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Abstract

Discovering new intents is crucial for expand-001
ing domains in dialogue systems or natural lan-002
guage understanding (NLU) systems. A typical003
approach is to leverage unsupervised and semi-004
supervised learning to train a neural encoder to005
produce representations of utterances that are006
adequate for clustering then perform clustering007
on the representations to detect unseen clusters008
of intents. Recently, instance-level contrastive009
learning has been proposed to improve repre-010
sentation quality for better clustering. However,011
the proposed method suffers from semantic dis-012
tortion in text augmentation and even from rep-013
resentation inadequacy due to limitations of014
using representations of pre-trained language015
models, typically BERT. Neural encoders can016
be powerful representation learners, but the ini-017
tial parameters of pre-trained language models018
do not reliably produce representations that are019
suitable for capturing semantic distances. To020
eliminate the necessity of data augmentation021
and reduce the negative impact of pre-trained022
language models as encoders, we propose UNI-023
CON, a novel contrastive learning method that024
utilizes auxiliary external representations to025
provide powerful guidance for the encoder. The026
proposed method produces clusters that facili-027
tates intent discovery, achieving state-of-the-art028
on intent detection benchmarks by a large mar-029
gin in both unsupervised and semi-supervised030
settings.031

1 Introduction032

Intent discovery refers to the problem of finding033

new intent classes in natural language understand-034

ing (NLU) tasks from unlabeled user utterances.035

The ability to discover new intents is fundamen-036

tally important for dialogue systems in industrial037

practice, because users can be creative in interact-038

ing with the system and the user population’s in-039

terest may change over time with varying degrees040

depending on the applications. Proactively design-041

ing new intents is a labor-intensive process, hence042
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Figure 1: Intance-level contrastive learning concept. (a)
is an original text, (b) is augmented from the original
text. (c) and (d) are other instances in the same mini-
batch. The instance-level contrastive learning keeps the
positive sample close and the negative samples away.

a data-driven intent discovery system could dras- 043

tically reduce the continual intent-designing cost 044

and help keep the user experience more engaging 045

and satisfactory. 046

Typically, intent discovery is achieved by (1) 047

training a powerful neural encoder, preferrably a 048

pre-trained neural language model such as BERT 049

(Devlin et al., 2018), (2) and performing cluster- 050

ing on the representations produced by the en- 051

coder from an unlabeled dataset to detect unseen 052

intent clusters. Training encoders without supervi- 053

sion belongs to the unsupervised clustering fam- 054

ily (Hakkani-Tür et al., 2013, 2015; Padmasundari 055

and Bangalore, 2018; Haponchyk et al., 2018; Shi 056

et al., 2018), while semi-supervised clustering uti- 057

lizes a small amount of intent-labeled data (Lin 058

et al., 2020; Zhang et al., 2021b). 059

Recent methods leverage deep neural encoders 060

to produce robust and rich representations that 061

can be tailored to produce meaningful clusters 062

via self-supervised learning. Various architectures 063

and training algorithms have been proposed in 064

this regard, namely feature assembly using auto- 065

encoders (Shi et al., 2018), pairwise binary classi- 066

fication using instance similarity (Lin et al., 2020), 067

and self-supervised learning with aligned psuedo- 068

labels (Zhang et al., 2021b). 069

Recently, an instance-level contrastive learning 070

method has attracted much attention. A popular 071

set-up for contrastive learning is the instance-level 072

approach, which trains the encoder to keep the rep- 073
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Intent Original Text BERT Augmented Text RoBERTa Augmented Text
update_playlist Add this song to shared playlist Introducing this song to shared playlist Add this song to shared messages
current_location My current location My target location My current shoes
change_accent Let’s change your accent Let’s change your luck Let’s change your email

cancel Can you please cancel Can you please out Can you please send

Table 1: On the CLINC dataset, we utilize Contextual Augmenter (Kobayashi, 2018) which finds the most appro-
priate words for augmentation by feeding surrounding words to BERT and RoBERTa models. Then, we perform
augmentation by inserting them or replacing original words with them. This table shows that augmented text may
not preserve the original intent since certain keywords may be changed.

resentations of hard positive samples generated via074

data augmentation closer to each other in contrast075

to other negative samples (Chen et al., 2020a; Wu076

et al., 2020; Giorgi et al., 2020; Grill et al., 2020;077

Gao et al., 2021; Yan et al., 2021; Kim et al., 2021).078

Some works proposed to integrate clustering dur-079

ing instance-level contrastive learning to further080

improve the clustering results. For example, Li et al.081

(2021) conducts cluster-level contrastive learning082

on augmented images on top of the instance-level083

contrastive learning. Zhang et al. (2021a) proposed084

optimizing both the clustering loss based on KL-085

divergence and the contrastive learning loss from086

augmentations.087

However, previous works have three limitations.088

First, the existing instance-level contrastive learn-089

ing methods do not consider the semantic similar-090

ities among data points and sets up positive and091

negative samples indiscriminately. As shown in092

Fig. 1, a typical contrastive learning method uses093

in-batch samples as the negative samples and aug-094

mented text as the positive samples. However, the095

positive sample may not be truly a positive sam-096

ple as data augmentation perturbations may cause097

class-inconsistency, while examples that are con-098

sidered in the same intent category as the main099

example may end up being chosen as negative sam-100

ples. This indiscriminative training procedure may101

cause harm to the ability of the encoder to learn102

appropriate representations for producing desired103

clustering results.104

Second, the data augmentation techniques used105

in previous works (Zhang et al., 2021a; Yan et al.,106

2021; Wu et al., 2020; Zang et al., 2020) can cause107

semantic distortion, which results in intent incon-108

sistency in augmented texts. To illustrate semantic109

distortion, we showcase examples before and after110

the text augmentation method described in Zhang111

et al. (2021a) on CLINC dataset. As shown in Ta-112

ble 1, the augmentation may produce perturbed113

utterances that have different intent classification114

from the original utterance. The tendency to pro-115

duce intent-inconsistency samples of text augmen- 116

tation techniques can be particularly harmful in 117

short utterance intent classification tasks, as there 118

is a higher chance of substituting intent-sensitive 119

keywords in the utterance. 120

Finally, the typical choice for deep neural encod- 121

ing (e.g., BERT) may not adequately produce repre- 122

sentations that capture semantic distances, greatly 123

increasing the risk of falling into local optima. This 124

phenomenon has been observed in previous studies 125

(Kim et al., 2021; Hu et al., 2020), especially when 126

the [CLS] embedding is used as the representa- 127

tion for the entire text or utterance. Our ablation 128

studies (Table 4) also support the idea that naive 129

adoption of BERT as the feature extractor has a 130

detrimental effect in learning clustering-friendly 131

representations, scoring merely 2.82 in the ARI 132

evaluation measure for CLINC. 133

To alleviate aforementioned problems, we pro- 134

pose a novel contrastive learning that (1) does not 135

require an explicit data augmentation technique, (2) 136

improves representation quality through similarity- 137

based contrastive learning, and (3) circumventing 138

the BERT representation issue via external auxil- 139

iary similarity measures. 140

Using similarity-based pseudo positive samples 141

predicted by insufficiently trained model is ex- 142

tremely unstable because the pseudo-labels may 143

not be correctly selected. The noise caused by in- 144

correct selection accumulates as the training pro- 145

gresses. To mitigate this problem, we propose to 146

adopt auxiliary representations that indicate the 147

presence of words regardless of order. We show the 148

effectiveness of the auxiliary representation and 149

describe the details in Section 3.2. 150

In summary, our main contributions are as fol- 151

lows: 152

• We propose a novel contrastive learning 153

method for clustering, called UNICON. This 154

method can conduct semantic-level con- 155

trastive learning without data augmentation, 156

which does not suffer from semantic distor- 157
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tion. In addition, the intra-cluster distance158

could be reduced by selecting two different159

instances inside the batch as a positive pair,160

which helps generate proper representations161

for clustering.162

• We propose to use auxiliary representations.163

An insufficiently fine-tuned PLM may extract164

positive samples overconfidently, which leads165

to training failure. The auxiliary representa-166

tions can mitigate this problem by guiding the167

model to extract appropriate positive samples.168

• To show the effectiveness of our model, we169

conduct experiments on two intent detection170

datasets (i.e., CLINC, BANKING). The pro-171

posed model outperforms the state-of-the-172

art model by a large margin of 10-12% in173

unsupervised setting and 2.5-12% in semi-174

supervised setting.175

2 Related Works176

2.1 Intent Discovery177

In general, intent detection is a task in dialogue178

system that tries to find the corresponding intents179

from the user utterances in a supervised manner180

when intent structure and the annotated data are181

given. Then the model classifies an user utterance182

into a predetermined intent structure. In contrast,183

the intent discovery task means finding or classi-184

fying new intent structures by grouping user utter-185

ances of similar meaning in an environment with-186

out intent structure or annotated data. Many meth-187

ods (Hakkani-Tür et al., 2013, 2015; Padmasundari188

and Bangalore, 2018; Haponchyk et al., 2018; Shi189

et al., 2018; Lin et al., 2020; Zhang et al., 2021b;190

Perkins and Yang, 2019; Min et al.; Vedula et al.,191

2020) have been proposed to solve the intent dis-192

covery problem, and approaches through unsuper-193

vised or semi-supervised clustering have generally194

been used.195

2.2 Deep Clustering196

Since mid 1900’s, as an attempt to extract meaning-197

ful information from the unlabeled data, clustering198

task has been actively studied (MacQueen et al.,199

1967; Gowda and Krishna, 1978; Ester et al., 1996).200

However, traditional clustering methods suffer with201

the high-dimensional data due to their lack of abil-202

ity to learn the proper representation of the data.203

Development of Deep Neural Network (DNN)204

brought strong representation ability. Especially,205

pre-trained language models (PLM) such as BERT 206

show impressive representation quality with the 207

general language data. This representation ability 208

of DNN is vigorously utilized and studied in clus- 209

tering methods as follows: DEC (Xie et al., 2016), 210

DCN (Yang et al., 2017), DAC (Chang et al., 2017) 211

and DeepCluster (Caron et al., 2018). 212

Moreover, some methods use a small number of 213

labeled data and incorporate weak supervised sig- 214

nal to tackle the intent discovery task. CDAC+ (Lin 215

et al., 2020) uses labeled data to help making bi- 216

nary similarity pseudo-labels. DeepAligned (Zhang 217

et al., 2021b) pretrains the labeled data to better 218

estimate the number of the clusters. 219

2.3 Contrastive Learning 220

In addition to PLM, contrastive learning (Becker 221

and Hinton, 1992; Xie et al., 2020; Berthelot et al., 222

2019), which is a component of self-supervised 223

learning, reports many successes in recent years. 224

Contrastive learning aims to group similar sam- 225

ples closer and separate dissimilar samples far 226

from each other. Especially, augmentation-based 227

instance-level contrastive learning is showing many 228

prominent results in computer vision tasks (He 229

et al., 2020; Chen et al., 2020a,b; Grill et al., 2020) 230

and natural language processing (NLP) tasks (Fang 231

et al., 2020; Wu et al., 2020; Zhang et al., 2021a; 232

Yan et al., 2021; Gao et al., 2021; Li et al., 2021; 233

Kim et al., 2021). In particular, Contrastive Clus- 234

tering (Li et al., 2021) and SCCL (Zhang et al., 235

2021a) integrate with the cluster-promoting objec- 236

tive function to generate better representation for 237

clustering. 238

3 Proposed Method 239

In this section, we describe how our proposed 240

method works in detail. As shown in Fig. 2, we 241

first encode the data into dense contextual represen- 242

tations while constructing auxiliary representations. 243

Second, we generate similarity matrix, which in- 244

dicates whether a pair of instances belongs to the 245

same cluster. Finally we select a positive sample 246

from each row of the matrix and train the model 247

with contrastive loss. 248

3.1 Input Representation 249

In order to extract the high-level semantic features 250

of data, we use the pre-trained language model 251

(PLM) (e.g., Devlin et al., 2018; Liu et al., 2019). 252

Given N samples, {Xi}Ni=1, we construct inputs for 253

PLM with the special tokens (e.g., [CLS], [SEP]) 254
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Figure 2: Overview of our proposed method UNICON. (A), (B) Given data, auxiliary representation and contextual
representation are extracted from sparse word representation (i.e., TF-IDF) and PLM respectively during the training
process. (C) We construct the similarity matrices for each representation and use weighted sum of them as a final
matrix. We select a pseudo-positive sample in each row of a final matrix and train the model with the contrastive loss.
(D) After the training, we extract representations from the trained PLM and apply various clustering algorithms.

and provide them to the PLM. PLM outputs the255

features (zi) as256

Ii = [CLS] Ti,1, . . . , Ti,M [SEP]

zi = PLMCLS(Ii) ∈ Rh,
(1)257

where ‘[CLS]’, ‘[SEP]’ are special tokens that rep-258

resent the entire sentence and distinguish the sen-259

tences, respectively. {Ti,k}Mk=1 denotes the set of260

tokens of Xi, M is the number of tokens, and261

PLMCLS(·) indicates the last hidden state vector262

corresponding to the ‘[CLS]’ token.263

3.2 UNICON264

Unlike previous works, we aim for adopting265

semantic-level contrastive learning method without266

any data augmentation techniques that can lead to267

semantic distortion. Let {zi}Ni=1 be the set of dense268

contextual representations of {Xi}Ni=1. We com-269

pute the similarity matrix which indicates whether270

a pair of instances belongs to the same intent (clus-271

ter), i.e.,272

SD
ij =

{
−inf, if i = j

sim(zi, zi), otherwise,
(2)273

where inf is an infinite number that prevents274

choosing the same instance as a positive pair, SD275

denotes the similarity matrix that has the N ×N276

dimensions, and sim(zi, zj) indicates the similarity 277

between zi and zj . In this paper, we use the dot 278

product of representations without the normaliza- 279

tion and dimensionality reduction as the similarity 280

function. 281

Subsequently, the sample most similar to the Xi, 282

except for itself, is denoted as a positive sample and 283

the rest of the samples become negative samples. 284

We use the NT-Xent (the normalized temperature- 285

scaled cross entropy) loss function used in Chen 286

et al. (2020a) as follows: 287

Li,j = − log
exp(sim(zi, zj)/τ)∑N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ))
,

(3) 288

where 1[k ̸=i] ∈ {0, 1} is an indicator function that 289

yields 1 if k ̸= i, and 0 elsewhere, and τ is a 290

temperature parameter that can help the model to 291

learn from hard negatives. 292

As a result of Eq. 2 and 3, our method, unlike 293

instance-level contrastive learning, can learn suit- 294

able features for clustering by explicitly grouping 295

the data instances that have the same intent. 296

Auxiliary representation Our method has an ad- 297

vantage over augmentation-based instance-level 298

contrastive learning. Augmentation-based con- 299

trastive learning pushes different instances apart re- 300

gardless of their semantic similarities (Zhang et al., 301
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2021a) while our method groups different instances302

together, taking semantic similarities into account.303

However, extracting correct positive samples304

from unlabeled data using only similarities between305

the representations of data that are not fine-tuned306

is a challenging problem. In the early stage of the307

training, PLM has not learned enough about the308

target domain yet and may output the vectors that309

do not represent instances enough. This is likely to310

result in the incorrect similarity calculation which311

leads to the erroneous positive sample selection.312

Incorrect selection of positive samples in the313

early stage can cause noise in the learning, which314

accumulates as the training progresses. As a result,315

the model performance can deteriorate.316

In order to alleviate this problem, we propose to317

use auxiliary representations that can complement318

the dense contextual representations. In this paper,319

we leverage sparse word representations (e.g., BoW,320

TF-IDF, etc.), which mainly focus on the presence321

or absence of words and the importance of words322

within the dataset, ignoring the order of words.323

These representations explicitly indicate similar-324

ity between instances regardless of their semantic325

meaning by comparing word frequency. Similar-326

ity based on the word frequency can guide model327

to select appropriate positive samples in the early328

stage of the training. As a result, the auxiliary rep-329

resentations complement our method by reducing330

noise in the early stage of the training. The auxil-331

iary representations are used as below:332

wi = Aux(Xi) ∈ R|V |,

SW
ij =

{
−inf, if i = j

sim(wi,wi), otherwise,

Sij = SD
ij + γeλSW

ij ,

(4)333

where |V | is the vocabulary size and γ is a hyper-334

parameter that reduces the influence of the auxil-335

iary representation every epoch (e). λ adjusts the336

scale between SD and SW , which is computed as337

λ = std(SD)/mean(SW ).338

Clustering Our model learns the features suitable339

for the clustering with the target of grouping in-340

stances that have the same intent together. Then,341

diverse clustering algorithms can be used. For ex-342

ample, KMeans (Lloyd, 1982) algorithm can be343

one of the algorithms, which optimizes the follow-344

ing cost function:345

346

min
W∈Rh×K ,{si∈RK}

N∑
i=1

||zi −Wsi||22 347

s.t. si,j ∈ {0, 1}, 1⊺si = 1 ∀i, j, (5) 348

where K is the predefined number of clusters, si 349

is the assignment vector which has only one non- 350

zero element, si,j denotes the jth element of si, 351

and kth column of W indicates the centroid of the 352

kth cluster. 353

4 Experiments 354

4.1 Datasets 355

We conduct experiments on the CLINC and BANK- 356

ING datasets, which are intent detection benchmark 357

datasets. CLINC (Larson et al., 2019) covers 150 358

intents over 10 domains. BANKING (Casanueva 359

et al., 2020) is a fine-grained dataset in the banking 360

domain. Detailed information on the datasets is in 361

Table 2.

Dataset # of intents Training Validation Test
CLINC 150 18,000 2,250 2,250
BANKING 77 9,003 1,000 3,080

Table 2: The statistics for CLINC and BANKING
datasets. 362

4.2 Baselines 363

We used various unsupervised clustering and semi- 364

supervised clustering algorithms as the baseline. 365

Additionally, we compare UNICON and clustering 366

methods integrating with instance-level contrastive 367

learning. 368

Unsupervised Clustering The scores of K-Means 369

(KM) (Lloyd, 1982), agglomerative clustering 370

(AG) (Gowda and Krishna, 1978), stacked autoen- 371

coder with K-Means (SAE-KM) (Vincent et al., 372

2010), DEC (Xie et al., 2016), DCN (Yang et al., 373

2017), and DeepCluster (Caron et al., 2018) are 374

directly reported in DeepAligned (Zhang et al., 375

2021b). 376

Semi-supervised Clustering CDAC+ (Lin et al., 377

2020) and DeepAligned (Zhang et al., 2021b), 378

which mainly focus on intent discovery tasks, were 379

used as the baselines and reproduced using publicly 380

released code. 381

Contrastive Learning We reproduced the Con- 382

trastive Clustering (Li et al., 2021), SimCSE (Gao 383

et al., 2021) and SCCL (Zhang et al., 2021a) by 384
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using publicly released code. Since Contrastive385

Clustering is a clustering model proposed in vi-386

sion domain, we adapt it appropriately to text do-387

main by replacing backbone model to bert-base-388

uncased, and augmentation method to Contextual389

Augmenter (Kobayashi, 2018), which is an augmen-390

tation method applied in SCCL. SimCSE (sup) and391

SCCL (sbert) leverage labeled NLI datasets for fine-392

tuning and pre-training, respectively. Otherwise,393

SimCSE (unsup) and SCCL (bert) are initilized394

with bert-base-uncased for comparing UNICON.395

4.3 Evaluation Metric396

To compare our model to the baselines, we use397

three metrics that are mainly used for clustering398

performance evaluation, i.e., Adjusted Rand Index399

(ARI), Normalized Mutual Information (NMI), and400

Accuracy (ACC). Since the indices of the clusters401

are randomly allocated, we measure the accuracy402

using Hungarian algorithm that can align the cluster403

indices with label indices.404

4.4 Implementation Details405

We use a pre-trained BERT model (bert-base-406

uncased, with 12-layer transformer and 110M pa-407

rameters) as a backbone model without any addi-408

tional layers in a single P40 GPU. In the code, we409

use Huggingface’s Transformers pytorch library1.410

To extract the auxiliary representations, we utilize411

the unigram TF-IDF. We use training learning rate412

of 1e−4, 10% warmup steps and learning rate de-413

cay to optimize the parameters. We set temperature414

τ to 0.5, γ to 0.9, batch size to 1024/450 on the415

CLINC and BANKING datasets, respectively. The416

model is trained and evaluated three times. All re-417

ported values in figures and tables are the average418

performance on the test set.419

5 Results and Analysis420

Table 3 shows the results comparing our method421

with the baselines. Our method consistently out-422

performs the baselines. In terms of accuracy, we423

achieve a new state-of-the-art performance by a424

large margin of approximately 10-12% over the425

closest competitors, i.e. SimCSE (sup) and SCCL426

(sbert) even though the closest competitors utilized427

additional resources such as labeled data. The rea-428

son for relatively low performance on BANKING429

dataset is that CLINC dataset consists of a balanced430

1https://huggingface.co/transformers/index.html
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Figure 3: Influence of labeled data ratio on CLINC (first
row) and BANKING (second row) datasets. Using only
5% labeled data can improve performance by about 8%,
and finally using 20% labeled data improve performance
by about 24%.

number of data for each intents, while BANKING 431

does not. 432

5.1 Semi-supervised Clustering 433

In this study, we conduct experiments to see the 434

effect that assistance of a few labeled data brings. 435

For the fair comparison, all semi-supervised meth- 436

ods use 10% of labeled data and we assume that all 437

classes are known. Table 3 shows the comparison 438

results. When compared with the baselines, UNI- 439

CON outperforms competitors by 12% on BANK- 440

ING dataset and 2.5% on CLINC dataset. UNICON 441

shows relatively lower performance improvement 442

in semi-supervised setting. We speculate the de- 443

crease in the effect of auxiliary representation as 444

a reason. Since labeled data already gives enough 445

guidance for the positive selection, auxiliary rep- 446

resentation does not help the model as much as in 447

unsupervised setting. 448

Furthermore, we study how the performance 449
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Setting Method CLINC BANKING
NMI ARI ACC NMI ARI ACC

Unsupervised

KM‡ 70.89 26.86 45.96 54.57 12.18 29.55
AG‡ 73.07 27.70 44.03 57.07 13.13 31.58
SAE-KM‡ 73.13 29.95 46.75 63.79 22.85 38.92
DEC‡ 74.83 27.46 46.89 67.78 27.21 41.29
DCN‡ 75.66 31.15 49.29 67.54 26.81 41.99
DAC‡ 78.40 40.49 55.94 47.35 14.24 27.41
DeepCluster‡ 65.58 19.11 35.70 41.77 8.95 20.69
SimCSE (unsup) 78.27 39.61 56.27 56.36 20.53 34.84
SimCSE (sup) 81.84 47.84 61.16 61.61 24.89 38.90
Contrastive Clustering 71.76 26.04 38.67 34.47 4.48 14.03
SCCL (bert) 72.69 29.3 45.1 50.22 14.97 28.7
SCCL (sbert) 81.61 46.74 60.3 64.2 29.33 43.9
UNICON (ours) 88.78 63.23 73.49 71.90 39.57 53.51

Semi-supervised
(ratio=10%)

CDAC+ 86.65 54.33 69.89 72.25 40.97 53.83
DeepAligned 94.65 82.16 88.53 78.96 51.66 62.50
UNICON (ours) 93.58 84.46 91.01 82.13 62.83 74.75

Table 3: Clustering performance comparison between UNICON and baselines. We evaluate both unsupervised and
semi-supervised methods on the test set of CLINC and BANKING datasets. In case of semi-supervised setting, we
leverage 10% labeled data. The highest performance is in bold, and the second highest performance is underlined.
Methods with ‡ indicate that we directly report the scores from the corresponding paper, and the rest of the methods
are reproduced using official code

changes as we use different ratio of labeled data.450

The experiment results are shown in Fig. 3. Conse-451

quently, the performance improves as more labeled452

data is used. Especially, utilizing 5% of labeled453

data increases by about 8 points. On the other hand,454

there is no significant change in performance when455

we add 1% of labeled data because if 1% of utter-456

ances are sampled, it is very unlikely for utterances457

with the same intent to appear together withing a458

mini-batch.459

5.2 Auxiliary Representation Study460

Ablation Study We carry out ablation studies to461

show the importance and complementarity of each462

component. First, Fig. 4 shows what the training463

process looks like when the auxiliary representa-464

tion is removed. Since the loss of PLM-only is465

very low, it seems like the training is going well.466

However, we can observe that the actual accu-467

racy decreases as the training progresses. This phe-468

nomenon is caused by the accumulation of noise469

coming from the incorrect positive sample selec-470

tion. Second, as shown in Table 4, the clustering471

accuracy is 51.11% when PLM is removed and472

15.56% when the auxiliary representation is re-473

moved, which is much lower than the accuracy of474

UNICON. This implies that each model cannot be475

used for standalone and complements each other. 476

We conjecture that since PLM based representa- 477

tions concentrate on grasping the semantics and the 478

auxiliary representations concentrate on grasping 479

the existence of the specific words, each conveys 480

different information and complements each other. 481
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Figure 4: Losses (left) and clustering accuracies (right)
when auxiliary representation is included across the
training process and when it is not. We perform experi-
ments on CLINC dataset.

Various Auxiliary Representations We study sev- 482

eral representation methods to compensate the 483

noise that comes from the incomplete represen- 484

tation ability of PLM at the early stage of train- 485

ing. We assume that the word representations can 486

complement the contextual representations due to 487

the nature of the intent detection datasets used in 488

dialogue systems. The datasets consist of short ut- 489

terances and the utterances in the same intent share 490
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many keywords with each other. As shown in Ta-491

ble 4, all word representations consistently improve492

the performance of the model. In particular, TF-IDF493

method achieves the best performance. The GloVe494

word embedding model has relatively lower perfor-495

mance than others. This means that the presence496

or absence of specific keywords has more helpful497

information, as mentioned above.498

Method NMI ARI ACC
PLM + TFIDF (ours) 88.78 63.23 73.49
TFIDF-only 74.49 25.63 51.11
PLM-only 49.89 2.82 15.56
PLM + BoW 79.86 42.62 56.31
PLM + GloVe 78.93 40.02 53.16

Table 4: The experiment results about the auxiliary rep-
resentations. The experiments are conducted on CLINC
dataset.

5.3 Clustering Quality Analysis499

We raised the problem of instance-level contrastive500

learning through data augmentation in Section 1. To501

show that UNICON can generate more suitable rep-502

resentations for clustering than instance-level con-503

trastive learning-based models, we utilize t-SNE504

visualization tools on SimCSE, SCCL, Contrastive505

Clustering and UNICON. As shown in Fig 5, Sim-506

CSE and SCCL that utilizes data augmentation507

does not group data with the same label together508

nor spread data with the different labels apart. In509

the case of the Contrastive Clustering, which lever-510

ages not only data augmentation but also cluster-511

promoting objective, clusters data better than Sim-512

CSE and SCCL. However, many clusters contain513

data with various labels which leads to low accu-514

racy. Unlike the other three models, the results of515

UNICON show that each cluster is well grouped,516

and the data in each cluster have consistent labels.517

Additionally, we measure intra-cluster distance518

of each model. Intra-cluster distance calculates the519

euclidean distance between the centroid of the clus-520

ter and the data within the cluster, which evaluates521

how well the model agglomerates the clusters. As522

depicted in Fig. 6, the intra-cluster distance of UNI-523

CON has the lowest average value, followed by524

Contrastive Clustering and SCCL with clustering-525

promoting objective, and SimCSE has the worst526

performance.527
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Figure 5: We compare UNICON and other baselines
with the contrastive learning through t-SNE visualiza-
tion. We randomly sample 30 intents from CLINC
dataset.
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Figure 6: Intra-cluster distance distribution of each
model on CLINC dataset.

6 Conclusion 528

In this work, we propose a clustering method that 529

utilizes power of contrastive learning. To avoid 530

the semantic distortion problem in language data 531

augmentation, we propose to pair an instance with 532

another instance based on the similarity measure. 533

Additionally, we introduce auxiliary representation 534

which guides the model to select appropriate pos- 535

itive pair at the early stage of the training. Exten- 536

sive experiments on two challenging benchmark 537

datasets report significant improvement in the both 538

unsupervised and semi-supervised clustering per- 539

formance compared to the baselines. In the future, 540

we plan to study methods to select more robust 541

positive samples with various datasets. 542
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