
datasets (BIGANN, YandexDeep) and α = 2 for the cosine-distance dataset (YandexTTI). (Because
cosine distance is proportional to L2 squared, these approximation ratios are roughly equivalent.)
As we later discuss, similar results are also obtained for different choices of α and sizenn.

Figure 3 shows a marked improvement as cdim grows, which eventually plateaus at cdim = 128 for
BIGANN and YandexDeep, and at cdim = 256 for YandexTTI. Since this seems to correspond to the
real dimensionality of these datasets, we conjecture that choosing cdim to be roughly the dimension
of the dataset is appropriate.

Multi-Table LSH. A common tool for increasing recall for CHC is using multiple tables, i.e., in-
dexing the dataset according to ntable different binary embeddings of nbit bits, and probing clusters
from all ntable resulting partitions upon query (Indyk & Motwani, 1998; Gionis et al., 1999). This
method comes with additional costs over standard (single-table) CHC, notably its increased memory
and disk usage, increased running time, and the need for deduplication.

In Figure 4a, we compare multi-table CHC to PCNN. Additionally, we consider multi-table PCNN,
in which ntable different embeddings to cdim bits are used to create ntable tables (similar to CHC),
to see if it offers improved performance over single-table PCNN. We consider the YandexDeep
dataset, with sizenn = 1 and α = 1.4 (as before). All algorithms use nbit = 28, and their
performance is averaged over 30 different random seeds. It can be observed that single-table PCNN
with cdim = 512 outperforms CHC with 8 tables; this is notable, as PCNN uses an index which is
8 times smaller. In addition, PCNN with cdim = 512 does not benefit from additional tables. The
fact that CHC improves with additional tables and PCNN does not might imply that the only benefit
of multi-table CHC is in using additional embedding bits; if this is the case, it could be supplanted
by PCNN with a single table and large-enough cdim.
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(a) (b)

Figure 4: Comparison of multiple table usage for sizenn = 1 and α = 1.4, using nbit = 28. (a) On
YandexDeep, using hyperplane LSH. (b) on a binary dataset obtained by embedding YandexDeep to
binary space of dimension 512.

Binary Datasets. The PCNN algorithm can also operate on binary datasets (i.e., without need
for binary embedding). To test PCNN on such a dataset, we use hyperplane embedding on the
YandexDeep dataset to create a 512-dimensional binary dataset, then run PCNN and the baseline on
this binary dataset. Note that this is different from the previous experiments, in which a real dataset
was embedded into binary by PCNN/CHC; indeed, in this experiment the distance comparisons of
the algorithms, as well as the ground truths for the queries, are all in the binary space. In binary
datasets, the natural LSH technique is simply to take the first nbit bits of the dataset/query point as
its hash-code; The IndexBinaryMultiHash (IBMH) class of Faiss (Johnson et al., 2021) implements
CHC using this LSH technique. Thus, we use IBMH as our baseline for binary datasets. IBMH also
supports multiple tables, through using the ntable ·nbit first bits as hash-codes for the ntable tables.

For binary datasets, we again find that PCNN outperforms CHC: we replicate the results for real
datasets and show that single-table PCNN performs as well as CHC with multiple tables. To mitigate
any effects from the (deterministic) choice of hash-code bits by IBMH, we again average our results
over 30 different random seeds; here, the seeds are used for creating the dataset rather than by the
algorithms. It can be observed in Figure 4b that single-table PCNN performs as well as IBMH
with 16 tables. (Note that the vertices in the curves representing IBMH are sparse, as the parameter
controlling the number of probed clusters in IBMH is quite coarse.)

5 CONCLUSIONS

In this paper, we addressed a problem in clustering methods for similarity search. Choosing the
cluster centers to be unstructured, as in k-means IVF, leads to high cost in finding clusters at query
time. However, structured cluster centers, as used in CHC, are limited to low-dimensional embed-
ded spaces, which distorts the metric space and hurts recall. We bridged the algorithmic gap in
designing structured cluster centers in high-dimensional spaces using polar codes. These codes al-
low for a manageable number of clusters to exist in a high-dimensional space, and provide efficient
multi-probe through list decoding. Indeed, the ample previous work done on these codes for more
classic applications (e.g., forward error correction in communications) provides us with efficient list-
decoding procedures, easily implementable in software or hardware. Through experiments, we’ve
demonstrated the benefit of this high-dimensional embedding space, establishing (in particular) that
CHC with multiple tables is superseded by PCNN with a single table, saving memory and storage.

For future work, various refinements and generalizations of PCNN for similarity search could be
considered. For example, one could use polar codes with different granularity (controlled by the
parameter nbit while preserving the same cdim), such that areas in the embedded space which are
dense with the dataset would have a finer clustering. This refinement is motivated by mimicking
unstructured clustering by hierarchies of structured clustering methods (Wang et al., 2018).

9



Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENTS

We would like to thank Iftah Gamzu, Marina Haikin, Gal Levi, Alexander Lorbert and Uri Sharir
for helpful discussions and feedback that helped improve the paper.

REFERENCES

Nir Ailon and Bernard Chazelle. The fast Johnson–Lindenstrauss transform and approximate nearest
neighbors. SIAM J. Comput., 39(1):302–322, 2009.

Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya P Razenshteyn, and Ludwig Schmidt. Practical
and optimal LSH for angular distance. In Annual Conference on Neural Information Processing
Systems (NeurIPS’15), pp. 1225–1233, 2015.

Erdal Arikan. Channel polarization: a method for constructing capacity-achieving codes for sym-
metric binary-input memoryless channels. IEEE Trans. Inf. Theory, 55(7):3051–3073, 2009.

Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. ANN-Benchmarks: A benchmarking
tool for approximate nearest neighbor algorithms. Information Systems, 87, 2020.

Artem Babenko and Victor Lempitsky. Efficient indexing of billion-scale datasets of deep descrip-
tors. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2055–
2063, 2016.

Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. On the inherent intractability
of certain coding problems (corresp.). IEEE Transactions on Information Theory, 24(3):384–386,
1978.
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A POLAR CODES AND LIST-DECODING

This section explains the decoding process used in PCNN in more detail, and also provides a gentle
introduction to polar codes.

Simple Introduction to Polar Codes. We now describe polar codes and their decoding pro-
cess. For ease of introduction we assume that the code dimension cdim = 2t for some inte-
ger t, though this can be relaxed to any code dimension using code shortening/puncturing tech-
niques (see, e.g., Zhang et al. (2014); Wang & Liu (2014); Saber & Marsland (2015); Niu & Chen
(2012)). A polar code of rate (cdim,nbit) is defined by a mask r = (r0, · · · , rcdim−1), which is a
cdim-dimensional binary vector in which exactly nbit entries equal 1. To encode a message word
m = (m0, · · · ,mnbit−1) of nbit bits, one performs the following actions:
1. Create the binary pre-coded word e = (e0, · · · , ecdim−1), such that

ei :=

{
0 ri = 0

mj i is the j’th nonzero coordinate in r

2. Apply the polar transform f to e to obtain the codeword c = (c0, · · · , ccdim−1).
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Figure 5: Illustration of the decoding tree for polar code.

The polar transform f : {0, 1}cdim → {0, 1}cdim in the above process can be described succinctly in
the following way: if c = f(e) where for every index i ∈ [cdim], let i = (β0β1β2 . . . βt−1) be the
binary representation of i. Define L(i) := {l|βl = 1} (the bits in i’s representation which are equal
to 1). The polar transform is defined such that

ci :=
⊕

j|L(j)⊆L(i)

ej . (1)

The above encoding process maps a nbit-bit message word into a cdim-bit code word, and can be
shown to be linear. Thus, the image C of this encoding is a nbit-dimensional subspace of {0, 1}cdim.

Code Mask Generation. The correct choice of mask r is crucial for the error-correcting properties
of the polar code. A good mask depends on the structure of the noise one aims to correct using the
code. To generate a mask, we use an iterative process called genie-aided generation (Arikan, 2009):
in this process, one subjects a codeword to the expected noise channel and studies which indices
would be best for placing data bits (and which indices should be frozen). Since the points we aim
to decode using PCNN are given in binary form, we chose to generate our masks using noise from a
Binary Symmetric Channel (BSC), i.e., random bit flips.

The process for generating a mask for a pair (cdim,nbit) is only performed once, and is quite cheap
computationally (in our case, involves decoding ≈ 107 points). Moreover, since the mask is data-
independent, masks can be reused globally across projects.

(List) Decoding. Together with the introduction of polar codes, Arikan (2009) introduced the first
decoding algorithm for polar codes, based on successive cancelation (SC). This algorithm is very
efficient, and runs in time O(cdim log cdim), i.e., nearly linear in the dimension of the codeword.

Tal & Vardy (2015) gave the first list-decoding algorithm, which returns nprb candidates for the
closest codewords to the query, with time complexity O(nprb · cdim log cdim) (i.e., the list size
contributes linearly to running time). This list-decoding algorithm was made more computationally
efficient by Hashemi et al. (2016), through pruning branches in the decoding tree; this algorithm
achieves an improved decoding complexity of O(nprb · cdim log nbit). This improved algorithm
is the algorithm we use for PCNN. In our implementation, we use a heavily-modified version of
the python-polar-coding library (https://github.com/fr0mhell/python-polar-coding), distributed un-
der the MIT license.

To give some intuition for these decoding algorithms, Figure 5 shows the binary decoding tree used
for encoding and decoding a polar code in which cdim = 16 and nbit = 8. The leaves of the
tree represent the precoded word, where leaves corresponding to frozen coordinates in blue contain
zeros and the remaining (unfrozen) leaves contain message bits. Each leaf in this tree contains one
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message bit, except for the blue coordinates which are frozen (i.e., the mask value there is 0) and
thus contain zeros. The root of this tree contains cdim bits, and represents the codeword. Each of the
2(log cdim)−h internal nodes of height h in this tree contains an array of 2h bits, which is calculated
from the arrays of its two children. Roughly speaking, the SC decoding algorithm of Arikan (2009)
performs a DFS traversal of this tree, filling all bit arrays. The time complexity is determined by
the number of bits in those arrays, which is O(cdim log cdim). The list decoding algorithm of Tal
& Vardy (2015) also performs a DFS traversal of this tree, but maintains the nprb best results seen
so far, which costs time O(nprb · cdim log cdim). Finally, the simplified list decoding algorithm
of Hashemi et al. (2016) prunes those nodes in the tree whose leaves are either all frozen or all
unfrozen4; the remaining nodes are inside the gray outline. Note that for low-rate codes (i.e., nbit ≪
cdim) such as those used in PCNN, pruning such nodes yields a significant performance gain.

Note that these decoding and list-decoding algorithms are not exact, and sometimes return subopti-
mal results. However, we mitigate this in PCNN by increasing the list size of the algorithm beyond
the desired list size. That is, to obtain the closest nprb codewords, we would use the algorithm
of Hashemi et al. (2016) with list size f(nprb) ≥ nprb, and only take the nprb best results. We
have empirically found the following rule to nearly perfectly recover the closest codewords to the
query:

f(nprb) :=


16 nprb = 1

32 1 < nprb ≤ 16

2nprb 16 < nprb ≤ 256

nprb nprb > 256

(2)

This rule is thus used in PCNN.

Extraction of Cluster IDs. In PCNN, after list-decoding a dataset point (during index creation)
or a query (upon receiving one), we obtain the nprb closest codewords, each representing a cluster.
While we could use the codewords themselves as cluster identifiers, this would be inefficient in terms
of memory and storage, as each codeword has cdim bits and there are only 2nbit such codewords.
Instead, we would like to extract from each codeword a nbit-bit cluster identifier which identifies the
codeword uniquely. Given a codeword c = (c0, · · · , ccdim), we extract the nbit-bit cluster identifier
x(c) through applying the code mask r to c:

x(c) := (ci)i|ri=1 (3)

We provide a proof that these identifiers are indeed unique.

Proposition 1. Let C be a [cdim,nbit] polar code, r be its mask, and let x be defined as in Equa-
tion (3). Let c1, c2 ∈ C be two codewords. Then,

c1 = c2 ⇐⇒ x(c1) = x(c2)

Proof. The left-implies-right direction is trivial (the cluster ID of a codeword is contained in the
codeword), it remains to show the other direction. Assume that c1 ̸= c2. Since the encoding process
of polar code, as given in Equation (1), is injective, the distinct codewords c1, c2 were generated
from two distinct nbit-bit message words m1 = (m1

0, · · · ,m1
nbit) and m2 = (m2

0, · · · ,m2
nbit).

Moreover, each bit in each codeword is a linear combination (i.e., xor) of some subset of its message
word. Denoting by f the encoding, and defining a1 := x(c1) and a2 = x(c2), it holds that a1,a2
are created from m1,m2 through the linear transform x ◦ f .

If we show that the linear map g := x ◦ f is injective, the proof is complete, as

c1 ̸= c2 =⇒ m1 ̸= m2 =⇒ a1 ̸= a2

Claim: The linear map g is injective.

We prove this claim through claiming that the image of g (denoted im(g)), which is contained in
{0, 1}k, has full dimension (i.e., equal nbit). Indeed, if this is not the case, then the perpendicular

4More accurately, the list-decoding algorithm of Hashemi et al. (2016) also prunes nodes with only a single
unfrozen leaf (repetition nodes).
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Figure 6: Comparison of PCNN and LSH for varying Approximation Factor α ∈ {1.2, 1.4, 1.6, 2.0}
on YandexDeep dataset (with sizenn = 1, using nbit = 28 and hyperplane LSH).

space im(g)⊥ contains a nonzero word - equivalently, there exists a subset ∅ ≠ S ⊆ [nbit] such that

∀a = (a0, · · · , anbit−1) ∈ im(g) :
⊕
j∈S

ai = 0. (4)

Suppose, for contradiction, that there exists such a nonempty set S. Now, for every j ∈ [nbit] define
ij to be the j’th one-valued bit in the mask r.

For an index i ∈ [cdim], denote by L(i) the set of one-valued bits in i’s binary representation (as in
the definition of polar codes in Equation (1)).

Now, fix j ∈ S to be some index such that its location in the codeword is minimal according to L, i.e.,
∀j′ ∈ S\{j} : L(ij) ̸⊆ L(ij′). Now, from the definition of S, it must be that cij =

⊕
j′∈S\{j} cij′ .

However, recalling that for every index i it holds that ci =
⊕

i′|L(i)⊆L(i′) ei′ , we have that eij goes
into the xor of cij , but not into the xor of cij′ for any j′ ∈ S\j (this uses the minimality w.r.t. L).
But since eij can take on both zero and one, Equation (4) cannot hold for every cluster ID a. This
completes the proof.

B ADDITIONAL EXPERIMENTS

B.1 CHOICE OF APPROXIMATION FACTOR

The performance gains are present for any choice of approximation factor α. In Figure 6,
PCNN (solid curves) and LSH (dashed curves) are compared on YandexDeep dataset for α ∈
{1.2, 1.4, 1.6, 2.0}. It is observed that PCNN outperforms LSH on every choice of approximation
factor α.

B.2 CHOICE OF NEAREST NEIGHBOR SIZE

The performance gains are consistent for multiple choices of sizenn, the number of nearest-
neighbors to output. Figure 7 depicts a comparison between PCNN (solid curves) and LSH (dashed
curves) on YandexDeep dataset for sizenn ∈ {1, 10, 50}. It is observed that PCNN outperforms
LSH for any choice of sizenn.

B.3 ROBUSTNESS TO EMBEDDING RANDOMNESS

The performance of LSH can be greatly impacted by the choice of random embedding. We con-
jecture that this is due to the low number of embedding bits; thus, it is reasonable to assume that
this variance in performance would be lower for PCNN, as it uses more embedding bits. To test
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Figure 7: Comparison of PCNN and LSH for varying Number of Neighbors sizenn ∈ {1, 10, 50}
on YandexDeep (with α = 1.4, using nbit = 28 and hyperplane LSH).

(a) (b) (c)

Figure 8: Variance comparison for 30 different random seeds on YandexDeep (with sizenn = 1, α =
1.4 and using nbit = 28 and hyperplane LSH) for (a) CHC, (b) PCNN with cdim = 1024. Sub-
Figure (c) shows the standard deviations from (a) and (b) per choice of nprb.

this conjecture, we ran both LSH and PCNN with 30 different random seeds. We considered the
YandexDeep dataset, sizenn = 1 and α = 1.4, and ran both LSH and PCNN with nbit = 28. For
PCNN, we chose cdim = 1024. The resulting measurement can be seen in Figure 8; Figures 8a
and 8b show the performance for LSH and PCNN respectively, while Figure 8c shows the standard
deviations of both algorithms for every choice of nprb. A reduced variance in the performance of
PCNN versus LSH is clearly observed.

B.4 CONVEX FRONTIER

Our previous experiments averaged performance over the random seed of the algorithm. In standard
usage, where one chooses an arbitrary random seed, this method seems reasonable. However, one
could imagine trying to optimize for the best random seed (which, as mentioned above, would
greatly impact the performance of CHC). A natural question would be whether the higher variance
of CHC compared to PCNN would make the best seed choice for CHC better than the best seed
choice for PCNN. We answer this in the negative: PCNN still outperforms CHC in this case.

To consider this seed-optimization regime, we repeat previous experiments where instead of averag-
ing over seeds, we take only the vertices of the convex hull of the algorithm’s results (over all seeds).
We then prune the vertex set by taking its Pareto frontier (i.e., a subset of points such that no point
in the subset is worse in both recall and ndis than another vertex). Figure 9 shows the choice of this
convex frontier from the runs of an algorithm with 30 different seeds (in this figure, the frontier is
dominated by a single seed, but this need not always be the case). Figure 10 compares the convex
frontiers of the various algorithms.
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Figure 9: Illustration of a convex frontier of CHC (solid blue curve) that corresponds to 30 curves
(dashed yellow curves) obtained by using different seeds as used in the case of Figure 8a.

(a) (b)

Figure 10: Reproducing the results of Figures 3a and 4a using convex-frontier instead of seed aver-
aging.

B.5 APPROXIMATE HYPERPLANE LSH

As previously stated, the results above regarding the choice of cdim seem to indicate that it should be
roughly on par with the original real dimension d. However, in hyperplane LSH choosing cdim = d
implies multiplication by a d×d matrix with normally-distributed entries upon embedding a vector,
which would take O(d2) time. However, there exists an efficient alternative for this multiplication;
this alternative involves repeatedly flipping entry signs at random, then applying a Hadamard trans-
form. After a constant number of iterations, this process has been seen to approximate the original
matrix multiplication, while taking only O(d log d) time (Andoni et al., 2015). (Such approximate
embeddings are based on the fast Johnson-Linderstrauss transform of Ailon & Chazelle (2009), and
were also considered by, e.g., Dasgupta et al. (2011).)

We test this method for PCNN, and observe that 4 iterations of this process (sign flip + Hadamard
transform) are sufficient for identical performance to hyperplane LSH. Figure 11 shows the results
of this experiment.
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Figure 11: Comparison of PCNN with hyperplane embedding vs. Hadamard-based embedding (with
hyperplane LSH for comparison). The dataset is YandexDeep, with sizenn = 1 and α = 1.4.

B.6 AUTOENCODER LSH

PCNN is a general method which can encapsulate any LSH function to obtain an algorithm for
nearest-neighbor search. Thus far, we have focused on hyperplane LSH as a concrete, classic ex-
ample for such an LSH function. However, other LSH functions can also be used by PCNN; this
subsection focuses on exploring one such LSH function, namely the data-dependent autoencoder
LSH introduced by Tissier et al. (2019).

In this subsection, we explore the performance gains of PCNN over CHC, where both techniques
encapsulate the autoencoder LSH method. We implemented the autoencoder architecture of Tissier
et al. (2019) in pytorch lightning, and trained it on the YandexDeep dataset. For this, we used a
regularization parameter λreg = 1 (as defined by Tissier et al. (2019)), and ran the Adam optimizer
with a learning rate of 0.001 and a batch size of 128. For every value of cdim, we trained an
autoencoder in this way which has a representation layer of size cdim.

First, we compare CHC with PCNN with various choices of cdim; we do this for the YandexDeep
dataset, similar to presented performance gains in Section 4.4 for hyperplane LSH. The choice of
problem parameters is the same as for hyperplane LSH, i.e., sizenn = 1 and α = 1.4, as is the
parameter nbit = 28. The results, given in Fig. 12, show a dramatic difference. This is since
a larger representation allows for a better autoencoder, and PCNN provides access to these larger
representations.

Next, we repeat the experiment of Section 4.4 for Multi-Table LSH with autoencoder LSH. This
experiment is again on the YandexDeep dataset, with problem parameters sizenn = 1 and α = 1.4,
as well as nbit = 28. The results are given in Fig. 13, and show similar results to those seen for
hyperplane LSH. The main difference is that using multiple tables improves the performance of
PCNN even in large cdim (i.e., 512); we attribute this to the slower plateau of performance w.r.t.
cdim that the autoencoder LSH exhibits in comparison to hyperplane LSH.

C APPROXIMATION FACTOR FOR COSINE SIMILARITY

In the case of YandexTTI dataset we use cosine distance, defined as one minus the cosine similar-
ity. While maximizing cosine similarity and minimizing cosine distance are equivalent, using an
approximation factor α for cosine distance could yield little intuition regarding the minimal value of
the corresponding cosine similarity. This is due to the fact that when emanating from approximation
factor α ≥ 1 defined for cosine distance, the corresponding approximation factor for cosine similar-
ity does not remain constant and depend on the value of the reference cosine similarity. Formally,
let cd1 and cd2 denote two cosine distances, and let cs1 and cs2 denote the corresponding cosine
similarities, respectively. It holds that cd2 ≤ α · cd1 if and only if cs2 ≥ (α − (α − 1)/cs1)) · cs1.
Table 2 shows the effect of choosing different α for different cosine similarity values. The values in
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Figure 12: recall/ndis performance comparison for sizenn = 1, α = 1.4 for YandexDeep (using
nbit = 28 and autoencoder LSH).

Figure 13: recall/ndis performance comparison for sizenn = 1, α = 1.4 for YandexDeep (using
nbit = 28 and autoencoder LSH).

the left column correspond to values of cs1 (e.g., reference cosine similarity values) while the values
in the body of the table correspond to values of cs2 (minimum allowed cosine similarity value by
approximation ratio) with different α per column. For example, if the optimal reference cosine sim-
ilarity equals 0.97, than approximation factor α = 1.5 for cosine distance implies that any cosine
similarity of at least 0.955 is valid (that is, an effective approximation ratio of 0.984 w.r.t. cosine
similarity).

Table 2: Examples of changes to cosine similarity through approximation factor α for cosine dis-
tance.

cs1
α 1.2 1.5 2.0 2.5 3.0

0.7 0.64 0.55 0.4 0.25 0.1
0.8 0.76 0.7 0.6 0.5 0.4
0.9 0.88 0.85 0.8 0.75 0.7
0.95 0.94 0.925 0.9 0.875 0.85
0.97 0.964 0.955 0.94 0.925 0.91

19



Published as a conference paper at ICLR 2023

D COMPLEXITY DISCUSSION

Time complexity of PCNN versus CHC. In both the hyperplane and autoencoder LSH
methods with nbit-bit hashcodes, CHC would have a preprocessing time complexity of n ·
O(embedding cost + nbit) and a query complexity of O(embedding cost + nprb · nbit). (Not in-
cluded in this is the cost of training the autoencoder model, which varies depending on the training
parameters.) In order to compare PCNN to CHC, we must pick a regime for cdim; for hyperplane
LSH, for example, our experiments show that picking cdim ≈ d optimizes performance, and thus in
the following comparison we assume cdim = d. In addition, we should consider the cost of binary
embedding: embedding to a dimension of dbin takes O(dbin ·d) time in standard hyperplane embed-
ding. We also consider the complexity of an approximate embedding based on Hadamard transform
and random sign flips, identical to that in Andoni et al. (2015); this approximate embedding takes
O((dbin + d) log(dbin + d)) time.

Table 3 summarizes the running time complexities of both PCNN and CHC. Overall, for both PCNN
and CHC, the cluster ID extraction upon query is not significant in terms of running time; in both
cases, the determining component in running time is the distance comparisons between the query
and the dataset points (ndis, as defined in Section 4.2).

Table 3: Comparison of the time complexity of PCNN and CHC. Time complexity is compared for
preprocessing and for extraction of nprb cluster IDs (CIDs) to probe upon a query. (Note that this
table does not refer to the main cost of querying, which is searching within clusters; this is evaluated
empirically in Section 4.)

without embedding w. hyperplane embed-
ding

w. approx. embedding

PCNN preprocess O(n · d · log d) O(n · d2) O(n · d · log d)
extract CIDs O(nprb · d · log d) O(d2 + nprb · d · log d) O(nprb · d · log d)

CHC preprocess O(n · nbit) O(n · d · nbit) O(n · d · log d)
extract CIDs O(nprb · nbit) O(d · nbit+ nprb · nbit) O(d · log d+nprb ·nbit)
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