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ABSTRACT

Recently, generalization on out-of-distribution (OOD) data with correlation shift
has attracted great attentions. The correlation shift is caused by the spurious
attributes that correlate to the class label, as the correlation between them may
vary in training and test data. For such a problem, we show that given the class
label, the models that are conditionally independent of spurious attributes are OOD
generalizable. Based on this, a metric Conditional Spurious Variation (CSV) which
controls the OOD generalization error, is proposed to measure such conditional
independence. To improve the OOD generalization, we regularize the training
process with the proposed CSV. Under mild assumptions, our training objective
can be formulated as a nonconvex-concave mini-max problem. An algorithm with
a provable convergence rate is proposed to solve the problem. Extensive empirical
results verify our algorithm’s efficacy in improving OOD generalization.

1 INTRODUCTION

The success of standard learning algorithms rely heavily on the identically distributed assumption of
training and test data. However, in real-world, such assumption is often violated due to the varying
circumstances, selection bias, and other reasons (Meinshausen & Bühlmann, 2015). Thus, learning a
model that generalizes on out-of-distribution (OOD) data has attracted great attentions. The OOD
data (Ye et al., 2022) can be categorized into data with diversity shift or correlation shift. Roughly
speaking, there is a mismatch of the spectrum and a spurious correlation between training and test
distributions under the two shifts, respectively. Compared with diversity shift, correlation shift is less
explored (Ye et al., 2022), while the misleading spurious correlation works for training data may
deteriorate model’s performance on test data (Beery et al., 2018).

The correlation shift says, for the spurious attributes in data, there exists variation of (spurious)
correlation between class label and such spurious attributes from training to test data (Figure 1).
Based on a theoretical characterization of it, we show that given the class label, the model which is
conditionally independent of spurious attributes has stable performance across training and OOD test
data. Then, a metric Conditional Spurious Variation (CSV, Definition 2) is proposed to measure such
conditional independence. Notably, in contrast to the existing metrics related to OOD generalization
(Hu et al., 2020; Mahajan et al., 2021), our CSV can control the OOD generalization error.

To improve OOD generalization, we regularize the training process with estimated CSV. With
observable spurious attributes, we propose an estimator to CSV. However, such observable condition
may be violated. In this case, we propose another estimator, which approximates a sharp upper bound
of CSV. We regularize the training process with one of them, depending on whether the spurious
attributes are observable. Our method improves the observable condition in (Sagawa et al., 2019).

Under mild smoothness assumptions, the regularized training objective can be formulated as a specific
non-convex concave minimax problem. A stochastic gradient descent based algorithm with a provable
convergence rate of order O(T−2/5) is proposed to solve it, where T is the number of iterations.
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Figure 1: Examples of CelebA (Liu et al., 2015), Waterbirds (Sagawa et al., 2019), MultiNLI
(Williams et al., 2018), and CivilComments (Borkan et al., 2019) involved in this paper. The
class labels and spurious attributes are respectively colored with red and blue. Their correlation may
vary from training set to test set. More details are shown in Section 6.
Finally, extensive experiments are conducted to empirically verify the effectiveness of our methods
on the OOD data with spurious correlation. Concretely, we conduct experiments on benchmark
classification datasets CelebA (Liu et al., 2015), Waterbirds (Sagawa et al., 2019), MultiNLI
(Williams et al., 2018), and CivilComments (Borkan et al., 2019). Empirical results show that
our algorithm consistently improves the model’s generalization on OOD data with correlation shifts.

2 RELATED WORKS AND PRELIMINARIES

2.1 RELATED WORKS

OOD Generalization. The appearance of OOD data (Hendrycks & Dietterich, 2018) has been
widely observed in machine learning community (Recht et al., 2019; Schneider et al., 2020; Salman
et al., 2020; Tu et al., 2020; Lohn, 2020). To tackle this, researchers have proposed various algorithms
from different perspectives, e.g., distributional robust optimization (Sinha et al., 2018; Volpi et al.,
2018; Sagawa et al., 2019; Yi et al., 2021b; Levy et al., 2020) or causal inference (Arjovsky et al.,
2019; He et al., 2021; Liu et al., 2021b; Mahajan et al., 2021; Wang et al., 2022; Ye et al., 2021). Ye
et al. (2022) points out that the OOD data can be categorized into data with diversity shift (e.g., PACS
(Li et al., 2018)) and correlation shift (e.g., Waterbirds (Sagawa et al., 2019)), and we focus on
the latter in this paper, as we have clarified that it deteriorates the performance of the model on OOD
test data (Geirhos et al., 2018; Beery et al., 2018; Xie et al., 2020; Wald et al., 2021).

Domain Generalization. To goal of domain generalization is extrapolating model to test data from
unseen domains to capture OOD generalization. The problem we explored can be treated by domain
generalization methods as data with different spurious attributes can be regarded as from different
domains. The core idea in domain generalization is to learn a domain-invariant model. To this end,
Arjovsky et al. (2019); Hu et al. (2020); Li et al. (2018); Mahajan et al. (2021); Heinze-Deml &
Meinshausen (2021); Krueger et al. (2021); Wald et al. (2021); Seo et al. (2022) propose plenty of
invariant metrics as training regularizer. However, unlike our CSV, none of these metrics controls the
OOD generalization error. Moreover, none of these methods capture the invariance corresponds to
the correlation shift we discussed (see Section 4.1). This motivates us to reconsider the effectiveness
of these methods. Finally, in contrast to ours, these methods require observable domain labels, and it
is usually impractical. The techniques in (Liu et al., 2021b; Devansh Arpit, 2019; Sohoni et al., 2020;
Creager et al., 2021) are also applicable without domain information, but they are built on strong
assumptions (mixture Gaussian data (Liu et al., 2021b) and linear model (Devansh Arpit, 2019)) or
require a high-quality spurious attribute classifier (Sohoni et al., 2020; Creager et al., 2021).

Distributional Robustness. The distributional robustness (Ben-Tal et al., 2013) based methods
minimize the worst-case loss over different groups of data (Sagawa et al., 2019; Liu et al., 2021a;
Zhou et al., 2022). The groups are decided via certain rules, e.g., data with same spurious attributes
(Sagawa et al., 2019) or annotated via validation sets with observable spurious attributes (Liu et al.,
2021a; Zhou et al., 2022). However, Sagawa et al. (2019) finds that directly minimizing the worst-
group loss results in unstable training processes. In contrast, our method has stable training process
as it balances the objectives of accuracy and robustness over spurious attributes (see Section 5).

2.2 PROBLEM SETUP

We collect the notations in this paper. ∥ · ∥ is the ℓ2-norm of vectors. O(·) is the order of a number.
The sample (X,Y ) ∈ X ×Y , where X and Y are respectively input data and its label. The integer set
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from 1 to K is [K]. The cardinal of a set A is |A|. The loss function is L(·, ·) : RK × Y → R+ with
0 ≤ L(·, ·) ≤ M for positive K,M . For any distribution P , let Rpop(P, f) = EP [L(f(X), Y )] and
Remp(P, f) = n−1

∑n
i=1 L(f(xi), yi) respectively be the population risk under P and its empirical

counterpart. Here {(xi, yi)}ni=1 are n i.i.d. samples from distribution P , and f(·) : X → RK is the
model potentially with parameter space Θ ⊂ Rd (f(·) becomes fθ(·)). For random variables V1, V2

with joint distribution PV1,V2
, PV1

and PV2|V1
are the marginal distribution of V1 and the conditional

distribution of V2 under V1. PV1(v1) and PV2|V1
(v1, v2) are their probability measures.

Suppose the training and OOD test data are respectively from distributions PX,Y,Z and QX,Y,Z . We
may neglect the subscript if there is no obfuscation. There usually exists similarities between P and
Q that guarantee the possibility of OOD generalization (Kpotufe & Martinet, 2021). The similarity
we explored is that there only exists a correlation shift in the OOD test data formulated as follows.
For each input X , there exists spurious attributes Z ∈ Z that are not causal to predict class label, but
Z is potentially related to class label Y . The Z can be some features of X e.g., gender of celebrity
in Figure 1. The correlation between Z and Y (i.e., spurious correlation) can vary from training to
test data, and the one in training distribution may become a misleading signal for the model to make
predictions on test data. For example, in the celebrity’s face in Figure 1, if most males in the training
set have dark hair, the model may overfit such spurious correlation and mispredict the male with
blond hair. Thus we should learn a model that is robust to correlation shift defined as follows.

Definition 1. Given training distribution P , the test distribution Q ∈ P has correlation shift, where

P = {QX,Y,Z : QY = PY , QX|Y,Z = PX|Y,Z}. (1)

Our definition characterizes the distributions with correlation shift. The first equality in (1) obviates
the mismatching caused by label shift (i.e., PY ̸= QY ) which is unrelated to spurious correlation.
More discussions of it are in Appendix A. The second equality in (1) states the invariance of
conditional distribution of data, given the class label and spurious attributes, which is reasonable as
the unstable spurious correlations are decided by the joint distribution of Y and Z. Finally, since

QX,Y (x, y) = QX,Y (x | y)QY (y) = QY (y)

∫
Z
QX|Y,Z(x | y, z)dQZ|Y (z | y)

= PY (y)

∫
Z
PX|Y,Z(x | y, z)dQZ|Y (z | y),

(2)

the two constraints in (1) together implies the correlation shift of Q ∈ P is from the variety of
conditional distributions QZ|Y , which is consistent with intuition. Our definition is different from the
ones in (Mahajan et al., 2021; Makar & D’Amour, 2022), as they rely on a causal directed acyclic
graph and the existence of a sufficient statistic such that Y only affects X through it.

3 GENERALIZING ON OOD DATA

In this section, we show that misleading spurious correlation can hurt the OOD generalization. Then
we give a condition under which the model is OOD generalizable.

3.1 SPURIOUS CORRELATION MISLEADS MODELS

The common way to train a model is empirical risk minimization (ERM Vapnik, 1999), i.e., ap-
proximating the minimizer of Rpop(P, f) which generalizes well on in-distribution samples via
minimizing its empirical counterpart Remp(P, f). However, the following proposition shows that the
minimizer of Rpop(P, f) may not generalize well on the OOD data from the other distributions in P .

Proposition 1. There exists a population risk Rpop(P, f) whose minimizer has nearly perfect
performance on the data from P , while it fails to generalize to OOD data drawn from another Q ∈ P .

Similar results also appear in (Xie et al., 2020; Krueger et al., 2021), while they are not obtained on
the minimizer of population risk. The proof of this proposition is in Appendix B which indicates that
the spurious correlation in training data can become a misleading supervision signal that deteriorates
the model’s performance on OOD data. Hence, it is crucial to learn a model that is independent of
such spurious correlation, even if it sometimes can be helpful in the training set (Xie et al., 2020).
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3.2 CONDITIONAL INDEPENDENCE ENABLES OOD GENERALIZATION

Next, we give a sufficient condition proved in Appendix B to make the model OOD generalizable.
The condition is also necessary under some specific data generating structures (Veitch et al., 2021).
Theorem 1. For model f(·) satisfying f(X) ⊥ Z |Y , the conditional distribution Y | f(X) and
population risk EQ[L(f(X), Y )] are invariant with (X,Y ) ∼ QX,Y such that Q ∈ P .

Here f(X)⊥Z |Y means given Y , f(X) is conditionally independent of Z. Theorem 1 shows our
conditional independence obviates the impact of correlation shift, as the prediction error (gap between
Y and f(X), decided by Y |f(X)) and population risk of model are invariant over test distributions
Q ∈ P . Thus we propose to obtain a model that is conditional independent of spurious attributes.
Remark 1. If the spurious attributes are domain labels, the conditional independence in Theorem
1 becomes the ones in (Liu et al., 2015; Hu et al., 2020; Mahajan et al., 2021), while they do not
explore its correlation with the OOD generalization. Besides, the counterexample in Mahajan et al.
(2021) violates our conditional invariant assumption in (1) and hence is not contrary to our theorem.

4 LEARNING OOD GENERALIZABLE MODEL

In Theorem 1 we propose a independence condition to break correlation shift. In this section, a metric
Conditional Spurious Variation (CSV) is proposed to quantitatively measure the independence. As our
CSV can control the OOD generalization error, smaller CSV leads to improved OOD generalization.
Finally, two estimators of CSV are proposed, depending on whether spurious attributes are observable.

4.1 GUARANTEED OOD GENERALIZATION ERROR

Theorem 1 shows that the conditional independence between the model and spurious attributes
guarantees the OOD generalization. We propose the following metric to measure such independence.

Definition 2 (Conditional Spurious Variation). The conditional spurious variation of model f(·) is

CSV(f) = EY

[
sup
z1,z2

(EX [L(f(X), Y ) | Y,Z = z1]− EX [L(f(X), Y ) | Y,Z = z2])

]
. (3)

As can be seen, CSV is a functional of f(·) which measures the intra-class conditional variation of the
model over spurious attributes, given the class label Y . It can be computed via training distribution
and is invariant across Q ∈ P due to (1). It is worth noting that the model satisfies the conditional
independence in Theorem 1 has zero CSV but not vice versa. 1 However, the following theorem
proved in Appendix C.1 shows that CSV(f) is sufficient to control the OOD generalization error.
Theorem 2. For any Q ∈ P , we have

sup
Q∈P

|Remp(f, P )−Rpop(f,Q)| ≤ |Remp(f, P )−Rpop(f, P )|+CSV(f) (4)

The |Remp(f,P )−Rpop(f,P )| is in-distribution generalization error, which is well explored (Ver-
shynin, 2018). Thus, we upper bound the OOD generalization error via the in-distributional one and
CSV. The OOD generalization error is also connected to many other metrics e.g., (Hu et al., 2020; Ma-
hajan et al., 2021; Ben-David et al., 2007; 2010; Muandet et al., 2013; Ganin et al., 2016), but none of
them directly control the OOD generalization error. Besides, these metrics are proposed to obtain the
invariance over Z as a condition, i.e., invariant Pf(X),Y |Z or Pf(X)|Z , while the invariances can not
handle correlation shift (Definition. 1). As, 1): invariant Pf(X),Y |Z implies invariant PY |Z which is
incompatible with correlation shift, 2): invariant Pf(X)|Z =

∫
Y Pf(X)|Z,Y (f(x) | z, y)dPY |Z(y | z)

does not imply invariant Pf(X)|Y,Z which guarantees OOD generalization.

As our bound (4) involves both CSV and in-distribution generalization error, it motivates us to
explore whether the conditional independence is contradicted by the in-distribution generalization.

1Conditional independence is a strong sufficient condition to make model OOD generalizable. However, the
proof of Theorem 1 shows the model that is invariant with spurious correlation Q(Z | Y ) is sufficient to be
OOD generalizable, while the invariance can be characterized by both zero CSV and conditional independence.
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The following information-theoretic bound proved in Appendix C.1 presents a positive answer. Let
I(V1, V2) be the mutual information between variables V1, V2, we have the following result.
Theorem 3. Let model fθ(·) parameterized by θ ∈ Θ ⊂ Rd, and is trained on S = {(xi, yi)}ni=1

from distribution P , with the spurious attributes of xi is zi. If the learned model fθS (·) ⊥ Sz | Sy
2

Egen(fθS , P ) ≤ inf
g

√
M2

4n

(
I(Sx−g(z),Sy; fθS | Sy,Sg(z)) + I(Sy; fθS )

)
, (5)

where Egen(fθS , P ) = |E[Remp(fθS , P )] − Rpop(fθS , P )|, g(·) is any measurable function,
Sx−g(z) = {xi − g(zi)}ni=1, Sy = {yi}ni=1.

Our bound improves the classical result Egen(fθS , P ) ≤
√

M2I(S,θS)/4n without conditional in-
dependence (Steinke & Zakynthinou, 2020), because taking g(·) as a constant function, then applying
data processing inequality (Xu & Raginsky, 2017) in r.h.s. of (5), it becomes

√
M2I(S,θS)/4n.

The bound indicates the model fθS (·) that is conditional independent of spurious attribute (we aim
to capture) is not in contradiction with in-distribution generalization. Thus, due to Theorem 2, less
conditional independence with spurious attributes of model improves the OOD generalization bound.

4.2 ESTIMATING CSV WITH OBSERVABLE SPURIOUS ATTRIBUTES

As smaller CSV enables improved OOD generalization, we propose to regularize the training process
with it. Suppose we have n i.i.d. {(xi, yi)}ni=1 training samples with spurious attributes {zi}ni=1
from P . Before our analysis, we need the following two mild assumptions in the sequel.
Assumption 1. The class label and spurious attributes are discrete, i.e., the Y = [Ky] and Z = [Kz]
for some positive integers Ky,Kz . Besides that, the number of observations Akz = {i : yi = k, zi =
z} from each pair of (k, j) ∈ [Ky]× [Kz] is |Akz| = nkz > 0.
Assumption 2. The model is parameterized by θ ∈ Θ ⊂ Rd. The loss function L(fθ(x), y) is
Lipschitz continuous and smooth w.r.t. θ with coefficient L0 and L1, i.e., for any (x, y) ∈ X × Y ,
and θ1,θ2 ∈ Θ,

|L(fθ1(x), y)− L(fθ2(x), y)| ≤ L0∥θ1 − θ2∥;
∥∇θL(fθ1(x), y)−∇θL(fθ2(x), y)∥ ≤ L1∥θ1 − θ2∥.

(6)

In Assumption 1, we require the spurious attributes space is finite. This is explained as Z is a “label”
of spurious attributes, e.g., the gender label “male” or “female” in CelebA dataset (Figure 1) when
classifying hair color. Assumption 1 also requires the data with all the possible combinations of the
label and spurious attributes are collected in the training set. This is a mild condition since we do not
restrict the magnitude of nkz . For example, to satisfy this, we can synthetic some of the missing data
by generative models as in (Wang et al., 2022; Zhu et al., 2017).

Let Lkz(fθ) = E[L(fθ(X), k) | Y = k, Z = z], L̂kz(fθ) = (1/nkz)
∑

i∈Akz
L(fθ(xi), k), and

p̂k = nk/n with nk =
∑

z∈[Kz ]
nkz . Then the following empirical counterpart of CSV

ĈSV(fθ) =

Ky∑
k=1

sup
z1,z2∈[Kz ]

(
L̂kz1(fθ)− L̂kz2(fθ)

)
p̂k (7)

is a natural estimator to CSV. The following theorem quantify its approximation error.
Theorem 4. Under Assumption 1 and 2, if infk∈[Ky ],z∈[Kz ] nkz/nk = O(1), then

CSV(fθ) ≤ ĈSV(fθ) +O
(
log (1/δ)√

n

)
(8)

holds with probability at least 1− δ for any θ ∈ Θ, δ > 0.

This theorem implies that CSV is upper bounded by ĈSV(fθ). As shown in the proof in Appendix
C.2, we hide a factor related to covering number (Vershynin, 2018) of the hypothesis space in the
numerator of O (log (1/δ)/

√
n) in (8). The hidden factor is of order

√
d (Wainwright, 2019). Thus,

more samples are required to estimate CSV in high-dimensional space. Besides that, if the condition
infk,z nkz/nk = O(1) does not hold, the order of error is O(1/

√
mink,z nkz) (see Appendix C.2

for details).
2θS is the learned parameters depends on training set S. fθS (·) is a random element that takes values in a

functional space (i.e., model space), details can be referred to (Shiryaev, 2016).
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Algorithm 1 Regularize training with CSV.
Input: Training set {(xi, yi)}ni=1, number of labels Ky and spurious attributes Kz , training steps T ,
model fθ(·) parameterized by θ. Initialized θ0, {F k

0}. Positive regularization constant λ, surrogate

constant ρ, and correction constant γ. Estimators R̂emp(fθ, P ) to Remp(fθ, P ), F̂
k
(θ) to F k(θ).

1: for t = 0, · · · , T do
2: Solve the maximization problem:
3: for k = 1, · · · ,Ky do
4: F k

t+1 = (1− γ)F k
t + γF̂

k
(θ(t));

5: uk(t+ 1) = Softmax(F k
t+1/ρ).

6: end for
7: Minimization step via SGD:

8: θ(t+ 1) = θ(t)− ηθ
Ky∑
k=1

p̂k∇θ(R̂emp(fθ(t), P ) + λuk(t+ 1)⊤F k
t+1).

9: end for

4.3 ESTIMATING CSV WITH UNOBSERVABLE SPURIOUS ATTRIBUTES

Computing the empirical CSV (7) requires observable spurious attributes which may not be available
in practice (Liu et al., 2021a). Thus, we need to estimate CSV in the absence of spurious attributes.

Let Pkz = PX|Y=k,Z=z be the conditional distributions of X with Y,Z given. The core difficulty of
estimating CSV with unobservable spurious attributes is to estimate supz EPkz

[L(fθ(X), k)] −
infz EPkz

[L(fθ(X), k)] via nk independent samples {(xi, yi)}i∈Ak
drawn from a mixture dis-

tribution Pk =
∑

z∈[Kz ]
πkzPkz . Here Ak =

⋃
z∈[Kz ]

Akz for k ∈ [Ky], Pk = PX|Y=k,
πkz = PZ|Y (Z = z | Y = k), and we can not specify the data in Ak is from which of Akz .
To proceed, suppose πkz ≥ c > 0, which is a necessary condition for Assumption 1 to hold. We
show in Appendix C.3 that the quantile conditional expectation

EPk [L(fθ(X), k) | L(fθ(X), k) ≥ qPk (1− c)]− EPk [L(fθ(X), k) | L(fθ(X), k) ≤ qPk (c)] (9)

is an upper bound (which is sharp for K ≥ 3) of supz EPkz
[L(fθ(X), k)]− infz EPkz

[L(fθ(X), k)].
Here qPk

(·) is the quantile function defined as qPk
(s) = inf{p : Pk(L(fθ(X), k) ≤ p) ≥ s}. For

large nk, we must have πkz ≥ 1/nk = c for each z ∈ [Kz]. Thus by substituting the expectation on
Pk in (9) with its empirical counterpart for c = 1/nk, we get the the following estimator

ĈSVU(fθ)=

Ky∑
k=1

(
max
i∈Ak

L(fθ(xi), k)−min
i∈Ak

L(fθ(xi), k)

)
p̂k. (10)

The subscript “U” means “unobservable spurious attributes”. Besides that, the ĈSVU(fθ) is an upper
bound to the estimator ĈSV(fθ), which is another straightfoward way to obtain it.

5 REGULARIZING TRAINING WITH CSV (RCSV)

The previous results have claimed that the model with small CSV generalizes well on OOD data. On
the other hand, Theorem 4 and discussion in Section 4.3 have approximated the CSV via ĈSV(fθ)

and ĈSVU(fθ), respectively. Thus we can regularize the training process with one or the other to
improve the OOD generalization, depending on whether the spurious attributes are observable.

It is notable that both of the regularized training objectives can be formulated as the following
minimax problem for positive constants m and λ

min
θ∈Θ

Ky∑
k=1

p̂k

(
Remp(fθ, P )+λ max

u∈∆m

u⊤F k(θ)

)
. (11)

Here ∆m = {u = (u1, . . . , um) ∈ Rm
+ :

∑
i ui = 1}, F k(θ) ∈ Rm, and each dimension of F k(θ)

is Lipschitz continuous function with Lipschitz gradient. Under Assumption 1 and 2, the training
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process of empirical risk minimization regularized with ĈSV(fθ) or ĈSVU(fθ) can be formulated as
the above problem by respectively setting F k(θ) as the vectorization of the two following matrices.
The m of ĈSV(fθ) and ĈSVU(fθ) are respectively K2

z and |Ak|2.

(L̂kz1(fθ)− L̂kz2(fθ))z1,z2∈[Kz ], (L(fθ(xi1), k)− L(fθ(xi2), k))i1,i2∈Ak . (12)

Before solving (11), we clarify the difference between regularizing training with CSV and distri-
butional robustness optimization (DRO) based methods which minimize the worst-case expected
loss over data with same spurious attributes, e.g., GroupDRO (Sagawa et al., 2019) minimizes
maxk,z EPkz

[L(fθ(X), k)]. Theoretically, the OOD generalizable model has perfect in-distribution
test accuracy and robustness over different spurious attributes as in (4). Our regularized training
objective split such two goals, while DRO based methods mix them into one objective. Though both
objectives theoretically upper bound the loss on OOD data, we empirically observe that the two goals
are in contradiction with each other (see Section 6). We also observe that splitting the two goals (our
objective) enables us easily take a balance between them, which guarantees a stable training process.
In contrast, the mixed training objective can be easily dominated by one of the two goals, which
results in an unstable training process. Similar phenomena are also observed in (Sagawa et al., 2019).
This motivates the early stopping or large weight decay regularizer used in GroupDRO.

5.1 SOLVING THE MINIMAX PROBLEM

Let ϕk(θ,u) = Remp(fθ, P ) + λu⊤F k(θ), Φk(θ) = maxu∈∆m
ϕk(θ,u). Under Assumption

1 and 2, (11) is a nonconvex-concave minimax problem. As explored in (Lin et al., 2020), the
nonconvex-strongly concave minimax problem is much easier than the nonconvex-concave one. Thus
we consider the surrogate of ϕk(θ,u) defined as ϕk

ρ(θ,u) = ϕk(θ,u)−λρ
∑m

j=1 u(j) log (mu(j))

for λρ > 0, which is strongly concave w.r.t. u, and ϕk(θ,u) is well approximated by it for small ρ.
Next, we consider the following nonconvex-strongly concave problem

min
θ∈Θ

Ky∑
k=1

p̂k max
u∈∆m

ϕk
ρ(θ,u) = min

θ∈Θ

Ky∑
k=1

p̂kΦ
k
ρ(θ), (13)

instead of (11), where Φk
ρ(θ) = maxu∈∆m

ϕk
ρ(θ,u). To solve (13), we propose the Algorithm 1.

In Algorithm 1, lines 3-6 solve the maximization problem in (13), which has close-formed solution
u∗
k(t + 1) = Softmax(F k(θ(t))/ρ) (Yi et al., 2021a), where Softmax(·) is the softmax function

(Epasto et al., 2020). As the estimator F̂
k
(θ) may have large variance, substituting the F k(θ) in

u∗
k(t+ 1) with it in Line 8 (the minimization step) will induce a large deviation. Thus we use the

moving average correction F k
t+1 (Line 4) to estimate F k(θ(t)), which guarantees our convergence

result in Theorem 5. The convergence rate of Algorithm 1 is evaluated via approximating first-order
stationary point, which is standard in non-convex problems (Ghadimi & Lan, 2013; Lin et al., 2020).

Theorem 5. Under Assumption 1 and 2, if R̂emp(fθ, P ) and F̂
k
(θ) are all unbiased estimators with

bounded variance, θ(t) is updated by Algorithm 1 with ηθ = O
(
T− 3

5

)
and γ = T− 2

5 , then

min
1≤t≤T

E

∥∥∥∥∥∥
Ky∑
k=1

p̂k∇Φk
ρ(θ(t))

∥∥∥∥∥∥
2 ≤ O

(
T− 2

5

)
. (14)

Besides that, for any θ(t) and ρ, we have |
∑Ky

k=1 p̂k(Φ
k
ρ(θ(t))−Φk(θ(t)))| ≤ λρ(1/me+2 logm).

The theorem is proved in Appendix D, and it says the first-order stationary point of the surrogate
loss Φk

ρ(·) is approximated by θ(t) in Algorithm 1, in the order of O(T−2/5) (can be improved to
O(T−1/2) when σ2 = O(T−1/2)). As the gap between Φk(·) and Φk

ρ(·) is O(ρ), taking small ρ
yields small Φk(θ(T )). The unbiased estimators in our theorem are constructed in the next section.

6 EXPERIMENTS

In this section, we empirically evaluate the efficacy of the proposed Algorithm 1 in terms of breaking
the spurious correlation. More experiments are shown in Appendix E.
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Table 1: Test accuracy (%) of ResNet50 on each group of CelebA and Waterbirds.
Dataset Method / Group D-F D-M B-F B-M Avg Total Worst SA

CelebA

RCSV 92.1 94.0 92.3 91.8 92.6 92.9 91.8
√

IRM 92.8 93.1 88.9 89.3 91.0 92.3 88.9
√

GroupDRO 94.4 94.6 88.9 88.3 91.6 93.7 88.3
√

ERMRSYZ 88.8 94.7 95.8 85.6 91.2 91.9 85.6
√

RCSVU 88.3 97.8 96.1 76.9 89.8 93.3 76.9 ×
Correlation 87.6 96.3 96.8 69.4 87.5 91.9 69.4 ×
ERMRSY 91.3 97.5 91.0 62.2 85.5 93.3 62.2 ×

Dataset Method / Group L-L L-W W-L W-W Avg Total Worst SA

Waterbirds

RCSV 93.4 90.8 88.6 89.4 90.5 91.4 88.6
√

IRM 93.1 87.7 87.4 89.7 89.5 90.4 87.4
√

GroupDRO 92.0 87.8 87.9 90.3 89.5 89.7 87.8
√

ERMRSYZ 93.2 88.5 87.9 91.3 90.2 90.6 87.9
√

RCSVU 98.5 81.2 81.3 95.5 89.1 89.5 81.2 ×
Correlation 98.8 74.4 70.9 93.0 84.3 85.5 70.9 ×
ERMRSY 99.3 76.7 68.8 94.9 84.9 86.6 68.8 ×

Table 2: Test accuracy (%) of BERT on each group of MultiNLI.
Dataset Method / Group C-WN C-N E-WN E-N N-WN N-N Avg Total Worst SA

MultiNLI

RCSV 77.1 95.3 83.5 79.5 81.3 78.6 82.6 81.5 78.6
√

IRM 79.7 96.9 80.4 71.7 77.2 71.7 79.6 79.9 71.7
√

GroupDRO 77.4 93.5 82.5 79.7 81.5 77.6 82.0 81.3 77.6
√

ERMRSYZ 74.7 89.5 79.1 72.3 82.0 71.8 78.2 79.3 71.8
√

RCSVU 79.3 95.5 82.0 74.3 78.1 70.8 80.0 80.6 70.8 ×
Correlation 76.2 94.7 76.7 67.9 75.5 67.9 76.5 77.0 67.9 ×
ERMRSY 82.7 95.5 79.4 72.6 79.7 67.3 79.5 81.1 67.3 ×

Implementation. The Algorithm 1 can be applied to the regularized training process with either
ĈSV(fθ) (RCSV) or ĈSVU(fθ) (RCSVU) depending on whether spurious attributes are observable.
The implementations is clear after estimating Remp(fθ(t), P ) and F k(θ) in (12).

For RCSV, in each step t, we let R̂emp(fθ(t), P ) be the empirical risk over a uniformly drawn batch
(size S) of data. Then we randomly sample another batch (size S) of data with replacement. The
probability of each data with class label k and spurious attribute z be sampled is 1/(KyKznkz).
Then the L̂kz(fθ(t)) in (12) is estimated as the conditional expected risk over this batch of data.

For RCSVU, in each step t, the R̂emp(fθ(t), P ) is as in RCSV. We also randomly sample another
mini-batch (batch size S) of data with replacement but the probability of data with label k be sampled
is 1/(Kynk). We estimate F k(θ) in (12) via its empirical counterpart over these sampled data.

As can be seen, all of the resulting R̂emp(fθ(t), P ) and F̂
k
(θ(t)) are unbiased estimators with

variance of order O(1/S) as in Theorem 5. Besides that, our RCSV (resp. RCSVU) can be
implemented with (resp. without) observable spurious attributes. The complete implementation
of RCSV and RCSVU are shown in Appendix G.1. When estimating CSV, the data are sampled
with weights that are inversely proportional to nkz or nk. The sampling strategy also appears in
(Sagawa et al., 2019; Idrissi et al., 2021; Arjovsky et al., 2019) which significantly improves the OOD
generalization according to our ablation study in Appendix F.

Data. We use the following benchmark datasets with correlation shift (see details in Appendix G.2).

CelebA (Liu et al., 2015). An image classification task to recognize a celebrity’s hair color (“dark”
or “blond”), which is spuriously correlated with the celebrity’s gender (“male” or “female”). The data
are categorized as 4 groups via the combination of hair color and gender, e.g., “dark-female” (D-M).

Waterbirds (Sagawa et al., 2019). An image classification task to recognize a bird as “waterbird”
or “landbird”, while the bird is spuriously correlated with background “land” or “water”. The data
are categorized into 4 groups, e.g., “landbird-water” (L-W).

MultiNLI (Williams et al., 2018). Given a sentence-pair, the task aims to recognize the relationship
between the two sentences, i.e., “entailment”, “neutrality”, “contradiction”. The relationship is
spuriously correlated with the presence of negation words. The data are categorized into 6 groups,
e.g., “entailment-without negation” (E-W), “contradiction-negation” (C-N).

CivilComments (Borkan et al., 2019). A textual classification task to check whether a sentence is
toxic or not with the label spuriously correlated with whether any of 8 certain demographic identities
are mentioned. The data have 4 groups, e.g., “nontoxic-identity” (N-I), “toxic-nonidentity” (T-N).
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Table 3: Test accuracy (%) of BERT on each group of CivilComments.
Dateset Method / Group N-N N-I T-N T-I Avg Total Worst SA

CivilComments

RCSV 93.1 87.7 82.4 71.7 83.7 89.3 71.7
√

IRM 96.2 88.5 68.0 67.5 80.1 90.3 67.5
√

GroupDRO 94.5 88.7 76.3 69.4 82.2 90.0 69.4
√

ERMRSYZ 94.3 88.8 79.1 70.0 83.1 90.0 70.0
√

RCSVU 96.2 89.5 72.6 68.7 81.7 90.9 68.7 ×
Correlation 94.1 89.2 85.2 65.5 83.5 89.6 65.5 ×
ERMRSY 98.0 94.4 61.0 57.2 77.7 92.3 57.2 ×

Setup. We compare our methods RCSV and RCSVU with four baseline methods (see Appendix
G.3 for details) i.e., ERM with reweighted sampling (ERMRS) (Idrissi et al., 2021), IRM (Arjovsky
et al., 2019), GroupDRO (Sagawa et al., 2019), and Correlation (Devansh Arpit, 2019).

The GroupDRO and IRM use the reweighted sampling strategy as in RCSV, while the Correlation
uses same one with RCSVU. As these sampling strategies improve the OOD generalization (Idrissi
et al., 2021), to make a fair comparison, we also conduct ERMRS with the two sampling strategies.
The two ERMRS are respectively denoted as ERMRSY and ERMRSYZ. The involved 7 methods are
categorized as 2 groups, i.e., conducted with observable spurious attributes (RCSV, IRM, GroupDRO,
ERMRSYZ) and with unobservable spurious attributes (RCSVU, Correlation, ERMRSY, Correlation).

The backbone models of image (CelebA, Waterbirds) and textual datasets (MultiNLI,
CivilComments) are respectively ResNet-50 (He et al., 2016) pre-trained on ImageNet (Deng
et al., 2009) and pre-trained BERT (Devlin et al., 2019). The hyperparameters are in Appendix G.4.

Main Results. Our goal is to verify whether all these methods can break the spurious correlation in
data. Thus for each dataset, we report the test accuracies on each group of it, as the groups are divided
via the combination of class label and spurious attribute. We also report the averaged test accuracies
over groups (“Avg”), the test accuracies on the whole test set (“Total”, which is in-distribution test
accuracy expected for Waterbirds), and the worst test accuracies over groups (“Worst”). The
results are in Table 1, 2, 3. The “

√
” and “×” for SA (spurious attributes) respectively mean whether

the method requires observable spurious attributes. The observations from these tables are as follows.

To check the OOD generalization, a direct way is comparing the column of “Avg” and “Worst” to
summarize the results in each group. As can be seen, in terms of the two criteria, the proposed
RCSV (resp. RCSVU) consistently achieves better performances, compared to baseline methods with
observable (resp. unobservable) spurious attributes. This verifies our methods can improve the OOD
generalization. On the other hand, leveraging the observable spurious attributes benefits the OOD
generalization since the methods with them consistently exhibits better performances than the ones
without them. For example, the discussion in Section 4.3 shows that the estimator of CSV in RCSV
with observable spurious attributes is more accurate than the one in RCSVU.

There is a trade-off between the robustness of the model over spurious attributes and the test accuracies
on the groups with the same class label, especially for CelebA and Waterbirds, see “D-F” v.s.
“D-M” in CelebA for example. The phenomenon illustrates that some spurious correlations are
captured for all methods. However, compared to the other methods, our methods have better averaged
test accuracies and a smaller gap between the test accuracies over groups with the same spurious
attributes. The robustness and test accuracies here respectively correspond to the goals of “robustness”
and “in-distribution test accuracy” in Section 5, the improvements support our discussion in Section
5 that splitting the goals of accuracy and robustness enables us easily take a balance between them.

7 CONCLUSION

In this paper, we explore the OOD generalization for data with correlation shift. After a formal
characterization, we give a sufficient condition to make the model OOD generalizable. The condition
is the conditional independence of the model, given the class label. Conditional Spurious Variation,
which controls the OOD generalization error, is proposed to measure such independence. Based
on this metric, we propose an algorithm with a provable convergence rate to regularize the training
process with two estimators of CSV (i.e., RCSV and RCSVU), depending on whether the spurious
attributes are observable. Finally, the experiments conducted on the datasets CelebA, Waterbirds,
MultiNLI, CivilComments verify the efficacy of our methods.
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A LABEL SHIFT

In the sequel, we may omit the subscribe if no obfuscation. Our discussions in the main body of this
paper are built upon the assumption that marginal distribution of label Y is invariant i.e., PY = QY .
In this section, we explore OOD generalization without such invariant assumption. Before presenting
our discussion, we give the definition of total variation distance.
Definition 3. The total variation distance between two distributions P,Q defined on the same
measurable space X is

TV(P,Q) =
1

2

∫
X
|dP (x)− dQ(x)| . (15)

In Theorem 1, we show that the gap between the performances of the model on training and OOD test
data disappears if the model satisfies conditional independence such that f(X) ⊥ Z | Y . However,
we show by the following example that the gap will not disappear if the marginal distribution of Y
also varies across training and test data.
Example 1. Suppose Y,Z ∈ {−1, 1} and a specialized loss function

L(f(X), Y ) = 1{Y =1}(5− f(X)) + 1{Y =−1}(2 + f(X)), (16)

where f(·) is any classifier whose output is in {−1, 1}. Let P , Q be two distributions such that
PX|Y,Z = QX|Y,Z but PY ̸= QY . We suppose X ⊥ Z | Y , and thus f(X) ⊥ Z | Y . Thus,

PX|Y (x | y) =
∑
z∈Z

PX,Z|Y (x, z | y) = PX|Y (x | y)
∑
z∈Z

PZ|Y (z | y), (17)

is unrelated to PZ|Y . Then we have PX|Y = QX|Y . Thus
EP [L(f(X), Y )] = PY (Y = 1)EP [L(f(X), Y ) | Y = 1] + PY (Y = −1)EP [L(f(X), Y ) | Y = −1],

EQ[L(f(X), Y )] = QY (Y = 1)EQ[L(f(X), Y ) | Y = 1] +QY (Y = −1)EQ[L(f(X), Y ) | Y = −1].
(18)

Since PX|Y = QX|Y ,
|EP [L(f(X), Y )]− EQ[L(f(X), Y )]|
= |(PY (Y = 1)−QY (Y = 1))(EP [L(f(X), Y ) | Y = 1]− EQ[L(f(X), Y ) | Y = −1])|
≥ |4− 3| × |P (Y = 1)−Q(Y = 1)|
= |PY (Y = 1)−QY (Y = 1)|
= TV(PY , QY ),

(19)

where TV(PY , QY ) is the total variation distance of the marginal distributions PY , QY . This
inequality holds for any f(X), and hence the gap can never be removed by representation learning
like what we do in Theorem 1.

The example indicates that under shifted label distribution, the conditional independent model can
not generalize on OOD data. Thus, we consider the reweighted loss to fix the bias brought by the
shifted label distribution. The formal result is stated as follows.
Theorem 6. Let P,Q be two distributions such that PX|Y,Z = QX|Y,Z but PY does not necessary
equals to QY . w(y) : Y → R+ is a weighting function satisfies EP [w(Y )] = 1. Then if f(X) ⊥ Z |
Y ,

|EP [w(Y )L(f(X), Y )]− EQ[L(f(X), Y )]| ≤ 2MTV(Pw
Y , Q) (20)

where Pw
Y is the reweighted label distribution defined as Pw

Y (A) =
∫
A
w(y)dPY (y) for any measur-

able set A ⊂ Y .

Proof. Because PX|Y,Z = QX|Y,Z and f(X) ⊥ Z | Y , as in Appendix C.1, we have P (f(X) |
Y ) = Q(f(X) | Y ). Thus

|EP [w(Y )L(f(X), Y )]− EQ[L(f(X), Y )]|

=

∣∣∣∣∫
Y
w(y)EP [L(f(X), Y ) | Y = y]dPY (y)−

∫
y∈Y

EQ[L(f(X), Y ) | Y = y]dQY (y)

∣∣∣∣
≤
∫
Y
M |w(y)dPY (y)− dQY (y)|

= 2MTV(Pw
Y , QY ).

(21)
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Remark 2. The total variation distance TV(Pw
Y , QY ) appears in the upper bound to the gap between

the two population risk in (21). Moreover, this terms seems to be inevitable since it also appears in
the lower bound in (19).

According to Theorem 6, we have invariance relationship EP [w(Y )L(f(X), Y )] = EQ[L(f(X), Y )]
if we can take w(y) = dQY (y)/dPY (y). Thus if the label distribution in the test data is available,
minimizing the reweighted loss with its weights decided by the ration of two label distributions can
guarantee the OOD generalization capability of the model.

However, the label distribution of test data are usually unavailable in practical. Thus for unknown test
label distribution, we alternatively chose the weight w(·) to minimize the worst-case upper bound

sup
Q

TV(Pw
Y , QY ) =

1

2
sup
Q

∫
Y
|w(y)dPY (y)− dQY (y)| , (22)

given the training distribution P , where the supremum is taken over all distributions Q such that
QX|Y,Z = PX|Y,Z . Then by minimizing the reweighted loss under such weight w(·), we get a model
with minimized worst-case risk over different distributions.
Proposition 2. Suppose that Y is a discrete space, then if PY (Y = y) > 0 for all y ∈ Y and
w∗(y) = 1

|Y|PY (Y=y) , we then have

w∗(·) ∈ argmin
w(·):EP [w(Y )]=1

{
sup
Q∈P

TV(Pw
Y , QY )

}
, (23)

where |Y| is the cardinal of Y .

Proof. From Section A.6.2 in (van der Vaart & Wellner, 2000), we know that TV(Pw
Y , QY ) =

supA⊂Y |
∑

y∈A w(y)PY (Y = y)−QY (Y = y)|. Thus

sup
Q∈P

TV(Pw
Y , QY ) = sup

Q∈P
sup
A⊂Y

∣∣∣∣∣∑
y∈A

w(y)PY (Y = y)−QY (Y = y)

∣∣∣∣∣
= sup

Q∈P

∑
y∈{y′:w(y′)PY (Y =y′)≥QY (Y =y′)}

(w(y)PY (Y = y)−QY (Y = y))

= 1−min
y∈Y

w(y)PY (Y = y)

(24)

due to w(y)PY (Y = y) ≥ 0 and EP [w(Y )] = 1. Then, we have

min
w(·):EP [w(Y )]=1

sup
Q∈P

TV(Pw
Y , QY ) = min

w(·):EP [w(Y )]=1

{
1−min

y∈Y
w(y)PY (Y = y)

}
= 1− max

w(·):EP [w(Y )]=1

{
min
y∈Y

w(y)PY (Y = y)

}
= 1− w∗(y)PY (Y = y)

=
|Y| − 1

|Y| .

(25)

The third equality is due to |Y|miny∈Y w(y)PY (Y = y) ≤
∑

y∈Y w(y)PY (Y = y) = 1, and the
equality is taken when w(·) = w∗(·).

B PROOFS IN SECTION 3

In this section, we present the proofs of results in Section 3.
Proposition 1. There exists a population risk Rpop(P, f) whose minimizer has nearly perfect
performance on the data from P , while it fails to generalize to OOD data drawn from another Q ∈ P .

Proof. Let us consider the following example that

X =

(
Y · µ1

Z · µ2

)
+ ξ, (26)

15



Published as a conference paper at ICLR 2023

where ξ ∼ N (0, Id1+d2
), Y,Z ∈ {−1, 1} and follow the standard binomial distribution. Denote the

training distribution as P . In this example, Z is the spurious attributes. The correlation coefficient
between Y and Z is denoted as σY Z(Q) for Q ∈ P . One can verify that

σY Z(Q) = EQ[Y Z] = Q(Y = Z)−Q(Y ̸= Z) = 2Q(Y = Z)− 1. (27)

Let us consider the linear classifier fθ(x) = θ⊤x and its loss on data (X,Y ) is the exponential loss
Soudry et al. (2018)

L(fθ(X), Y ) = e−Y fθ(X). (28)

Thus we can compute the population risk

Rpop(P, fθ) = EP [exp(−Y fθ(X))]

= E
[
exp

(
−θ⊤

1 µ1 − Y Zθ⊤
2 µ2 − θ⊤ξ

)]
= E

[
exp

(
−θ⊤

1 µ1 − θ⊤
2 µ2 − θ⊤ξ

)
| Y = Z

]
P (Y = Z)

+ E
[
exp

(
−θ⊤

1 µ1 + θ⊤
2 µ2 + θ⊤ξ

)
| Y ̸= Z

]
P (Y ̸= Z)

=

(
1 + σY Z(P )

2

)
exp

(
−θ⊤

1 µ1 − θ⊤
2 µ2 +

∥θ∥2

2

)
+

(
1− σY Z(P )

2

)
exp

(
−θ⊤

1 µ1 + θ⊤
2 µ2 +

∥θ∥2

2

)
,

(29)

Since Rpop(P, fθ) is continuous w.r.t. to σY Z(P ) and θ, we have that θ∗(P ) =
argminθ Rpop(P, fθ) is continuous to σY Z(P ). Since σY Z(P ) ∈ [−1, 1], we conclude ∥θ∗(P )∥ is
upper bounded. W.o.l.g. we assume ∥θ∗(P )∥ ≤ 1 for any σY Z(P ) ∈ [−1, 1], then for any σY Z(P )
we know θ∗(P ) satisfies the first order optimality condition such that

0 =

(
1 + σY Z(P )

2

)
(θ∗(P )− µ) exp

(
−θ⊤µ+

∥θ∥2

2

)
+

(
1− σY Z(P )

2

)
(θ∗(P )− µ̃) exp

(
−θ⊤µ̃+

∥θ∥2

2

)
.

(30)

where µ̃ = (µ⊤
1 ,−µ⊤

2 )
⊤. Thus for σY Z(P ) ̸= ±1 we have

θ∗(P )− µ =

(
1− σY Z(P )

1 + σY Z(P )

)
(µ̃− θ∗(P )) exp

(
2θ⊤

2 µ2

)
. (31)

Thus we can take a σY Z(P ) → 1 to make ∥θ∗(P )− µ∥ ≤ ϵ∥µ∥ for any small ϵ where the ϵ can be
independent of µ.

Now we show that the linear model fθ∗(P )(·) with its prediction on Y as sign(fθ∗(P )(·)) can make
correct prediction with high probability. Let us see the error of linear model fθ∗(P )(·) on the
data from training distribution P . Simple algebra show that θ∗⊤(P )X | Y ∼ N (Y θ∗⊤

1 (P )µ1 +

Zθ∗⊤
2 (P )µ2, ∥θ

∗⊤
1 (P )∥2). Then under condition of Y = Z, we have

θ∗⊤(P )X − Y ∥µ∥2 = Y θ∗⊤(P )µ− Y ∥µ∥2 + θ∗⊤(P )ξ = Y (θ∗(P )− µ)
⊤
µ+ θ∗⊤(P )ξ. (32)

Thus from the sub-Gaussian property of Gaussian random variable, for any δ > 0

PX|Y

(∣∣∣θ∗⊤(P )X − Y ∥µ∥2
∣∣∣ ≥ δ | Y

)
= PX|Y

(∣∣∣θ∗⊤(P )X − Y ∥µ∥2
∣∣∣ ≥ δ | Y, Y = Z

)(1 + σY Z(P )

2

)
+ PX|Y

(∣∣∣θ∗⊤(P )X − Y ∥µ∥2
∣∣∣ ≥ δ | Y, Y ̸= Z

)(1− σY Z(P )

2

)
≤ PX|Y

(∣∣∣θ∗⊤(P )ξ
∣∣∣ ≥ δ − ϵ∥µ∥2 | Y, Y = Z

)(1 + σY Z(P )

2

)
+

(
1− σY Z(P )

2

)
≤ exp

(
− (δ − ϵ∥µ∥2)2

2 ∥θ∗(P )∥2

)(
1 + σY Z(P )

2

)
+

(
1− σY Z(P )

2

)
.

(33)
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We may take δ = ∥µ∥2/2 + ϵ∥µ∥2, and σY Z(P ) → 1, due to ∥θ(σY Z(P ))∥ ≤ 1 and for a large
enough ∥µ∥, with a high probability, we have

Y ∥µ∥2 −
(
1

2
+ ϵ

)
∥µ∥2 ≤ θ∗⊤(P )X ≤ Y ∥µ∥2 +

(
1

2
+ ϵ

)
∥µ∥2. (34)

Since ϵ → 0 for σY Z(P ) → 1, we have proved that the population minimizer θ∗(P ) has nearly
perfect performance on the data from training distribution.

However, a similar argument of (33) shows that for data drawn from distribution Q ∈ P

QX|Y

(∣∣∣θ∗⊤(P )X − Y (∥µ1∥
2 − ∥µ2∥

2)
∣∣∣ ≥ δ | Y

)
≤ exp

(
− (δ − ϵ∥µ∥2)2

2 ∥θ∗(P )∥2

)(
1− σY Z(Q)

2

)
+

(
1 + σY Z(Q)

2

) (35)

for any δ > 0. Again, by taking σY Z(Q) → −1 we get

Y (∥µ1∥
2 − ∥µ2∥

2)−
(
1

2
+ ϵ

)(
∥µ1∥

2 + ∥µ2∥
)
≤ θ∗⊤(P )X

≤ Y (∥µ1∥
2 − ∥µ2∥

2) +

(
1

2
+ ϵ

)(
∥µ1∥

2 + ∥µ2∥
) (36)

with high probability. We can take, for example, ∥µ2∥2 >
(

3+2ϵ
1−ϵ

)
∥µ1∥2 for ϵ → 0, then under

Y = −1, the inequality becomes

0 <

(
1

2
− ϵ

)
∥µ2∥

2 −
(
3

2
+ ϵ

)
∥µ1∥

2 ≤ θ∗⊤(P )X ≤
(
3

2
+ ϵ

)
∥µ2∥

2 −
(
1

2
− ϵ

)
∥µ1∥

2, (37)

which shows the prediction given by fθ∗(P )(·) for Y = −1 is incorrect with high probability. A
similar argument can be verified for Y = 1. Then we complete our proof.

Theorem 1. For model f(·) satisfying f(X) ⊥ Z |Y , the conditional distribution Y | f(X) and
population risk EQ[L(f(X), Y )] are invariant with (X,Y ) ∼ QX,Y such that Q ∈ P .

Proof. The difference of Y | f(X) for any (X,Y ) ∼ Q with Q ∈ P originates from the different
spurious correlation i.e., the different QZ|Y . Thus to obtain our result, it is suffice to prove that the
distribution of Y | f(X) is independent of QZ|Y . To see this, for any measurable sets A,B ⊂ Y ,

QY |X(Y ∈ A | f(X) ∈ B)

=
QX|Y (f(X) ∈ B | Y ∈ A)QY (Y ∈ A)

QX|Y (f(X) ∈ B | Y ∈ A)QY (Y ∈ A) +QX|Y (f(X) ∈ B | Y /∈ A)QY (Y /∈ A)

=
1

1 +
QX|Y (f(X)∈B|Y /∈A)QY (Y /∈A)

QX|Y (f(X)∈B|Y ∈A)QY (Y ∈A)

.

(38)

As QY (Y /∈ A)/QY (Y ∈ A) is invariant across Q ∈ P . Then for the QX|Y (f(X) ∈ B | Y /∈
A)/QX|Y (f(X) ∈ B | Y ∈ A), we see

QX|Y (f(X) ∈ B | Y /∈ A)

QX|Y (f(X) ∈ B | Y ∈ A)
=

∫
Z QX,Z|Y (f(X) ∈ B, z | Y /∈ A)dz∫
Z QX,Z|Y (f(X) ∈ B, z | Y ∈ A)dz

=
QX|Y (f(X) ∈ B | Y /∈ A)

∫
Z QZ|Y (z | Y /∈ A)dz

QX|Y (f(X) ∈ B | Y ∈ A)
∫
Z QZ|Y (z | Y ∈ A)dz

,

(39)

where the second equality is from the independent condition that f(X) ⊥ Z | Y . From the
calculation, we figure out that the distribution of Y | f(X) is independent of spurious correlation
PZ|Y due to the arbitrariness of A,B ∈ Y . Then we prove Y | f(X) is invariant over Q ∈ P ..

To provide the invariance of EQ[L(f(X), Y )], it is suffice to show that for the union distribution of
(f(X), Y ) is invariant w.r.t. Q for Q ∈ P . Thus for any sets A,B ⊂ Y and (X,Y ) ∼ Q ∈ P

QX,Y (Y ∈ A, f(X) ∈ B) = QX|Y (f(X) ∈ B | Y ∈ A)QY (Y ∈ A)

= QY (Y ∈ A)

∫
Z
QX,Z|Y (f(X) ∈ B, z | Y ∈ A)dz

= QY (Y ∈ A)QX|Y (f(X) ∈ B | Y ∈ A)

∫
Z
QZ|Y (z | Y ∈ A)dz.

(40)
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Since f(X) ⊥ Z | Y , we figure out the QX,Y (Y ∈ A, f(X) ∈ B) is independent of with spurious
correlation QZ|Y . Then due to the arbitrary of A,B ∈ Y , we summarize that the union distribution
of (f(X), Y ) is invariant w.r.t. Q for Q ∈ P . Then the proof is completed.

C PROOFS IN SECTION 4

C.1 PROOFS IN SECTION 4.1

Theorem 2. For any Q ∈ P , we have

sup
Q∈P

|Remp(f, P )−Rpop(f,Q)| ≤ |Remp(f, P )−Rpop(f, P )|+CSV(f) (4)

Proof. This theorem can be computed via the assumption in (1). We have

EP [L(f(X), Y )] = EP [E[L(f(X), Y ) | Y,Z]]

= EY

[∫
Z
EX [L(f(X), Y ) | Y,Z = z]dP (z | Y )

]
.

(41)

Due to (1), the first expectation is invariant with P,Q ∈ P , while the second expectation is a function
of (Y, z) independent the choice of P . Thus

|EP [L(f(X), Y )]− EQ[L(f(X), Y )]| ≤ E
[
sup
z1,z2

|E[L(f(X), Y ) | Y, z1]− E[L(f(X), Y ) | Y, z2]|
]

≤ CSV(f),
(42)

where the last inequality is due to the loss function is non-negative. Then due to

sup
Q∈P

|Remp(f, P )−Rpop(f,Q)| ≤ |Remp(f, P )−Rpop(f, P )|+ sup
Q∈P

|Rpop(f, P )−Rpop(f,Q)|

≤ |Remp(f, P )−Rpop(f, P )|+CSV(f),
(43)

we get the theorem.

Next we provide the definitions of KL-divergence, mutual information, and conditional mutual
information which are useful to prove Theorem 3.
Definition 4 (KL-Divergence). Let P,Q be two distributions with the same support and P is
absolutely continuous w.r.t. Q. Then the KL divergence from Q to P is

DKL(P ∥ Q) = EV ∼P

[
log

dP

dQ
(V )

]
, (44)

where dP
dQ is the Radon–Nikodym derivative of P w.r.t. Q.

Definition 5 (Mutual Information). For random variables V1, V2 with joint distribution PV1,V2
, the

mutual information between them is

I(V1;V2) = DKL(PV1,V2 ∥ PV1 × PV2). (45)

Definition 6 (Conditional Mutual Information). For three random variables U, V,W , the mutual
information between U, V conditional on W is

I(U ;V | W ) = Ew∼PW [I(U | W = w;V | W = w)] . (46)

Before presenting the proof of Theorem 3, we need the following lemma.
Lemma 1. Let U, V,W be three random variables such that U and W are independent with each
other, then

I(W ;U + V ) ≤ I(W ;V | U). (47)

Proof. By Data Processing Inequality (Xu & Raginsky, 2017), we have

I(W ;U + V ) ≤ I(W ;U, V ) = I(W ;U) + I(W ;V | U) = I(W ;V | U) (48)

Thus the proof is completed.
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Now we are ready to give the proof of Theorem 3.

Theorem 3. Let model fθ(·) parameterized by θ ∈ Θ ⊂ Rd, and is trained on S = {(xi, yi)}ni=1

from distribution P , with the spurious attributes of xi is zi. If the learned model fθS (·) ⊥ Sz | Sy
3

Egen(fθS , P ) ≤ inf
g

√
M2

4n

(
I(Sx−g(z),Sy; fθS | Sy,Sg(z)) + I(Sy; fθS )

)
, (5)

where Egen(fθS , P ) = |E[Remp(fθS , P )] − Rpop(fθS , P )|, g(·) is any measurable function,
Sx−g(z) = {xi − g(zi)}ni=1, Sy = {yi}ni=1.

Proof. Let S̃ = {(x̃i, ỹi)} be another n samples drawn from P independent of S. W.o.l.g., we
assume EP×fθS

[L(fθS (x), y)] = 0, otherwise we can replace L(fθS (xi), yi) with L(fθS (xi), yi)−
EP×fθS

[L(fθS (x), y)]. For any λ > 0 by Donsker-Varadhan’s inequality,

DKL(PS×fθS
∥ PS × PfθS

) ≥ ES×fθS

[
λ

n

n∑
i=1

L(fθS (xi), yi)

]
− logES̃×fθS

[
exp

(
λ

n

n∑
i=1

L(fθS (x̃i), ỹi)

)]
.

(49)
Then for any θ, λ > 0, and Lebesgue measurable function g(·),

λE [Remp(fθS , P )] ≤ DKL(PS×fθS
∥ PS × PfθS

) + logES̃×θS

[
exp

(
λ

n

n∑
i=1

L(fθS (x̃i), ỹi)

)]
a

≤ I(Sx,Sy; fθS ) +
λ2M2

8n

= I(Sx; fθS | Sy) + I(Sy; fθS ) +
λ2M2

8n
b

≤ I(Sx−g(z); fθS | Sy,Sg(z)) + I(Sy; fθS ) +
λ2M2

8n
,

(50)

where a is due to the definition of mutual information, L(fθS (x̃i), yi) is M
2 -sub Gaussian, b is from

Lemma 1, and the last equality is due to the conditional independence of the model. Thus, we
conclude that

E [Remp(fθS , P )] ≤ inf
g

√
M2

4n

(
I(Sx−g(z); fθS | Sy,Sg(z)) + I(Sy; fθS )

)
. (51)

Thus, we complete the proof.

C.2 PROOFS IN SECTION 4.2

Let F(Θ) and ∥ · ∥L∞ respectively be the parameterized function class and L∞-norm on F(Θ)
defined as

∥fθ1 − fθ2∥L∞ = sup
x

|fθ1(x)− fθ2(x)| (52)

for any fθ1 , fθ2 ∈ F(Θ). To provide the proof of Theorem 4, we need the following definition of
covering number.

Definition 7. A ϵ-cover of metric space (ϵ,F(Θ), ∥ · ∥L∞) is any point set {fθi(·)} ⊆ F(Θ) such
that for any fθ(·) ∈ F(Θ), there exists θi satisfies ∥fθ − fθi∥L∞ ≤ ϵ. The covering number
N(ϵ,F(Θ), ∥ · ∥L∞) is the cardinality of the smallest ϵ-cover.

Theorem 4. Under Assumption 1 and 2, if infk∈[Ky ],z∈[Kz ] nkz/nk = O(1), then

CSV(fθ) ≤ ĈSV(fθ) +O
(
log (1/δ)√

n

)
(8)

holds with probability at least 1− δ for any θ ∈ Θ, δ > 0.

3θS is the learned parameters depends on training set S. fθS (·) is a random element that takes values in a
functional space (i.e., model space), details can be referred to (Shiryaev, 2016).
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Proof. First, for any given θ ∈ Θ and given Y = k, Z = z, due to 0 ≤ L(fθ(X), Y ) ≤ M ,
by Azuma-Hoeffding’s inequality (Corollary 2.20 in (Wainwright, 2019)), we know that the with
probability at least 1− δ

L̂kz(fθ)−M

√
log (2/δ)

2nkz
≤ Lkz(fθ) ≤ L̂kz(fθ) +M

√
log (2/δ)

2nkz
. (53)

Then we see
sup
z1,z2

(Lkz1(fθ)− Lkz2(fθ)) ≤ sup
z1,z2

[(
Lkz1(fθ)− L̂kz1(fθ)

)
−
(
Lkz2(fθ)− L̂kz2(fθ)

)]
+ sup

z1,z2

(
L̂kz1(fθ)− L̂kz2(fθ)

)
≤ M log

(
2

Kzδ

)
sup
z1,z2

(√
1

2nkz1

+

√
1

2nkz2

)
+ sup

z1,z2

(
L̂kz1(fθ)− L̂kz2(fθ)

) (54)

holds with probability at least 1−δ. Since the function class F(Θ) is bounded by M under ∥ ·∥L∞ , it
has finite covering number N (ϵ,F(Θ), ∥ · ∥L∞). Let fθ1

(·), · · · , fθN
(·) ∈ F(Θ) be a ϵ-covering of

F(Θ) with N ≤ N (ϵ,F(Θ), ∥ · ∥L∞) such that ∀fθ ∈ F(Θ), ∃q ∈ {1, · · · , N}, ∥fθ−fθq∥L∞ ≤ ϵ.
Thus combining the above inequality, for any fθ(·) and its corresponded fθq (·), we have

sup
z1,z2

(Lkz1(fθ)− Lkz2(fθ)) ≤ sup
z1,z2

[(
Lkz1(fθ)− Lkz1(fθq )

)
+
(
Lkz2(fθq )− Lkz2(fθ)

)]
+ sup

z1,z2

(
Lkz1(fθq )− Lkz2(fθq )

)
a

≤ 2ϵ+M

(
log

(
2

Kzδ

)
+N (F(Θ), ϵ, ∥ · ∥L∞)

)
sup
z1,z2

(√
1

2nkz1

+

√
1

2nkz2

)
+ sup

z1,z2

(
L̂kz1(fθq )− L̂kz2(fθq )

)
(55)

holds with probability at least 1− δ for any ϵ > 0. Here the inequality a is due to the definition of
L∞-norm on F(Θ).

On the other hand, as

CSV(fθ) =

Ky∑
k=1

sup
z1,z2

(Lkz1(fθ)− Lkz2(fθ))P (Y = k), (56)

We estimate the P (Y = k) with its empirical counterpart nk =
∑Kz

z=1 nkz/n. For bounded sub-
Gaussian variable 1{Y=k}, we have

E
[
1{Y =k}

]
− 1

n

n∑
i=1

1{yi=k} = P (Y = k)− p̂k ≤
√

log (1/δ)

2n
(57)

holds with probability at least 1− δ. Plugging this into (56) and combining (55) we get

CSV(fθ) ≤
1

n

Ky∑
k=1

sup
z1,z2

(Lkz1(fθ)− Lkz2(fθ))nk +Ky

√
log (2Ky/δ)

2n

≤
Ky∑
k=1

sup
z1,z2

(
L̂kz1(fθ)− L̂kz2(fθ)

)
p̂k +Ky

√
log (2Ky/δ)

2n

+ inf
ϵ

{
2ϵ+M

(
log

(
2

Kzδ

)
+N (F(Θ), ϵ, ∥ · ∥L∞)

)} Ky∑
k=1

sup
z1,z2

(√
1

2nkz1

+

√
1

2nkz2

)
p̂k

(58)

holds with probability at least 1 − δ due to the definition of p̂k. Then suppose
infk∈[Ky ],z∈[Kz ] nkz/nk ≥ α, we have

Ky∑
k=1

sup
z1,z2

(√
1

2nkz1

+

√
1

2nkz2

)
p̂k ≤ 1

n

∑
k∈[Ky ]

√
2nk

mink∈[Ky ],z∈[Kz ]
√
nkz

≤
√

2

α

∑
k∈[Ky ]

√
nk

n

≤
√

2Ky

αn
,

(59)
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where the last inequality is due to the Schwarz’s inequality. Combining this with (58), we get

CSV(fθ) ≤ ĈSV(fθ) +O
(
N (F(Θ), ϵ, ∥ · ∥L∞) + log (1/δ)√

n

)
. (60)

That completes our proof.

C.3 PROOFS IN SECTION 4.3

In this section we aim at proving that the (9) is a sharp estimator to the CSV when we know a lower
bound c for πkz . Note that our problem is equivalent to estimate supPk

EPk
[V ]− infPk

EPk
[V ] via

n samples {Vi} drawn from mixture distribution P =
∑

k∈[K] πkPk with known πk > c. W.o.l.g.,
suppose EP1

[V ] ≤ EP2
[V ] ≤, . . . ,≤ EPK

[V ], then we show EP [V | V ≥ qP (1 − c)] − EP [V |
V ≤ qP (c)] is a upper bound to EPK

[V ]− EP1
[V ] and the bound is sharp when K ≥ 3.

Proposition 3. For k = 1, · · · ,K and πk ≥ c, suppose Pk are absolutely continuous w.r.t. Lebesgue
measure, then we have

EP [V | V ≥ qP (1− c)]− EP [V | V ≤ qP (c)] ≥ EPK [V ]− EP1 [V ], (61)
and the equality can be taken form some Pk and πk (k = 1, . . . ,K) if K ≥ 3.

Proof. Let pk(v) be the density function of Pk. Then p(·) =
∑K

k=1 πkpk(·) is the density function
of P . One can verify that

(v − qP (1− c))

(
p(v)

c
1{v≥qP (1−c)} − pK(v)

)
≥ 0 (62)

for any v since p2(v) ≥ 0 and 0 < c ≤ πK . Thus taking integral w.r.t. v we get

EP [V | V ≥ qP (1− c)]− EPK [V ] =

∫
R
(v − qP (1− c))

(
p(v)

c
1{v≥qP (1−c)} − pK(v)

)
dv ≥ 0. (63)

We can apply the similar argument to prove EP [V | V ≤ qP (c)] ≤ EP1 [V ]. Combining the two
inequalities implies (61).

On the other hand, if K ≥ 3, we take
π1 = πK = c;

π2 =, . . . ,= πK−1 =
1− 2c

K − 2
,

(64)

and
p1(v) =

p(v)

c
1{v≤qP (c)};

pK(v) =
p(v)

c
1{v≥qP (1−c)};

p2(v) =, · · · ,= pK−1(V ) =
p(v)

1− 2c
1{qP (c)≤v≤qP (1−c)}.

(65)

Then it is easy to verify that
EPK [V | V ≥ qP (1− c)]− EP [V | V ≤ qP (c)] = EPK [V ]− EP1 [V ] (66)

under this distribution.

According to this proposition, we can use the quintile conditional expectation to estimate the proposed
CSV as we did in the main body of this paper.

D SOLVING THE PROPOSED MINIMAX PROBLEM (11)

In this section, we provide the convergence of the proposed Algorithm 1 to solve (11). We illustrate
it in the regime of regularize training with ĈSV(fθ) i.e., F k(θ) defined in Section 5. Then we have
m = K2

z in this regime. Let us define
Φk

ρ(θ) = Remp(fθ, P ) + λ max
u∈∆

K2
z

u⊤F k(θ)− ρλu⊤ log
(
K2

zu
)
= max

u∈∆
K2

z

ϕk
ρ(θ,u);

Φ̂k
ρ(θ) = Remp(fθ, P ) + λ max

u∈∆
K2

z

u⊤F̂
k
(θ)− ρλu⊤ log

(
K2

zu
)
= max

u∈∆
K2

z

ϕ̂k
ρ(θ,u).

(67)

We have the following lemma to state the some continuities.
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Lemma 2. Under Assumption 1-2, we have the following conclusions

1. For ϕk
ρ(θ,u) with any ρ and k we have∥∥∥∇θϕ

k
ρ(θ1,u)−∇θϕ

k
ρ(θ2,u)

∥∥∥ ≤ (1 + 2λKzL1)∥θ1 − θ2∥ = L11∥θ1 − θ2∥;∥∥∥∇θϕ
k
ρ(θ,u1)−∇θϕ

k
ρ(θ,u2)

∥∥∥ ≤ 2λKzL0∥u1 − u2∥ = L12∥u1 − u2∥;∥∥∥∇uϕ
k
ρ(θ1,u)−∇uϕ

k
ρ(θ2,u)

∥∥∥ ≤ 2λKzL0∥θ1 − θ2∥ = L12∥u1 − u2∥.

(68)

2. Let u∗
k(θ, ρ) = argmaxu∈∆K2

z
ϕk
ρ(θ,u) and û∗

k(θ, ρ) = argmaxu∈∆K2
z
ϕ̂k
ρ(θ,u) then

∥u∗
k(θ, ρ)− û∗

k(θ, ρ)∥ ≤ 1

ρ

∥∥∥F̂ (θ)− F (θ)
∥∥∥ . (69)

3. Φk
ρ(θ) is L1 + λ

(
L11 + L2

12/ρ
)
-smoothness

Proof. Let us proof the conclusions by order. For the first conclusion, we have

∇θϕ
k
ρ(θ,u) = ∇θRemp(fθ, P ) + λ∇θF

k(θ)⊤u; ∇uϕ
k
ρ(θ,u) = λF k(θ)− ρλ

(
log
(
K2

zu
)
+ e
)
,

(70)
where e = (1, · · · , 1). Thus, by Schwarz’s inequality, one can verify∥∥∥∇θϕ

k
ρ(θ1,u)−∇θϕ

k
ρ(θ2,u)

∥∥∥ ≤ ∥∇θRemp(fθ1 , P )−∇θRemp(fθ2 , P )∥

+ λ
∥∥∥u⊤

(
∇θF

k(θ1)−∇θF
k(θ2)

)∥∥∥
≤ λ

 ∑
i∈[K2

z ],j∈[K2
z ]

u(i)u(j) sup
(z1,z2)

∥∥∥(∇L̂kz1(fθ1)−∇L̂kz2(fθ1)
)
−
(
∇L̂kz1(fθ2)−∇L̂kz2(fθ2)

)∥∥∥2
 1

2

+ L1∥θ1 − θ2∥
≤ (1 + 2λKz)L1∥θ1 − θ2∥,

(71)
and ∥∥∥∇θϕ

k
ρ(θ,u1)−∇θϕ

k
ρ(θ,u2)

∥∥∥ ≤ λ∥u1 − u2∥
∥∥∥∇θF

k(θ)
∥∥∥ ≤ 2λKzL0∥u1 − u2∥, (72)

and ∥∥∥∇uϕ
k
ρ(θ1,u)−∇uϕ

k
ρ(θ2,u)

∥∥∥ ≤ λ
∥∥∥F k(θ1)− F k(θ2)

∥∥∥ ≤ 2λKzL0∥θ1 − θ2∥. (73)

Thus we complete the proof to the first conclusion.

For the second conclusion, by the Lagrange’s multiplier method or Theorem in (Yi et al., 2021a), we
have the unique closed-form solution of u∗

k(θ, ρ) ∈ ∆K2
z

that

u∗
k(θ, ρ) =

exp
(

1
ρ
F k(θ)(j)

)
∑K2

z
j=1 exp

(
1
ρ
F k(θ)(j)

) = Softmax

(
F k(θ)

ρ

)
;

û∗
k(θ, ρ) =

exp
(

1
ρ
F k(θ)(j)

)
∑K2

z
j=1 exp

(
1
ρ
F̂

k
(θ)(j)

) = Softmax

(
F̂

k
(θ)

ρ

)
.

(74)

On the other hand, due to u ∈ ∆K2
z

we have

∇2
uuϕ

k
ρ(θ,u) = −ρλdiag

(
1

u(i)
, · · · , 1

u(K2
z )

)
⪯ −ρλI, (75)

where A ⪰ B means that A−B is a semi-positive definite matrix and I is the identity matrix. The
similar conclusion holds for ϕ̂k

ρ(θ,u). Thus both ϕk
ρ(θ,u) and ϕ̂k

ρ(θ,u) are ρ-strongly concave w.r.t.
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u. Then

ϕk
ρ(θ,u

∗
k(θ, ρ)) ≤ ϕk

ρ(θ, û
∗
k(θ, ρ)) +

〈
∇uϕ

k
ρ(θ, û

∗
k(θ, ρ)),u

∗
k(θ, ρ)− û∗

k(θ, ρ)
〉

− ρλ

2
∥u∗

k(θ, ρ)− û∗
k(θ, ρ)∥

2
;

ϕk
ρ(θ, û

∗
k(θ, ρ)) ≤ ϕk

ρ(θ,u
∗
k(θ, ρ)) +

〈
∇uϕ

k
ρ(θ,u

∗
k(θ, ρ)), û

∗
k(θ, ρ)− u∗

k(θ, ρ)
〉

− ρλ

2
∥u∗

k(θ, ρ)− û∗
k(θ, ρ)∥

2
.

(76)

Plugging the two above inequalities, we have that〈
∇uϕ

k
ρ(θ, û

∗
k(θ, ρ)),u

∗
k(θ, ρ)− û∗

k(θ, ρ)
〉
≥ ρλ ∥u∗

k(θ, ρ)− û∗
k(θ, ρ)∥

2 (77)

due to the
〈
∇uϕ

k
ρ(θ, û

∗
k(θ, ρ)),u

∗
k(θ, ρ)− û∗

k(θ, ρ)
〉
≤ 0. On the other hand, as〈

∇uϕ̂
k
ρ(θ, û

∗
k(θ, ρ)),u

∗
k(θ, ρ)− û∗

k(θ, ρ)
〉
≤ 0. (78)

Plugging this into the above inequality, we get

ρλ ∥u∗
k(θ, ρ)− û∗

k(θ, ρ)∥
2 ≤

〈
∇uϕ

k
ρ(θ, û

∗
k(θ, ρ))−∇uϕ̂

k
ρ(θ, û

∗
k(θ, ρ)),u

∗
k(θ, ρ)− û∗

k(θ, ρ)
〉

= λ
〈
F k(θ)− F̂

k
(θ),u∗

k(θ, ρ)− û∗
k(θ, ρ)

〉
≤ λ

∥∥∥F k(θ)− F̂
k
(θ)
∥∥∥ ∥u∗

k(θ, ρ)− û∗
k(θ, ρ)∥ .

(79)

Thus the conclusion is proofed.

Finally, we prove the third conclusion. Similar to the proof of the second conclusion, we have

∥u∗
k(θ1, ρ)− u∗

k(θ2, ρ)∥ ≤ 1

ρ
∥θ1 − θ2∥. (80)

Since ∆K2
z

is convex, bounded, and u∗
k(θ, ρ) is unique for any θ, by Danskin’s Theorem (Bernhard

& Rapaport, 1995), we have∥∥∥∇Φk
ρ(θ1)−∇Φk

ρ(θ2)
∥∥∥ ≤ ∥∇θRemp(fθ1 , P )−∇θRemp(fθ2 , P )∥

+ λ
∥∥∥∇θF

k(θ1)
⊤u∗

k(θ1, ρ)−∇θF
k(θ2)

⊤u∗
k(θ2, ρ)

∥∥∥
≤ L1 ∥θ1 − θ2∥+ λ

∥∥∥∇θF
k(θ1)

⊤ (u∗
k(θ1, ρ)− u∗

k(θ2, ρ))
∥∥∥

+ λ
∥∥∥u∗

k(θ2, ρ)
⊤
(
∇θF

k(θ1)−∇θF
k(θ2)

)∥∥∥
≤ L1 ∥θ1 − θ2∥+

λL2
12

ρ
∥θ1 − θ2∥+ λL11 ∥θ1 − θ2∥

=

(
L1 +

λL2
12

ρ
+ λL11

)
∥θ1 − θ2∥ ,

(81)

which implies our conclusion.

We present the following lemma to state the descent property of the obtained iterates via Algorithm 1.
Let us define

ϕ̂k(θ,u) = Remp(fθ, P ) + λu⊤F k (82)

As we have assume that unbiased estimators R̂emp(fθ, P ) and F̂ k(θ) have bounded variance, then
according to

E
[(

ϕ̂k(θ,u)− ϕk(θ,u)
)2]

≤ 2E
[(

R̂emp(fθ, P )−Remp(fθ, P )2
)]

+ 2λ2E
[∥∥∥F̂ k

(θ)− F k(θ)
∥∥∥2] , (83)

w.o.l.g. we assume that

max

{
E
[(

ϕ̂k(θ,u)− ϕk(θ,u)
)2]

,E
[∥∥∥F̂ k

(θ)− F k(θ)
∥∥∥2]} ≤ σ2. (84)
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Lemma 3. Let L1 + λ
(
L11 + L2

12/ρ
)
= L̃, if we have the estimation such that E[ϕ̂k(θ,u)] =

ϕk(θ,u), E[(ϕ̂k(θ,u)− ϕk(θ,u))2] ≤ σ2 then

E

Ky∑
k=1

p̂kΦ
k
ρ(θ(t+ 1))

 ≤ E

Ky∑
k=1

p̂kΦ
k
ρ(θ(t))

−
(ηθ

2
− L̃η2

θ

)
E

∥∥∥∥∥∥
Ky∑
k=1

p̂k∇Φk
ρ(θ(t))

∥∥∥∥∥∥
2

+

Ky∑
k=1

(
L̃KyL

2
12p̂kη

2
θ

ρ
+

(
σ2 + L11

)
L2

12ηθ

2ρ2

)
p̂kE

[∥∥∥F k(θ(t))− F k
t

∥∥∥2]

+
L̃η2

θσ
2

2
.

(85)

Proof. Due to the L̃-smoothness of Φk
ρ(·) for any k and ρ we have

Ky∑
k=1

p̂kΦ
k
ρ(θ(t+ 1)) ≤

Ky∑
k=1

p̂kΦ
k
ρ(θ(t)) +

〈Ky∑
k=1

p̂k∇Φk
ρ(θ(t)),θ(t+ 1)− θ(t)

〉
+

L̃

2
∥θ(t+ 1)− θ(t)∥2

=

Ky∑
k=1

p̂kΦ
k
ρ(θ(t))− ηθ

〈Ky∑
k=1

p̂k∇Φk
ρ(θ(t)),

Ky∑
k=1

p̂k∇θϕ̂
k
ρ(θ(t), û

∗
k(θ(t), ρ))

〉

+
L̃η2

θ

2

∥∥∥∥∥∥
Ky∑
k=1

p̂k∇θϕ̂
k
ρ(θ(t), û

∗
k(θ(t), ρ))

∥∥∥∥∥∥
2

≤
Ky∑
k=1

p̂kΦ
k
ρ(θ(t))− ηθ

∥∥∥∥∥∥
Ky∑
k=1

p̂k∇Φk
ρ(θ(t))

∥∥∥∥∥∥
2

+ ηθ

〈Ky∑
k=1

p̂k∇Φk
ρ(θ(t)),

Ky∑
k=1

p̂k
(
∇Φk

ρ(θ(t))−∇θϕ̂
k
ρ(θ(t),u

∗
k(θ(t), ρ))

)〉

+ ηθ

〈Ky∑
k=1

p̂k∇Φk
ρ(θ(t)),

Ky∑
k=1

p̂k
(
∇θϕ̂

k
ρ(θ(t),u

∗
k(θ(t), ρ))−∇θϕ̂

k
ρ(θ(t),uk(t))

)〉

+
L̃η2

θ

2

∥∥∥∥∥∥
Ky∑
k=1

p̂k∇θϕ̂
k
ρ(θ(t),uk(t))

∥∥∥∥∥∥
2

.

(86)

On the other hand, using the fact that E
[
ϕ̂k
ρ(θ,u)

]
= ϕk

ρ(θ,u), E
[(

ϕ̂k
ρ(θ,u)− ϕk

ρ(θ,u)
)2

]
≤ σ2,

and Young’s inequality

E

∥∥∥∥∥∥
Ky∑
k=1

p̂k∇θϕ̂
k
ρ(θ(t),uk(t)

∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥
Ky∑
k=1

p̂k
(
∇θϕ̂

k
ρ(θ(t),uk(t)−∇θϕ

k
ρ(θ(t),uk(t))

)
+

Ky∑
k=1

p̂k∇θϕ
k
ρ(θ(t),uk(t))

∥∥∥∥∥∥
2

≤ σ2 + E

∥∥∥∥∥∥
Ky∑
k=1

p̂k∇θϕ
k
ρ(θ(t),uk(t))

∥∥∥∥∥∥
2

≤ σ2 + 2E

∥∥∥∥∥∥
Ky∑
k=1

p̂k∇Φk
ρ(θ(t))

∥∥∥∥∥∥
2+ 2E

∥∥∥∥∥∥
Ky∑
k=1

p̂k
(
∇Φk

ρ(θ(t))−∇θϕ
k
ρ(θ(t),uk(t))

)∥∥∥∥∥∥
2 .

(87)
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Due to Danskin’s theorem and (i), (ii) in Lemma 2 we have

E

∥∥∥∥∥∥
Ky∑
k=1

p̂k
(
∇Φk

ρ(θ(t))−∇θϕ
k
ρ(θ(t),uk(t))

)∥∥∥∥∥∥
2 ≤ E

Ky∑
k=1

p̂kL12 ∥u∗
k(θ(t), ρ)− uk(t)∥

2
≤ E

Ky∑
k=1

p̂kL12

ρ

∥∥∥F k(θ(t))− F k
t

∥∥∥
2

≤ KyL
2
12

ρ2

Ky∑
k=1

p̂2kE
[∥∥∥F k(θ(t))− F k

t

∥∥∥2] .
(88)

Finally, we have

E

〈Ky∑
k=1

p̂k∇Φk
ρ(θ(t)),

Ky∑
k=1

p̂k
(
∇θϕ̂

k
ρ(θ(t),u

∗
k(θ(t), ρ))−∇θϕ̂

k
ρ(θ(t),uk(t))

)〉
=

Ky∑
k=1

p̂kE

〈Ky∑
k=1

p̂k∇Φk
ρ(θ(t)),

(
∇θϕ̂

k
ρ(θ(t),u

∗
k(θ(t), ρ))−∇θϕ̂

k
ρ(θ(t),uk(t))

)〉
≤ 1

2
E

∥∥∥∥∥∥
Ky∑
k=1

p̂k∇Φk
ρ(θ(t))

∥∥∥∥∥∥
2+

1

2

Ky∑
k=1

p̂kE

Ky∑
k=1

∥∥∥∇θϕ̂
k
ρ(θ(t),u

∗
k(θ(t), ρ))−∇θϕ̂

k
ρ(θ(t),uk(t))

∥∥∥2


≤ 1

2
E

∥∥∥∥∥∥
Ky∑
k=1

p̂k∇Φk
ρ(θ(t))

∥∥∥∥∥∥
2+

1

2

Ky∑
k=1

p̂kE
[∥∥∥∇F̂

k
(θ(t))

∥∥∥2 ∥uk(t)− u∗
k(θ(t), ρ)∥

2

]

≤ 1

2
E

∥∥∥∥∥∥
Ky∑
k=1

p̂k∇Φk
ρ(θ(t))

∥∥∥∥∥∥
2+

(
σ2 + L11

)
L2

12

2ρ2

Ky∑
k=1

p̂kE
[∥∥∥F k(θ(t))− F k

t

∥∥∥2] .
(89)

Plugging the three above inequalities into (86) and taking expectation to the both sides of the equality,
we get

E

Ky∑
k=1

p̂kΦ
k
ρ(θ(t+ 1))

 ≤ E

Ky∑
k=1

p̂kΦ
k
ρ(θ(t))

−
(ηθ

2
− L̃η2

θ

)
E

∥∥∥∥∥∥
Ky∑
k=1

p̂k∇Φk
ρ(θ(t))

∥∥∥∥∥∥
2

+

Ky∑
k=1

(
L̃KyL

2
12p̂kη

2
θ

ρ
+

(
σ2 + L11

)
L2

12ηθ

2ρ2

)
p̂kE

[∥∥∥F k(θ(t))− F k
t

∥∥∥2]+ L̃η2
θσ

2

2
.

(90)

This completes the proof of our theorem.

Then we proceed to the next lemma to characterize the dynamic of E
[∥∥∥F k(θ(t))− F k

t

∥∥∥2].

Lemma 4. For the F k
t defined in Algorithm 1, and let δk(t) = E

[∥∥∥F k(θ(t))− F k
t

∥∥∥2], and

δ(t) =
∑Ky

k=1 p̂kδ
k(t), by choosing γ ≤ 2/3, we have

δ(t+ 1) ≤
(
1− γ

2
+

4η2
θL

2
11KyL

2
12

γρ2

)
δ(t) +

(
2γ2 +

2η2
θL

2
11

γ

)
σ2

+
4η2

θL
2
11
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Proof. W.o.l.g., we fix the k during our proof. According to E
[
F̂

k
(θ(t))

]
= F k(θ(t)) and

E
[∥∥∥F̂ k

(θ(t))− F k(θ(t))
∥∥∥2] ≤ σ2 we have

E
[∥∥∥F k

t+1 − F k(θ(t))
∥∥∥2] ≤ (1− γ)2δk(t) + γ2σ2 ≤ (1− γ)δk(t) + γ2σ2, (92)
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where we use the fact γ < 1. Then due to the update rule of F k
t , Young’s inequality and the above

inequality,

δk(t+ 1) = E
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On the other hand, due to the L11-continuity of F k(·) and (87), (88) we see
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Plugging this into the above inequality and weighted summing over k (by p̂k) we get
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which completes the our proof.

Now we are ready to state the convergence rate of the nonconvex-concave optimization problem.

Theorem 5. Under Assumption 1 and 2, if R̂emp(fθ, P ) and F̂
k
(θ) are all unbiased estimators with

bounded variance, θ(t) is updated by Algorithm 1 with ηθ = O
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Besides that, for any θ(t) and ρ, we have |
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Due to the value of ηθ ≤ γ
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Thus we have
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from Lemma 4. Plugging this into (85) in Lemma 3 and summing up it over t = 0, · · · , T , we have
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It can be verified that for any t,
∑t−1

j=0 (1− γ/3)
j ≤ 3/γ, and plugging this into the above inequality

we get
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where M̃ρ =
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This completes our proof to the first conclusion. We highlight that the value of ηθ satisfies
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To see the last conclusion, similar to (96) we have that

Φk
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where u∗
k(θ) = argmax{i : Φk(θ)(i)}. Due to Theorem 1 in (Epasto et al., 2020), we have

F k(θ)⊤ (u∗
k(θ)− u∗

k(θ, ρ)) ≤ 2ρ logKz. (104)

Thus we can conclude ∣∣∣Φk
ρ(θ)− Φk(θ)

∣∣∣ ≤ λρ

(
1

Kze
+ 2 logKz
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(105)

which implies our conclusion.
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Table 4: Test accuracy (%) of linear model on the OOD test data of Toy example. The OOD test
data are drawn from distributions with different σtest

Y Z . The results are the mean of five independent
runs.

Method / σtest
Y Z 0.00 -0.20 -0.40 -0.60 -0.80 -0.99

ERM 88.5 83.0 68.0 53.5 33.5 27.2
IRM 96.0 90.5 91.0 90.5 91.0 90.5

GroupDRO 96.5 94.5 93.0 91.0 90.5 88.0
Correlation 92.5 87.5 79.0 69.0 43.0 39.5

RCSV 99.5 99.0 98.5 97.5 98.0 97.0
RCSVU 98.5 97.0 96.0 95.0 94.5 89.5

Table 5: Cosine-similarity ⟨θ2,µ2⟩/(∥θ2∥∥µ2∥) of linear models trained on different methods.
Model with smaller cosine-similarity theoretically exhibits better OOD generalization ability.

Methods ERM IRM GroupDRO Correlation RCSV RCSVU
⟨θ2,µ2⟩

∥θ2∥∥µ2∥
0.95 0.13 0.18 0.89 0.03 0.05

E MORE EXPERIMENTS

In this section, we conduct more experiments on a synthetic dataset and real-world dataset to further
verify the effectiveness of our proposed methods.

E.1 TOY EXAMPLE

In this section, we apply the proposed RCSV and RCSVU to a constructed toy example with spurious
correlation.

Data. The data is constructed as the example in Appendix B. For two 5-dimensional vectors
µ1,µ2, the training data X follows normal distribution N ((Y µ⊤

1 , Zµ⊤
2 )

⊤, I10) where I10 is a
10 × 10 identity matrix. The label Y and spurious attributes Z take value from {−1, 1} and are
all drawn from a standard binomial distribution (i.e., PY (Y = 1) = PY (Y = −1) = 0.5). As in
(1), the spurious correlation coefficient σtrain

Y Z between Y and Z vary on different distribution. We
generate 1000 (resp. 200) training (resp. test) samples. Concretely, the 1 is fixed as 0.99 for the
unique training distribution, while there are 6 constructed test distributions respectively with σtest

Y Z
in {0.00,−0.20,−0.40,−0.60,−0.80,−0.99}. As can be seen, the spurious correlations in the test
sets are opposite to the one in the training set. Thus, over-fitting the spurious correlation will mislead
the trained model.

Setup. We use the linear model fθ(x) = θ⊤x and its prediction on Y is sign(fθ(x)). We compare
the proposed methods RCSV and RCSVU with the baseline methods as in the main body of this paper.
The domain generalization methods can be applied with observed spurious attributes is because the
data can be viewed as from two domains i.e., data drawn under conditions of Y = Z and Y ̸= Z.
The loss function L(·, ·) is cross entropy. The hyperparameters of baseline methods follow the ones
in original papers. Our methods are trained by SGD with the used hyperparemeters deferred in
Appendix G.4.

Main Results. In Table 4, we report the test accuracies of trained models evaluated on OOD data to
see if all the aforementioned methods can break the spurious correlation. From the results, we have
the following observations.

For all methods, the test accuracies are consistently improved with the decrease of the gap between
σtrain
Y Z − σtest

Y Z . This is explained as the decreased σtrain
Y Z − σtest

Y Z leads to smaller mismatches between
training and test distributions, thus improving accuracy.

The models trained by the proposed two methods and domain generalization methods (IRM and
GroupDRO) can break the spurious correlation (generalize on OOD test data), which verifies the
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(a) C-MNIST-F1 (b) C-MNIST-F2 (c) C-MNIST-R

Figure 2: Images of three C-MNIST datasets with different spurious correlations. The first two have
fixed spurious correlation between colors and the label of digits, while the spurious correlation in the
last one is random.

Table 6: Test accuracy (%) of convolution neural networks trained on the different mixtures of
C-MNIST-F1 and C-MNIST-R. The OOD test data either C-MNIST-R or C-MNIST-F2.

Test set C-MNIST-R C-MNIST-F2
Method/α 0.80 0.85 0.90 0.95 0.99 0.80 0.85 0.90 0.95 0.99

ERM 96.1 95.4 93.3 87.5 63.8 95.6 95.2 92.8 82.6 52.8
IRM 91.2 90.5 90.4 87.9 76.6 94.3 93.5 91.1 87.2 63.1

GroupDRO 96.6 95.9 93.7 92.1 76.8 95.5 95.3 94.3 91.5 70.2
Correlation 82.6 79.6 79.5 72.6 38.5 82.6 78.4 68.2 35.6 25.2

RCSV 98.0 97.6 96.7 94.3 81.3 96.9 96.3 95.1 90.2 81.3
RCSVU 97.9 97.5 96.5 94.1 77.9 96.8 95.6 93.6 86.9 62.3

effectiveness of our methods. On the other hand, both RCSV and RCSVU beats the domain gener-
alization methods which require the domain label (i.e., the spurious attributes Z in the constructed
dataset). Thus, the extra information required by RCSV (resp. RCSVU) is equivalent (resp. less)
compared with domain generalization methods.

On the other hand, let the last 5-dimensional parameters of the linear model be θ2. By X ∼
N ((Y µ⊤

1 , Zµ⊤
2 )

⊤, I10), one can verify that the when θ⊤
2 µ2 ≈ 0, the output of model θ⊤X does

not related to Z with high probability. Then the model can break the spurious correlation.

To see this, in Table 5, we present the cosine-similarity ⟨θ2,µ2⟩/(∥θ2∥∥µ2∥) (the cosine-similarity
is used to alleviate the interference caused by scales of the two vectors) of the models trained by
methods in Table 4. The results show that the models trained by OOD generalizable methods have
smaller cosine-similarities.

E.2 COLORED-MNIST

In this section, we empirically verify the effectiveness of the proposed methods on a constructed
real-world dataset Colored-MNIST.

Data. Our dataset is constructed on the MNIST (LeCun et al., 1998) which consists of 60,000
training data and 10,000 test data. Each data is a grey-scale hand-written digit from ten categories,
i.e., 0 to 9. We construct our Colored-MNIST (C-MNIST) by inducing the spurious correlation
in the training and test sets. Concretely, for each digit, we assign two colors as spurious attributes
respectively for its foreground and background. The spurious correlation can be induced into such
dataset by tying the relationship between the label of digits and the two colors.

We pick 20 specific colors, the first and the last 10 colors are respectively used as 10 categories of
two spurious attributes, i.e., the colors of foreground and background of a digit. We consider datasets
with two kinds of spurious correlations. The first is fixed spurious correlation, which means data
from each specific category of digit is assigned two specific colors respectively for its foreground
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and background. The other is random spurious correlation which means that for each data, two
randomly sampled colors are respectively assigned to its foreground and background regardless of its
category. We will construct two C-MNIST with different but fixed spurious correlations (abbrev. as
C-MNIST-F1 and C-MNIST-F2), and one C-MNIST with random spurious correlation (abbrev.
as C-MNIST-R).

Some of the generated datasets are in Figure 2. As can be seen, the three versions of C-MNIST
has different spurious correlations between the label of digits and the colors of foreground and
background. Besides that, the spurious correlation in C-MNIST-F1 and C-MNIST-F2 are fixed
while C-MNIST-R has randomized spurious correlation.

Setup. We construct various training sets based on the original 60,000 training samples of MNIST.
Concretely, we choose α ∈ {0.8, 0.85, 0.90, 0.95, 0.99}, then for each α, we construct a training
set with ⌊60, 000× α⌋ 4 samples are from C-MNIST-F1 while the other ⌊60, 000× (1− α)⌋ are
constructed as C-MNIST-R. We use two test sets which are respectively the 10,000 test samples
constructed as C-MNIST-F2 and C-MNIST-R. Obviously, the data from C-MNIST-R in the
training set alleviates the misleading signal from the training set brought by C-MNIST-F1 due
to the spurious correlation between color and digit in it, and the existence of these data meets the
Assumption 1.

Our model is a five-layer convolution neural network in (Devansh Arpit, 2019). The models are
trained over the 5 aforementioned datasets with different α by the methods that appeared in the
above section. One can verify that the training set can be viewed as a mixture of data from two
domains, i.e., C-MNIST-F1 and C-MNIST-R. Thus the domain generalization based methods IRM
and GroupDRO can be applied here. The used loss function L(·, ·) is cross-entropy, and detailed
hyperparameters are presented in Appendix G.4.

Main Results. To see if the models trained by these methods can break the induced misleading
spurious correlation, we report their test accuracies on the C-MNIST-R and C-MNIST-F2. The
results are summarized in Table 6 with the following observations from it.

The test accuracies of all these methods increase with the decreased α. This is a natural result
since smaller α corresponds with more training samples from C-MNIST-R which alleviates the
misleading signal from the data with spurious correlation in C-MNIST-F1. Thus models trained
over the training set with smaller α exhibit improved generalization ability OOD data with correlation
shift.

Similar to the results in Section 6, our RCSV (resp. RCSVU) consistently improve the OOD
generalization error, compared with the methods with (resp. without) observed spurious attributes.
More surprisingly, RCSVU beats the methods with observed spurious attributes methods IRM and
GroupDRO for a large α. The observations again verify the efficacy of our proposed methods.

The model trained by the most commonly used method ERM on datasets with small α also generalizes
on OOD data. Thus a relatively large number of data without spurious correlation in the training set
also breaks the spurious correlation brought by other data.

Finally, we observe that the performance of models on C-MNIST-R consistently better than on
C-MNIST-F2. This is due to there exist data drawn from C-MNIST-R in the training set, while the
data from C-MNIST-F2 does not appear in the training set.

F ABLATION STUDY

We have discussed in Section 6 that the reweighed sampling trick improves the OOD generalization.
Thus, we explore the effect of such trick in this section.

We follow the settings in main part of this paper, expected for the reweighted sampling strategy is set
as uniformly sampling, thus the methods ERMRSYZ and ERMRSY become the ERM. The results
are summarized in Tables 7, 8, and 9.

4⌊·⌋ is the floor of a number
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Table 7: Test accuracy (%) of ResNet50 on each group of CelebA and Waterbirds. The
experiments are conducted without reweighted sampling trick.

Dataset Method / Group D-F D-M B-F B-M Avg Total Worst SA

CelebA

RCSV 91.1 91.0 92.9 92.2 91.8 91.3 91.0
√

IRM 90.1 92.3 90.1 86.1 89.7 91.0 86.1
√

GroupDRO 90.3 93.0 94.3 87.2 91.2 91.8 87.2
√

RCSVU 94.0 98.6 91.1 60.0 85.9 95.1 60.0 ×
Correlation 94.1 99.3 82.1 35.7 77.8 94.0 35.7 ×

ERM 95.4 99.5 82.8 41.8 79.9 94.8 41.8 ×
Dataset Method / Group L-L L-W W-L W-W Avg Total Worst SA

Waterbirds

RCSV 97.1 86.0 86.4 93.3 90.7 91.2 86.0
√

IRM 98.6 90.6 79.4 90.8 89.9 92.5 79.4
√

GroupDRO 98.4 94.4 71.5 85.4 89.9 92.4 71.5
√

RCSVU 99.0 81.1 77.3 93.6 87.8 89.0 77.3 ×
Correlation 99.9 88.5 59.0 90.3 84.4 89.9 59.0 ×

ERM 99.6 88.5 58.1 92.5 84.7 90.6 58.1 ×

Table 8: Test accuracy (%) of BERT on each group of MultiNLI. The experiments are conducted
without reweighted sampling trick.

Dataset Method / Group C-WN C-N E-WN E-N N-WN N-N Avg Total Worst SA

MultiNLI

RCSV 79.8 94.4 83.8 76.5 79.2 70.6 80.7 81.6 70.6
√

IRM 79.2 94.2 83.9 74.2 79.1 67.6 79.7 81.4 67.6
√

GroupDRO 80.4 94 82.4 76.2 80.8 70.3 80.7 81.8 70.3
√

RCSVU 80.1 94.2 83.6 80.1 78.2 67.4 80.6 81.3 67.4 ×
Correlation 73.1 91.2 76.3 64.5 77.9 62.4 74.2 77.8 62.4 ×

ERM 80.4 94.8 83.6 81.4 78.6 66.6 80.9 81.5 66.6 ×

Table 9: Test accuracy (%) of BERT on each group of CivilComments. The experiments are
conducted without reweighted sampling trick.

Dateset Method / Group N-N N-I T-N T-I Avg Total Worst SA

CivilComments

RCSV 93.1 91.8 72.4 70.6 82.0 90.2 70.6
√

IRM 93.0 86.3 74.9 67.8 80.5 88.1 67.8
√

GroupDRO 92.9 88.3 77.9 65.1 81.1 88.8 65.1
√

RCSVU 97.4 94.3 69.0 62.9 80.9 92.7 62.9 ×
Correlation 97.1 92.3 66.5 61.7 79.4 91.6 61.7 ×

ERM 96.6 92.1 69.4 56.3 78.6 91.1 56.3 ×

As can be seen from these tables, the OOD generalization performance of model drops for all these
methods compared with the results in Section 6, especially for CelebA and Waterbirds, see the
column of “Avg” and “Worst” in each table. We speculate this is because the reweighted sampling
strategy enables the data in each group are equivalently appeared during training, this operation itself
can break the spurious correlation in training data. Another evidence to support the degenerated
OOD generalization is the improved test accuracies on the groups with similar spurious attributes in
training data, e.g., the better performances on the groups D-F, D-M of CelebA and L-L, W-W of
Waterbirds.

The other observation is that even without this trick, our methods improve the OOD generalization
compared with other baseline methods due to their better mean and worst test accuracies.

Finally, the trade-off between the robustness over spurious attributes and in-distribution test accuracies
is more clearly observed in these tables. This is from the comparisons between accuracy gap of data
with same spurious attributes and total accuracy, which is in-distribution test accuracy for CelebA,
MultiNLI, and CivilComments.
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G SETUP FOR EXPERIMENTS

G.1 IMPLEMENTATION OF TWO PROPOSED ALGORITHMS

In this section, we present the detailed algorithm flows of the proposed RCSV and RĈSVU in the
main body of this paper. The critical part is their estimators to the F k(θ) defined in Section 5.

Algorithm 2 Regularize training with ĈSV (RCSV).
Input: Training samples {(xi, yi)}ni=1, number of labels Ky and spurious attributes Kz , batch size
S, learning rate ηθ, training iterations T , model fθ(·) parameterized by θ. Initialized θ0, {F k

0}.
Positive regularization constant λ, surrogate constant ρ, and correction constant γ.

1: for t = 0, · · · , T do
2: Compute the estimator R̂emp(fθ(t), P );
3: R̂emp(fθ(t), P ) is the empirical risk over a uniformly-drawn batch (size S) of data.

4: Compute the estimator F̂
k
(θ(t)), k ∈ [Ky];

5: Initialized Kz-dimensional vector L̂k = 0, k ∈ [Ky];
6: Reweighted sample a mini-batch of data {(xt,i, yt,i, zt,i)} with replacement, the probability

of data satisfies yt,i = k and zt,i = z is 1/(KyKznkz).
7: Update L̂k(z) as the empirical risk over {(xt,i, yt,i)}

⋂
Akz , k ∈ [Ky], z ∈ [Kz]

8: Compute F̂
k
(θ(t)) = KyKz

(
L̂k(1)− L̂k(1), · · · , L̂k(Kz)− L̂k(Kz)

)
, k ∈ [Ky]

9: Solve the maximization problem.
10: F k

t+1 = (1− γ)F k
t + γF̂

k
(θ(t));

11: uk(t+ 1) = Softmax(F k
t+1/ρ).

12: Update model parameters θ(t) via SGD.

13: θ(t+ 1) = θ(t)− ηθ
Ky∑
k=1

p̂k∇θ(R̂emp(fθ(t), P ) + λuk(t+ 1)⊤F k
t+1).

14: end for

Algorithm 3 Regularize training with ĈSVU (RCSVU).
Input: Training samples {(xi, yi)}ni=1, number of labels Ky and spurious attributes Kz , batch size
S, learning rate ηθ, training iterations T , model fθ(·) parameterized by θ. Initialized θ0, {F k

0}.
Positive regularization constant λ, surrogate constant ρ, and correction constant γ.

1: for t = 0, · · · , T do
2: Compute the estimator R̂emp(fθ(t), P );
3: R̂emp(fθ(t), P ) is the empirical risk over a uniformly-drawn batch (size S) of data.

4: Compute the estimator F̂
k
(θ(t)), k = 1, · · · ,Ky;

5: Initialized |Ak|2-dimensional vector F̂
k
(θ(t)) = 0, k =∈ [Ky];

6: Reweighted sample a mini-batch of data {(xt,i, yt,i)} with replacement, the probability of
data satisfies yt,i = k is 1/(Kynk).

7: Update F̂
k
(j) with L(fθ(xt,i), yt,i) if (xt,i, yt,i) is the j-th data in Ak, i ∈ [Ky], j ∈ [Kz].

8: Solve the maximization problem.
9: F k

t+1 = (1− γ)F k
t + γF̂

k
(θ(t));

10: uk(t+ 1) = Softmax(F k
t+1/ρ).

11: Update model parameters θ(t) via SGD.

12: θ(t+ 1) = θ(t)− ηθ
Ky∑
k=1

p̂k∇θ(R̂emp(fθ(t), P ) + λuk(t+ 1)⊤F k
t+1).

13: end for
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G.2 DATASET

In this section, we give more details on the datasets appeared in the main part of this paper.

CelebA. This is a celebrity face dataset (Liu et al., 2015) with 162770 training samples and 20362
test samples. For each sample, the hair color {Dark, Blond} is class label, while the gender {Female,
Male} is spurious attributes. For both training and test datasets, each of them can be divided into
4 groups, i.e., “Dark-Female” (D-F), “Dark-Male” (D-M), “Blond-Female” (B-F), “Blond-Male”
(B-M). The numbers of samples in training and test dataset from the 4 groups are respectively {71629,
9767}, {66874, 7535}, {22880, 2880}, {1387, 180}. Our goal is to train a model that correctly
recognizes the hair color of celebrities independent of their gender. One can verify that the most
difficult group of data to be generalized on is B-M, due to its extremely small proportion in males in
the training set.

Waterbirds. This is a synthetic real-world dataset in (Sagawa et al., 2019) with 4795 training
samples and 6993 test samples, which is constructed based on combining photograph of bird from
the Caltech-UCSD Birds-200-2011 (CUB) dataset (Wah et al., 2011) with image backgrounds from
the Places (Zhou et al., 2017). For each image, its class label is from {Waterbird, Landbird}, and
each bird is placed on spurious attributes: background from {Land background, Water background}.
As in CelebA, the datasets can be categorized into 4 groups, i.e., “Landbird-Land background” (L-
L), “Landbird-Water background” (L-W), “Waterbird-Water background” (W-W), “Waterbird-Land
background” (W-L). The training and test datasets are constructed with the numbers of samples in
each group are respectively {3498, 2255} (L-L), {184, 2255} (L-W), {56, 642} (W-W), {1057, 642}
(W-L). As can be seen, the spurious correlations in the training and test sets are quite different. In the
training set, most landbirds are on the land, and most waterbirds are on the water. But in the test set,
waterbirds and landbirds are uniformly assigned on the two backgrounds. Thus, we are desired to
train a model that breaks the spurious correlation between bird and background. The proportion of 4
groups in the training set informs that the most difficult of them to be generalized on are L-W and
W-L.

MultiNLI. This is a dataset for natural language inference (Williams et al., 2018) with 206175
training samples and 123712 test samples. The dataset is consists of pair of sentences, and our goal
is to recognize that whether the second sentence is entailed by, neutral with, or contradicts to the
first sentence. It was explored in Gururangan et al. (2018) that there exists spurious correlation in
the dataset such as the contradiction can be related to the presence of the negation words nobody,
no, never, and nothing. Thus we set such presence as spurious attribute and the dataset can be
categorized into 6 groups, i.e., “Contradiction-Without Negation” (C-WN), “Contradiction-Negation”
(C-N), “Entailment-Without Negation” (E-WN), “Entailment-Negation” (E-N), “Neutrality-Without
Negation” (N-WN), “Neutrality-Negation” (N-N). Our goal is learning a model that makes prediction
independent with the presence of negation. The numbers of samples in training and test dataset
from the 6 groups are respectively {57498, 34597}, {11158, 6655}, {67376, 40496}, {1521, 886},
{66630, 39930}, {1992, 1146}.

CivilComents. This is a dataset consists of collected online comments (Borkan et al., 2019).
The dataset has 269038 training data and 133782 test data. Our goal is to recognize whether the
comment is toxic or not. The toxicity can be spurious correlated with the annotation attributes such the
presence of 8 certain demographic identities includes male, female, White, Black, LGBTQ, Muslim,
Christian, and other religion. Thus we set the identity of any aforementioned words as the spurious
attributes, and divided the dataset into 4 groups: “Nontoxic-Nonidentity” (N-N), “Nontoxic-Identity”
(N-I), “Toxic-Nonidentity” (T-N), “Toxic-Identity” (T-I). The numbers of samples in training and
test dataset from the 4 groups are respectively {148186, 72373}, {90337, 46185}, {12731, 6063},
{17784, 9161}. As can be seen, there exists a spurious correlation between the toxicity and the
identity attribute in the training set due to the number of data in each group.

For all these datasets, from the number of data in each group, there exists dominated spuri-
ous correlation in CelebA and Waterbirds. But this does not happened in MultiNLI and
CivilComments, especially for MultiNLI as the strong spurious correlation only exists in the
group of “C-WN” v.s. “C-N”. Thus for the MultiNLI and CivilComments, expected for the
spurious feature, the model should extract other features to guarantee good performance.
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G.3 BENCHMARK ALGORITHMS

Empirical Risk minimization (ERM, Vapnik, 1999) pools together the data from all the domains and
then minimizes the empirical loss to train the model.

Empirical Risk minimization with reweighted sampling (ERMRS, Idrissi et al., 2021) is similar to
empirical risk minimization, but it reweight the sampling probability of each sample, and the weightes
on each data is pre-defined.

Invariant Risk Minimization (IRM, Arjovsky et al., 2019) learns a feature representation such that the
optimal classifiers on top of the representation is the same across the domains.

Group Distributionally Robust Optimization (GroupDRO, Sagawa et al., 2019) minimizes the worst-
case loss over different domains.

(Correlation, Devansh Arpit, 2019) minimizes the intra-variance of data from the same category to
break the spurious correlation.

G.4 TRAINING DETAILS

As clarified in Section 6, the backbone models for image datasets (CelebA, Waterbirds) and
textual datasets (MultiNLI, CivilComments) are respectively ResNet-50 (He et al., 2016) pre-
trained on ImageNet (Deng et al., 2009) and pre-trained BERT Base model(Devlin et al., 2019).

The loss function L(·, ·) is cross-entropy for all of these methods. The experiments on image datasets
are conducted without learning rate decay while the results on textual datasets are obtained with
linearly decayed learning decay via optimizer AdamW (Loshchilov & Hutter, 2018).

The hyperparameters of baseline methods follow the original one in (Gulrajani & Lopez-Paz,
2020; Sagawa et al., 2019; Devansh Arpit, 2019; Arjovsky et al., 2019; Idrissi et al., 2021). The
hyperparameters of the proposed RCSV and RCSVU on CelebA, Waterbirds, MultiNLI,
CivilComments, Toy example and C-MNIST respectively summarized in Table 10, 11, 12,
13, 14, and 15.

Table 10: Hyperparameters on CelebA.

Algorithm RCSV RCSVU

Optimizer Adam Adam
Learning Rate 1e-5 1e-5

Batch Size 256 256
Weight Decay 1e-4 1e-4

Epoch 50 50
λ 5 1
γ 0.9 0.9
ρ 1e-4 1e-4

Table 11: Hyperparameters on Waterbirds.

Algorithm RCSV RCSVU

Optimizer Adam Adam
Learning Rate 1e-5 1e-5

Batch Size 64 64
Weight Decay 1e-4 1e-4

Epoch 300 300
λ 0.1 0.1
γ 0.9 0.9
ρ 1e-4 1e-4

Table 12: Hyperparameters on MultiNLI.

Algorithm RCSV RCSVU

Optimizer AdamW AdamW
Learning Rate 1e-5 1e-5

Batch Size 32 32
Weight Decay 0 0

Epoch 3 3
Drop Out 0.1 0.1

λ 0.1 0.1
γ 0.9 0.9
ρ 1e-4 1e-4

Table 13: Hyperparameters on
CivilComments.

Algorithm RCSV RCSVU

Optimizer Adam Adam
Learning Rate 1e-5 1e-5

Batch Size 16 16
Weight Decay 0 0

Epoch 3 3
Drop Out 0.1 0.1

λ 0.1 0.1
γ 0.9 0.9
ρ 1e-4 1e-4
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Table 14: Hyperparameters on Toy example.

Algorithm RCSV RCSVU

Optimizer SGD SGD
Learning Rate 0.01 0.01

Momentum 0.9 0.9
Batch Size 32 32

Weight Decay 0 0
Epoch 100 100
λ 1.0 5
γ 0.9 0.9
ρ 0.01 0.01

Table 15: Hyperparameters on C-MNIST.

Algorithm RCSV RCSVU

Optimizer Adam Adam
Learning Rate 0.001 0.001

Momentum / /
Batch Size 128 128

Weight Decay 1e-4 1e-4
Epoch 40 40
λ 1.0 0.05
γ 0.9 0.9
ρ 0.01 0.01
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