UNICON: Unsupervised Intent Discovery via Semantic-level Contrastive Learning

Anonymous ACL submission

Abstract

Discovering new intents is crucial for expanding domains in dialogue systems or natural language understanding (NLU) systems. A typical approach is to leverage unsupervised and semi-supervised learning to train a neural encoder to produce representations of utterances that are adequate for clustering then perform clustering on the representations to detect unseen clusters of intents. Recently, instance-level contrastive learning has been proposed to improve representation quality for better clustering. However, the proposed method suffers from semantic distortion in text augmentation and even from representation inadequacy due to limitations of using representations of pre-trained language models, typically BERT. Neural encoders can be powerful representation learners, but the initial parameters of pre-trained language models do not reliably produce representations that are suitable for capturing semantic distances. To eliminate the necessity of data augmentation and reduce the negative impact of pre-trained language models as encoders, we propose UNICON, a novel contrastive learning method that utilizes auxiliary external representations to provide powerful guidance for the encoder. The proposed method produces clusters that facilitate intent discovery, achieving state-of-the-art on intent detection benchmarks by a large margin in both unsupervised and semi-supervised settings.

1 Introduction

Intent discovery refers to the problem of finding new intent classes in natural language understanding (NLU) tasks from unlabeled user utterances. The ability to discover new intents is fundamentally important for dialogue systems in industrial practice, because users can be creative in interacting with the system and the user population’s interest may change over time with varying degrees depending on the applications. Proactively designing new intents is a labor-intensive process, hence a data-driven intent discovery system could drastically reduce the continual intent-designing cost and help keep the user experience more engaging and satisfactory.

Typically, intent discovery is achieved by (1) training a powerful neural encoder, preferably a pre-trained neural language model such as BERT (Devlin et al., 2018), (2) and performing clustering on the representations produced by the encoder from an unlabeled dataset to detect unseen intent clusters. Training encoders without supervision belongs to the unsupervised clustering family (Hakkani-Tür et al., 2013, 2015; Padmasundari and Bangalore, 2018; Haponchyk et al., 2018; Shi et al., 2018), while semi-supervised clustering utilizes a small amount of intent-labeled data (Lin et al., 2020; Zhang et al., 2021b).

Recent methods leverage deep neural encoders to produce robust and rich representations that can be tailored to produce meaningful clusters via self-supervised learning. Various architectures and training algorithms have been proposed in this regard, namely feature assembly using auto-encoders (Shi et al., 2018), pairwise binary classification using instance similarity (Lin et al., 2020), and self-supervised learning with aligned pseudo-labels (Zhang et al., 2021b).

Recently, an instance-level contrastive learning method has attracted much attention. A popular set-up for contrastive learning is the instance-level approach, which trains the encoder to keep the rep-
resonated with hard positive samples generated via data augmentation closer to each other in contrast to other negative samples (Chen et al., 2020a; Wu et al., 2020; Giorgi et al., 2020; Grill et al., 2020; Gao et al., 2021; Yan et al., 2021; Kim et al., 2021). Some works proposed to integrate clustering during instance-level contrastive learning to further improve the clustering results. For example, Li et al. (2021) conducts cluster-level contrastive learning on augmented images on top of the instance-level contrastive learning. Zhang et al. (2021a) proposed optimizing both the clustering loss based on KL-divergence and the contrastive learning loss from augmentations.

However, previous works have three limitations. First, the existing instance-level contrastive learning methods do not consider the semantic similarities among data points and sets up positive and negative samples indiscriminately. As shown in Fig. 1, a typical contrastive learning method uses in-batch samples as the negative samples and augmented text as the positive samples. However, the positive sample may not be truly a positive sample as data augmentation perturbations may cause class-inconsistency, while examples that are considered in the same intent category as the main example may end up being chosen as negative samples. This indiscriminative training procedure may cause harm to the ability of the encoder to learn appropriate representations for producing desired clustering results.

Second, the data augmentation techniques used in previous works (Zhang et al., 2021a; Yan et al., 2021; Wu et al., 2020; Zang et al., 2020) can cause semantic distortion, which results in intent inconsistency in augmented texts. To illustrate semantic distortion, we showcase examples before and after the text augmentation method described in Zhang et al. (2021a) on CLINC dataset. As shown in Table 1, the augmentation may produce perturbed utterances that have different intent classification from the original utterance. The tendency to produce intent-inconsistency samples of text augmentation techniques can be particularly harmful in short utterance intent classification tasks, as there is a higher chance of substituting intent-sensitive keywords in the utterance.

Finally, the typical choice for deep neural encoding (e.g., BERT) may not adequately produce representations that capture semantic distances, greatly increasing the risk of falling into local optima. This phenomenon has been observed in previous studies (Kim et al., 2021; Hu et al., 2020), especially when the [CLS] embedding is used as the representation for the entire text or utterance. Our ablation studies (Table 4) also support the idea that naive adoption of BERT as the feature extractor has a detrimental effect in learning clustering-friendly representations, scoring merely 2.82 in the ARI evaluation measure for CLINC.

To alleviate aforementioned problems, we propose a novel contrastive learning that (1) does not require an explicit data augmentation technique, (2) improves representation quality through similarity-based contrastive learning, and (3) circumventing the BERT representation issue via external auxiliary similarity measures.

Using similarity-based pseudo positive samples predicted by insufficiently trained model is extremely unstable because the pseudo-labels may not be correctly selected. The noise caused by incorrect selection accumulates as the training progresses. To mitigate this problem, we propose to adopt auxiliary representations that indicate the presence of words regardless of order. We show the effectiveness of the auxiliary representation and describe the details in Section 3.2.

In summary, our main contributions are as follows:

- We propose a novel contrastive learning method for clustering, called UNICON. This method can conduct semantic-level contrastive learning without data augmentation, which does not suffer from semantic distor-

<table>
<thead>
<tr>
<th>Intent</th>
<th>Original Text</th>
<th>BERT Augmented Text</th>
<th>RoBERTa Augmented Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>update_playlist</td>
<td>Add this song to shared playlist</td>
<td>Introducing this song to shared playlist</td>
<td>Add this song to shared messages</td>
</tr>
<tr>
<td>current_location</td>
<td>My current location</td>
<td>My target location</td>
<td>My current shoes</td>
</tr>
<tr>
<td>changeAccent</td>
<td>Let’s change your accent</td>
<td>Let’s change your luck</td>
<td>Let’s change your email</td>
</tr>
<tr>
<td>cancel</td>
<td>Can you please cancel</td>
<td>Can you please out</td>
<td>Can you please send</td>
</tr>
</tbody>
</table>

Table 1: On the CLINC dataset, we utilize Contextual Augmenter (Kobayashi, 2018) which finds the most appropriate words for augmentation by feeding surrounding words to BERT and RoBERTa models. Then, we perform augmentation by inserting them or replacing original words with them. This table shows that augmented text may not preserve the original intent since certain keywords may be changed.
tion. In addition, the intra-cluster distance could be reduced by selecting two different instances inside the batch as a positive pair, which helps generate proper representations for clustering.

- We propose to use auxiliary representations. An insufficiently fine-tuned PLM may extract positive samples overconfidently, which leads to training failure. The auxiliary representations can mitigate this problem by guiding the model to extract appropriate positive samples.

- To show the effectiveness of our model, we conduct experiments on two intent detection datasets (i.e., CLINC, BANKING). The proposed model outperforms the state-of-the-art model by a large margin of 10-12% in unsupervised setting and 2.5-12% in semi-supervised setting.

2 Related Works

2.1 Intent Discovery
In general, intent detection is a task in dialogue system that tries to find the corresponding intents from the user utterances in a supervised manner when intent structure and the annotated data are given. Then the model classifies an user utterance into a predetermined intent structure. In contrast, the intent discovery task means finding or classifying new intent structures by grouping user utterances of similar meaning in an environment without intent structure or annotated data. Many methods (Hakkani-Tür et al., 2013, 2015; Padmasundari and Bangalore, 2018; Haponchyk et al., 2018; Shi et al., 2018; Lin et al., 2020; Zhang et al., 2021b; Perkins and Yang, 2019; Min et al.; Vedula et al., 2020) have been proposed to solve the intent discovery problem, and approaches through unsupervised or semi-supervised clustering have generally been used.

2.2 Deep Clustering
Since mid 1900’s, as an attempt to extract meaningful information from the unlabeled data, clustering task has been actively studied (MacQueen et al., 1967; Gowda and Krishna, 1978; Ester et al., 1996). However, traditional clustering methods suffer with the high-dimensional data due to their lack of ability to learn the proper representation of the data. Development of Deep Neural Network (DNN) brought strong representation ability. Especially, pre-trained language models (PLM) such as BERT show impressive representation quality with the general language data. This representation ability of DNN is vigorously utilized and studied in clustering methods as follows: DEC (Xie et al., 2016), DCN (Yang et al., 2017), DAC (Chang et al., 2017) and DeepCluster (Caron et al., 2018).

Moreover, some methods use a small number of labeled data and incorporate weak supervised signal to tackle the intent discovery task. CDAC+ (Lin et al., 2020) uses labeled data to help making binary similarity pseudo-labels. DeepAligned (Zhang et al., 2021b) pretrains the labeled data to better estimate the number of the clusters.

2.3 Contrastive Learning
In addition to PLM, contrastive learning (Becker and Hinton, 1992; Xie et al., 2020; Berthelot et al., 2019), which is a component of self-supervised learning, reports many successes in recent years. Contrastive learning aims to group similar samples closer and separate dissimilar samples far from each other. Especially, augmentation-based instance-level contrastive learning is showing many prominent results in computer vision tasks (He et al., 2020; Chen et al., 2020a,b; Grill et al., 2020) and natural language processing (NLP) tasks (Fang et al., 2020; Wu et al., 2020; Zhang et al., 2021a; Yan et al., 2021; Gao et al., 2021; Li et al., 2021; Kim et al., 2021). In particular, Contrastive Clustering (Li et al., 2021) and SCCL (Zhang et al., 2021a) integrate with the cluster-promoting objective function to generate better representation for clustering.

3 Proposed Method
In this section, we describe how our proposed method works in detail. As shown in Fig. 2, we first encode the data into dense contextual representations while constructing auxiliary representations. Second, we generate similarity matrix, which indicates whether a pair of instances belongs to the same cluster. Finally we select a positive sample from each row of the matrix and train the model with contrastive loss.

3.1 Input Representation
In order to extract the high-level semantic features of data, we use the pre-trained language model (PLM) (e.g., Devlin et al., 2018; Liu et al., 2019). Given N samples, $\{X_i\}_{i=1}^{N}$, we construct inputs for PLM with the special tokens (e.g., [CLS], [SEP])
and provide them to the PLM. PLM outputs the features \(z_i \) as
\[
I_i = [\text{CLS}] \ T_{i,1}, \ldots, T_{i,M} \ [\text{SEP}]
\]
\[
z_i = \text{PLM}_{\text{CLS}}(I_i) \in \mathbb{R}^h,
\]
where ‘[CLS]’, ‘[SEP]’ are special tokens that represent the entire sentence and distinguish the sentences, respectively. \(\{T_{i,k}\}_{k=1}^M \) denotes the set of tokens of \(X_i \), \(M \) is the number of tokens, and \(\text{PLM}_{\text{CLS}}(\cdot) \) indicates the last hidden state vector corresponding to the ‘[CLS]’ token.

\subsection{3.2 UNICON}

Unlike previous works, we aim for adopting semantic-level contrastive learning method without any data augmentation techniques that can lead to semantic distortion. Let \(\{z_i\}_{i=1}^N \) be the set of dense contextual representations of \(\{X_i\}_{i=1}^N \). We compute the similarity matrix which indicates whether a pair of instances belongs to the same intent (cluster), i.e.,
\[
S_{ij}^D = \begin{cases}
-\infty, & \text{if } i = j \\
\operatorname{sim}(z_i, z_i), & \text{otherwise}
\end{cases},
\]
where \(\infty \) is an infinite number that prevents choosing the same instance as a positive pair, \(S^D \) denotes the similarity matrix that has the \(N \times N \) dimensions, and \(\operatorname{sim}(z_i, z_j) \) indicates the similarity between \(z_i \) and \(z_j \). In this paper, we use the dot product of representations without the normalization and dimensionality reduction as the similarity function.

Subsequently, the sample most similar to the \(X_i \), except for itself, is denoted as a positive sample and the rest of the samples become negative samples. We use the NT-Xent (the normalized temperature-scaled cross entropy) loss function used in Chen et al. (2020a) as follows:
\[
L_{i,j} = -\log \frac{\exp(\operatorname{sim}(z_i, z_j)/\tau)}{\sum_{k=1}^N \mathbb{1}_{[k \neq i]} \exp(\operatorname{sim}(z_i, z_k)/\tau)},
\]
where \(\mathbb{1}_{[k \neq i]} \in \{0, 1\} \) is an indicator function that yields 1 if \(k \neq i \), and 0 elsewhere, and \(\tau \) is a temperature parameter that can help the model to learn from hard negatives.

As a result of Eq. 2 and 3, our method, unlike instance-level contrastive learning, can learn suitable features for clustering by explicitly grouping the data instances that have the same intent.

Auxiliary representation Our method has an advantage over augmentation-based instance-level contrastive learning. Augmentation-based contrastive learning pushes different instances apart regardless of their semantic similarities (Zhang et al., 2020).
while our method groups different instances together, taking semantic similarities into account.

However, extracting correct positive samples from unlabeled data using only similarities between the representations of data that are not fine-tuned is a challenging problem. In the early stage of the training, PLM has not learned enough about the target domain yet and may output the vectors that do not represent instances enough. This is likely to result in the incorrect similarity calculation which leads to the erroneous positive sample selection.

Incorrect selection of positive samples in the early stage can cause noise in the learning, which accumulates as the training progresses. As a result, the model performance can deteriorate.

In order to alleviate this problem, we propose to use auxiliary representations that can complement the dense contextual representations. In this paper, we leverage sparse word representations (e.g., BoW, TF-IDF, etc.), which mainly focus on the presence or absence of words and the importance of words within the dataset, ignoring the order of words.

These representations explicitly indicate similarity between instances regardless of their semantic meaning by comparing word frequency. Similarity based on the word frequency can guide model to select appropriate positive samples in the early stage of the training. As a result, the auxiliary representations complement our method by reducing noise in the early stage of the training. The auxiliary representations are used as below:

$$w_i = \text{Aux}(X_i) \in \mathbb{R}^{|V|},$$

$$S^W_{ij} = \begin{cases} -\inf, & \text{if } i = j \\ \text{sim}(w_i,w_i), & \text{otherwise} \end{cases}$$

$$S_{ij} = S^D_{ij} + \gamma^\epsilon \lambda S^W_{ij},$$

where $|V|$ is the vocabulary size and γ is a hyperparameter that reduces the influence of the auxiliary representation every epoch (ϵ). λ adjusts the scale between S^D and S^W, which is computed as $
abla \lambda = \text{std}(S^D)/\text{mean}(S^W)$.

Our model learns the features suitable for the clustering with the target of grouping instances that have the same intent together. Then, diverse clustering algorithms can be used. For example, KMeans (Lloyd, 1982) algorithm can be one of the algorithms, which optimizes the following cost function:

$$\min_{W \in \mathbb{R}^{k \times K}} \sum_{i=1}^{N} ||z_i - W s_i||^2$$

subject to $s_{i,j} \in \{0,1\}$, $1^T s_i = 1 \forall i,j$, \text{(5)}

where K is the predefined number of clusters, s_i is the assignment vector which has only one non-zero element, $s_{i,j}$ denotes the jth element of s_i, and kth column of W indicates the centroid of the kth cluster.

4 Experiments

4.1 Datasets

We conduct experiments on the CLINC and BANKING datasets, which are intent detection benchmark datasets. CLINC (Larson et al., 2019) covers 150 intents over 10 domains. BANKING (Casanueva et al., 2020) is a fine-grained dataset in the banking domain. Detailed information on the datasets is in Table 2.

<table>
<thead>
<tr>
<th>Dataset</th>
<th># of intents</th>
<th>Training</th>
<th>Validation</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLINC</td>
<td>150</td>
<td>18,000</td>
<td>2,250</td>
<td>2,250</td>
</tr>
<tr>
<td>BANKING</td>
<td>77</td>
<td>9,003</td>
<td>1,000</td>
<td>3,080</td>
</tr>
</tbody>
</table>

Table 2: The statistics for CLINC and BANKING datasets.

4.2 Baselines

We used various unsupervised clustering and semi-supervised clustering algorithms as the baseline. Additionally, we compare UNICON and clustering methods integrating with instance-level contrastive learning.

Unsupervised Clustering The scores of K-Means (KM) (Lloyd, 1982), agglomerative clustering (AG) (Gowda and Krishna, 1978), stacked autoencoder with K-Means (SAE-KM) (Vincent et al., 2010), DEC (Xie et al., 2016), DCN (Yang et al., 2017), and DeepCluster (Caron et al., 2018) are directly reported in DeepAligned (Zhang et al., 2021b).

Semi-supervised Clustering CDAC+ (Lin et al., 2020) and DeepAligned (Zhang et al., 2021b), which mainly focus on intent discovery tasks, were used as the baselines and reproduced using publicly released code.

Contrastive Learning We reproduced the Contrastive Clustering (Li et al., 2021), SimCSE (Gao et al., 2021) and SCCL (Zhang et al., 2021a) by...
using publicly released code. Since Contrastive Clustering is a clustering model proposed in vision domain, we adapt it appropriately to text domain by replacing backbone model to \textit{bert-base-uncased}, and augmentation method to \textit{Contextual Augmenter} (Kobayashi, 2018), which is an augmentation method applied in SCCL. SimCSE (sup) and SCCL (sbert) leverage labeled NLI datasets for fine-tuning and pre-training, respectively. Otherwise, SimCSE (unsup) and SCCL (bert) are initialized with \textit{bert-base-uncased} for comparing UNICON.

4.3 Evaluation Metric

To compare our model to the baselines, we use three metrics that are mainly used for clustering performance evaluation, i.e., Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), and Accuracy (ACC). Since the indices of the clusters are randomly allocated, we measure the accuracy using Hungarian algorithm that can align the cluster indices with label indices.

4.4 Implementation Details

We use a pre-trained BERT model (\textit{bert-base-uncased}, with 12-layer transformer and 110M parameters) as a backbone model without any additional layers in a single P40 GPU. In the code, we use Huggingface’s Transformers pytorch library\(^1\). To extract the auxiliary representations, we utilize the unigram TF-IDF. We use training learning rate of \(1e^{-4}\), 10\% warmup steps and learning rate decay to optimize the parameters. We set temperature \(\tau\) to 0.5, \(\gamma\) to 0.9, batch size to 1024/450 on the CLINC and BANKING datasets, respectively. The model is trained and evaluated three times. All reported values in figures and tables are the average performance on the test set.

5 Results and Analysis

Table 3 shows the results comparing our method with the baselines. Our method consistently outperforms the baselines. In terms of accuracy, we achieve a new state-of-the-art performance by a large margin of approximately 10-12\% over the closest competitors, i.e. SimCSE (sup) and SCCL (sbert) even though the closest competitors utilized additional resources such as labeled data. The reason for relatively low performance on BANKING dataset is that CLINC dataset consists of a balanced

\(^1\)https://huggingface.co/transformers/index.html

Figure 3: Influence of labeled data ratio on CLINC (first row) and BANKING (second row) datasets. Using only 5\% labeled data can improve performance by about 8\%, and finally using 20\% labeled data improve performance by about 24\%.

5.1 Semi-supervised Clustering

In this study, we conduct experiments to see the effect that assistance of a few labeled data brings. For the fair comparison, all semi-supervised methods use 10\% of labeled data and we assume that all classes are known. Table 3 shows the comparison results. When compared with the baselines, UNICON outperforms competitors by 12\% on BANKING dataset and 2.5\% on CLINC dataset. UNICON shows relatively lower performance improvement in semi-supervised setting. We speculate the decrease in the effect of auxiliary representation as a reason. Since labeled data already gives enough guidance for the positive selection, auxiliary representation does not help the model as much as in unsupervised setting.

Furthermore, we study how the performance number of data for each intents, while BANKING does not.
Table 3: Clustering performance comparison between UNICON and baselines. We evaluate both unsupervised and semi-supervised methods on the test set of CLINC and BANKING datasets. In case of semi-supervised setting, we leverage 10% labeled data. The highest performance is in bold, and the second highest performance is underlined. Methods with ‡ indicate that we directly report the scores from the corresponding paper, and the rest of the methods are reproduced using official code changes as we use different ratio of labeled data. The experiment results are shown in Fig. 3. Consequently, the performance improves as more labeled data is used. Especially, utilizing 5% of labeled data increases by about 8 points. On the other hand, there is no significant change in performance when we add 1% of labeled data because if 1% of utterances are sampled, it is very unlikely for utterances with the same intent to appear together withing a mini-batch.

5.2 Auxiliary Representation Study

Ablation Study We carry out ablation studies to show the importance and complementarity of each component. First, Fig. 4 shows what the training process looks like when the auxiliary representation is removed. Since the loss of PLM-only is very low, it seems like the training is going well. However, we can observe that the actual accuracy decreases as the training progresses. This phenomenon is caused by the accumulation of noise coming from the incorrect positive sample selection. Second, as shown in Table 4, the clustering accuracy is 51.11% when PLM is removed and 15.56% when the auxiliary representation is removed, which is much lower than the accuracy of UNICON. This implies that each model cannot be used for standalone and complements each other. We conjecture that since PLM based representations concentrate on grasping the semantics and the auxiliary representations concentrate on grasping the existence of the specific words, each conveys different information and complements each other.

Various Auxiliary Representations We study several representation methods to compensate the noise that comes from the incomplete representation ability of PLM at the early stage of training. We assume that the word representations can complement the contextual representations due to the nature of the intent detection datasets used in dialogue systems. The datasets consist of short utterances and the utterances in the same intent share...
many keywords with each other. As shown in Table 4, all word representations consistently improve the performance of the model. In particular, TF-IDF method achieves the best performance. The GloVe word embedding model has relatively lower performance than others. This means that the presence or absence of specific keywords has more helpful information, as mentioned above.

<table>
<thead>
<tr>
<th>Method</th>
<th>NMI</th>
<th>ARI</th>
<th>ACC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLM + TFIDF (ours)</td>
<td>88.78</td>
<td>63.23</td>
<td>73.49</td>
</tr>
<tr>
<td>TFIDF-only</td>
<td>74.49</td>
<td>25.63</td>
<td>51.11</td>
</tr>
<tr>
<td>PLM-only</td>
<td>49.89</td>
<td>2.82</td>
<td>15.56</td>
</tr>
<tr>
<td>PLM + BoW</td>
<td>79.86</td>
<td>42.62</td>
<td>56.31</td>
</tr>
<tr>
<td>PLM + GloVe</td>
<td>78.93</td>
<td>40.02</td>
<td>53.16</td>
</tr>
</tbody>
</table>

Table 4: The experiment results about the auxiliary representations. The experiments are conducted on CLINC dataset.

5.3 Clustering Quality Analysis

We raised the problem of instance-level contrastive learning through data augmentation in Section 1. To show that UNICON can generate more suitable representations for clustering than instance-level contrastive learning-based models, we utilize t-SNE visualization tools on SimCSE, SCCL, Contrastive Clustering and UNICON. As shown in Fig 5, SimCSE and SCCL that utilizes data augmentation does not group data with the same label together nor spread data with the different labels apart. In the case of the Contrastive Clustering, which leverages not only data augmentation but also clustering-promoting objective, clusters data better than SimCSE and SCCL. However, many clusters contain data with various labels which leads to low accuracy. Unlike the other three models, the results of UNICON show that each cluster is well grouped, and the data in each cluster have consistent labels.

Additionally, we measure intra-cluster distance of each model. Intra-cluster distance calculates the euclidean distance between the centroid of the cluster and the data within the cluster, which evaluates how well the model agglomerates the clusters. As depicted in Fig. 6, the intra-cluster distance of UNICON has the lowest average value, followed by Contrastive Clustering and SCCL with clustering-promoting objective, and SimCSE has the worst performance.

Figure 5: We compare UNICON and other baselines with the contrastive learning through t-SNE visualization. We randomly sample 30 intents from CLINC dataset.

Figure 6: Intra-cluster distance distribution of each model on CLINC dataset.

6 Conclusion

In this work, we propose a clustering method that utilizes power of contrastive learning. To avoid the semantic distortion problem in language data augmentation, we propose to pair an instance with another instance based on the similarity measure. Additionally, we introduce auxiliary representation which guides the model to select appropriate positive pair at the early stage of the training. Extensive experiments on two challenging benchmark datasets report significant improvement in the both unsupervised and semi-supervised clustering performance compared to the baselines. In the future, we plan to study methods to select more robust positive samples with various datasets.
References

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In *Proc. the Second International Conference on Knowledge Discovery and Data Mining (KDD)*.

9