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Abstract

Discovering new intents is crucial for expand-
ing domains in dialogue systems or natural lan-
guage understanding (NLU) systems. A typical
approach is to leverage unsupervised and semi-
supervised learning to train a neural encoder to
produce representations of utterances that are
adequate for clustering then perform clustering
on the representations to detect unseen clusters
of intents. Recently, instance-level contrastive
learning has been proposed to improve repre-
sentation quality for better clustering. However,
the proposed method suffers from semantic dis-
tortion in text augmentation and even from rep-
resentation inadequacy due to limitations of
using representations of pre-trained language
models, typically BERT. Neural encoders can
be powerful representation learners, but the ini-
tial parameters of pre-trained language models
do not reliably produce representations that are
suitable for capturing semantic distances. To
eliminate the necessity of data augmentation
and reduce the negative impact of pre-trained
language models as encoders, we propose UNI-
CON, a novel contrastive learning method that
utilizes auxiliary external representations to
provide powerful guidance for the encoder. The
proposed method produces clusters that facili-
tates intent discovery, achieving state-of-the-art
on intent detection benchmarks by a large mar-
gin in both unsupervised and semi-supervised
settings.

1 Introduction

Intent discovery refers to the problem of finding
new intent classes in natural language understand-
ing (NLU) tasks from unlabeled user utterances.
The ability to discover new intents is fundamen-
tally important for dialogue systems in industrial
practice, because users can be creative in interact-
ing with the system and the user population’s in-
terest may change over time with varying degrees
depending on the applications. Proactively design-
ing new intents is a labor-intensive process, hence

<reminder_update> Augmented Text

positive

(a) [Please remind me at a later time [«——>{Please kiss me at a later time| (b)

negative negativ

(c) [Make me a reminder about booking it]  [Bring the volume up overall | (d)

<reminder_update> <change_volumn>

Figure 1: Intance-level contrastive learning concept. (a)
is an original text, (b) is augmented from the original
text. (¢c) and (d) are other instances in the same mini-
batch. The instance-level contrastive learning keeps the
positive sample close and the negative samples away.

a data-driven intent discovery system could dras-
tically reduce the continual intent-designing cost
and help keep the user experience more engaging
and satisfactory.

Typically, intent discovery is achieved by (1)
training a powerful neural encoder, preferrably a
pre-trained neural language model such as BERT
(Devlin et al., 2018), (2) and performing cluster-
ing on the representations produced by the en-
coder from an unlabeled dataset to detect unseen
intent clusters. Training encoders without supervi-
sion belongs to the unsupervised clustering fam-
ily (Hakkani-Tiir et al., 2013, 2015; Padmasundari
and Bangalore, 2018; Haponchyk et al., 2018; Shi
et al., 2018), while semi-supervised clustering uti-
lizes a small amount of intent-labeled data (Lin
et al., 2020; Zhang et al., 2021b).

Recent methods leverage deep neural encoders
to produce robust and rich representations that
can be tailored to produce meaningful clusters
via self-supervised learning. Various architectures
and training algorithms have been proposed in
this regard, namely feature assembly using auto-
encoders (Shi et al., 2018), pairwise binary classi-
fication using instance similarity (Lin et al., 2020),
and self-supervised learning with aligned psuedo-
labels (Zhang et al., 2021b).

Recently, an instance-level contrastive learning
method has attracted much attention. A popular
set-up for contrastive learning is the instance-level
approach, which trains the encoder to keep the rep-



Intent Original Text

BERT Augmented Text

RoBERTa Augmented Text

update_playlist | Add this song to shared playlist

Introducing this song to shared playlist

Add this song to shared messages

current_location | My current location

My target location

My current shoes

change_accent | Let’s change your accent

Let’s change your luck

Let’s change your email

cancel

Can you please cancel

Can you please out

Can you please send

Table 1: On the CLINC dataset, we utilize Contextual Augmenter (Kobayashi, 2018) which finds the most appro-
priate words for augmentation by feeding surrounding words to BERT and RoBERTa models. Then, we perform
augmentation by inserting them or replacing original words with them. This table shows that augmented text may
not preserve the original intent since certain keywords may be changed.

resentations of hard positive samples generated via
data augmentation closer to each other in contrast
to other negative samples (Chen et al., 2020a; Wu
et al., 2020; Giorgi et al., 2020; Grill et al., 2020;
Gao et al., 2021; Yan et al., 2021; Kim et al., 2021).
Some works proposed to integrate clustering dur-
ing instance-level contrastive learning to further
improve the clustering results. For example, Li et al.
(2021) conducts cluster-level contrastive learning
on augmented images on top of the instance-level
contrastive learning. Zhang et al. (2021a) proposed
optimizing both the clustering loss based on KL-
divergence and the contrastive learning loss from
augmentations.

However, previous works have three limitations.
First, the existing instance-level contrastive learn-
ing methods do not consider the semantic similar-
ities among data points and sets up positive and
negative samples indiscriminately. As shown in
Fig. 1, a typical contrastive learning method uses
in-batch samples as the negative samples and aug-
mented text as the positive samples. However, the
positive sample may not be truly a positive sam-
ple as data augmentation perturbations may cause
class-inconsistency, while examples that are con-
sidered in the same intent category as the main
example may end up being chosen as negative sam-
ples. This indiscriminative training procedure may
cause harm to the ability of the encoder to learn
appropriate representations for producing desired
clustering results.

Second, the data augmentation techniques used
in previous works (Zhang et al., 2021a; Yan et al.,
2021; Wu et al., 2020; Zang et al., 2020) can cause
semantic distortion, which results in intent incon-
sistency in augmented texts. To illustrate semantic
distortion, we showcase examples before and after
the text augmentation method described in Zhang
et al. (2021a) on CLINC dataset. As shown in Ta-
ble 1, the augmentation may produce perturbed
utterances that have different intent classification
from the original utterance. The tendency to pro-

duce intent-inconsistency samples of text augmen-
tation techniques can be particularly harmful in
short utterance intent classification tasks, as there
is a higher chance of substituting intent-sensitive
keywords in the utterance.

Finally, the typical choice for deep neural encod-
ing (e.g., BERT) may not adequately produce repre-
sentations that capture semantic distances, greatly
increasing the risk of falling into local optima. This
phenomenon has been observed in previous studies
(Kim et al., 2021; Hu et al., 2020), especially when
the [CLS] embedding is used as the representa-
tion for the entire text or utterance. Our ablation
studies (Table 4) also support the idea that naive
adoption of BERT as the feature extractor has a
detrimental effect in learning clustering-friendly
representations, scoring merely 2.82 in the ARI
evaluation measure for CLINC.

To alleviate aforementioned problems, we pro-
pose a novel contrastive learning that (1) does not
require an explicit data augmentation technique, (2)
improves representation quality through similarity-
based contrastive learning, and (3) circumventing
the BERT representation issue via external auxil-
iary similarity measures.

Using similarity-based pseudo positive samples
predicted by insufficiently trained model is ex-
tremely unstable because the pseudo-labels may
not be correctly selected. The noise caused by in-
correct selection accumulates as the training pro-
gresses. To mitigate this problem, we propose to
adopt auxiliary representations that indicate the
presence of words regardless of order. We show the
effectiveness of the auxiliary representation and
describe the details in Section 3.2.

In summary, our main contributions are as fol-
lows:

* We propose a novel contrastive learning
method for clustering, called UNICON. This
method can conduct semantic-level con-
trastive learning without data augmentation,
which does not suffer from semantic distor-



tion. In addition, the intra-cluster distance
could be reduced by selecting two different
instances inside the batch as a positive pair,
which helps generate proper representations
for clustering.

* We propose to use auxiliary representations.
An insufficiently fine-tuned PLM may extract
positive samples overconfidently, which leads
to training failure. The auxiliary representa-
tions can mitigate this problem by guiding the
model to extract appropriate positive samples.

* To show the effectiveness of our model, we
conduct experiments on two intent detection
datasets (i.e., CLINC, BANKING). The pro-
posed model outperforms the state-of-the-
art model by a large margin of 10-12% in
unsupervised setting and 2.5-12% in semi-
supervised setting.

2 Related Works

2.1 Intent Discovery

In general, intent detection is a task in dialogue
system that tries to find the corresponding intents
from the user utterances in a supervised manner
when intent structure and the annotated data are
given. Then the model classifies an user utterance
into a predetermined intent structure. In contrast,
the intent discovery task means finding or classi-
fying new intent structures by grouping user utter-
ances of similar meaning in an environment with-
out intent structure or annotated data. Many meth-
ods (Hakkani-Tiir et al., 2013, 2015; Padmasundari
and Bangalore, 2018; Haponchyk et al., 2018; Shi
et al., 2018; Lin et al., 2020; Zhang et al., 2021b;
Perkins and Yang, 2019; Min et al.; Vedula et al.,
2020) have been proposed to solve the intent dis-
covery problem, and approaches through unsuper-
vised or semi-supervised clustering have generally
been used.

2.2 Deep Clustering

Since mid 1900’s, as an attempt to extract meaning-
ful information from the unlabeled data, clustering
task has been actively studied (MacQueen et al.,
1967; Gowda and Krishna, 1978; Ester et al., 1996).
However, traditional clustering methods suffer with
the high-dimensional data due to their lack of abil-
ity to learn the proper representation of the data.
Development of Deep Neural Network (DNN)
brought strong representation ability. Especially,

pre-trained language models (PLM) such as BERT
show impressive representation quality with the
general language data. This representation ability
of DNN is vigorously utilized and studied in clus-
tering methods as follows: DEC (Xie et al., 2016),
DCN (Yang et al., 2017), DAC (Chang et al., 2017)
and DeepCluster (Caron et al., 2018).

Moreover, some methods use a small number of
labeled data and incorporate weak supervised sig-
nal to tackle the intent discovery task. CDAC+ (Lin
et al., 2020) uses labeled data to help making bi-
nary similarity pseudo-labels. DeepAligned (Zhang
et al., 2021b) pretrains the labeled data to better
estimate the number of the clusters.

2.3 Contrastive Learning

In addition to PLM, contrastive learning (Becker
and Hinton, 1992; Xie et al., 2020; Berthelot et al.,
2019), which is a component of self-supervised
learning, reports many successes in recent years.
Contrastive learning aims to group similar sam-
ples closer and separate dissimilar samples far
from each other. Especially, augmentation-based
instance-level contrastive learning is showing many
prominent results in computer vision tasks (He
et al., 2020; Chen et al., 2020a,b; Grill et al., 2020)
and natural language processing (NLP) tasks (Fang
et al., 2020; Wu et al., 2020; Zhang et al., 2021a;
Yan et al., 2021; Gao et al., 2021; Li et al., 2021;
Kim et al., 2021). In particular, Contrastive Clus-
tering (Li et al., 2021) and SCCL (Zhang et al.,
2021a) integrate with the cluster-promoting objec-
tive function to generate better representation for
clustering.

3 Proposed Method

In this section, we describe how our proposed
method works in detail. As shown in Fig. 2, we
first encode the data into dense contextual represen-
tations while constructing auxiliary representations.
Second, we generate similarity matrix, which in-
dicates whether a pair of instances belongs to the
same cluster. Finally we select a positive sample
from each row of the matrix and train the model
with contrastive loss.

3.1 Input Representation

In order to extract the high-level semantic features
of data, we use the pre-trained language model
(PLM) (e.g., Devlin et al., 2018; Liu et al., 2019).
Given N samples, {X;}¥,, we construct inputs for
PLM with the special tokens (e.g., [CLS], [SEP])
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Figure 2: Overview of our proposed method UNICON. (A), (B) Given data, auxiliary representation and contextual
representation are extracted from sparse word representation (i.e., TF-IDF) and PLM respectively during the training
process. (C) We construct the similarity matrices for each representation and use weighted sum of them as a final
matrix. We select a pseudo-positive sample in each row of a final matrix and train the model with the contrastive loss.
(D) After the training, we extract representations from the trained PLM and apply various clustering algorithms.

and provide them to the PLM. PLM outputs the
features (z;) as

I; =[CLS] T, ..., Tim [SEP]
Z; = PLMCLs(Ii) S Rh,

where ‘[CLS]’, ‘[SEP]’ are special tokens that rep-
resent the entire sentence and distinguish the sen-
tences, respectively. {7} ;- }2L | denotes the set of
tokens of X;, M is the number of tokens, and
PLMcys(-) indicates the last hidden state vector
corresponding to the ‘[CLS]’ token.

3.2 UNICON

Unlike previous works, we aim for adopting
semantic-level contrastive learning method without
any data augmentation techniques that can lead to
semantic distortion. Let {z;}Y; be the set of dense
contextual representations of {X;}¥,. We com-
pute the similarity matrix which indicates whether
a pair of instances belongs to the same intent (clus-
ter), i.e.,

—inf, ifi =7
SH=1_ . 2)
sim(z;,z;), otherwise,

where inf is an infinite number that prevents
choosing the same instance as a positive pair, S”
denotes the similarity matrix that has the N x N

dimensions, and sim(z;, z;) indicates the similarity
between z; and z;. In this paper, we use the dot
product of representations without the normaliza-
tion and dimensionality reduction as the similarity
function.

Subsequently, the sample most similar to the X;,
except for itself, is denoted as a positive sample and
the rest of the samples become negative samples.
We use the NT-Xent (the normalized temperature-
scaled cross entropy) loss function used in Chen
et al. (2020a) as follows:

exp(sim(z;,z;)/7)
Zivzl 124 exp(sim(z;, 2 ) /7)) ’
3)
where 1(;; € {0, 1} is an indicator function that
yields 1 if k& # 4, and O elsewhere, and 7 is a
temperature parameter that can help the model to
learn from hard negatives.

ACL]' = — log

As a result of Eq. 2 and 3, our method, unlike
instance-level contrastive learning, can learn suit-
able features for clustering by explicitly grouping
the data instances that have the same intent.

Aucxiliary representation Our method has an ad-
vantage over augmentation-based instance-level
contrastive learning. Augmentation-based con-
trastive learning pushes different instances apart re-
gardless of their semantic similarities (Zhang et al.,



2021a) while our method groups different instances
together, taking semantic similarities into account.

However, extracting correct positive samples
from unlabeled data using only similarities between
the representations of data that are not fine-tuned
is a challenging problem. In the early stage of the
training, PLM has not learned enough about the
target domain yet and may output the vectors that
do not represent instances enough. This is likely to
result in the incorrect similarity calculation which
leads to the erroneous positive sample selection.

Incorrect selection of positive samples in the
early stage can cause noise in the learning, which
accumulates as the training progresses. As a result,
the model performance can deteriorate.

In order to alleviate this problem, we propose to
use auxiliary representations that can complement
the dense contextual representations. In this paper,
we leverage sparse word representations (e.g., BoW,
TF-IDF, etc.), which mainly focus on the presence
or absence of words and the importance of words
within the dataset, ignoring the order of words.

These representations explicitly indicate similar-
ity between instances regardless of their semantic
meaning by comparing word frequency. Similar-
ity based on the word frequency can guide model
to select appropriate positive samples in the early
stage of the training. As a result, the auxiliary rep-
resentations complement our method by reducing
noise in the early stage of the training. The auxil-
iary representations are used as below:

wW; = Aux(Xi) S R'Vl,

—inf, ifi=7
Si =1 . ) 4)
sim(w;,w;), otherwise,

D w

Sij = Sij +Y°ASi;

where |V| is the vocabulary size and ~ is a hyper-
parameter that reduces the influence of the auxil-
iary representation every epoch (e). A adjusts the

scale between S” and 8", which is computed as
A = std(SP)/mean(SW).

Clustering Our model learns the features suitable
for the clustering with the target of grouping in-
stances that have the same intent together. Then,
diverse clustering algorithms can be used. For ex-
ample, KMeans (Lloyd, 1982) algorithm can be
one of the algorithms, which optimizes the follow-
ing cost function:

N
> llzi — Wi 3

i=1
S.t. Sij S {0, 1}7 1Tsi =1 Vi,j, (5)

min
WEeRM<K [, cRK}

where K is the predefined number of clusters, s;
is the assignment vector which has only one non-
zero element, s; ; denotes the jth element of s;,
and kth column of W indicates the centroid of the
kth cluster.

4 Experiments

4.1 Datasets

We conduct experiments on the CLINC and BANK-
ING datasets, which are intent detection benchmark
datasets. CLINC (Larson et al., 2019) covers 150
intents over 10 domains. BANKING (Casanueva
et al., 2020) is a fine-grained dataset in the banking
domain. Detailed information on the datasets is in
Table 2.

Dataset #of intents Training Validation Test
CLINC 150 18,000 2,250 2,250
BANKING 77 9,003 1,000 3,080

Table 2: The statistics for CLINC and BANKING
datasets.

4.2 Baselines

We used various unsupervised clustering and semi-
supervised clustering algorithms as the baseline.
Additionally, we compare UNICON and clustering
methods integrating with instance-level contrastive
learning.

Unsupervised Clustering The scores of K-Means
(KM) (Lloyd, 1982), agglomerative clustering
(AG) (Gowda and Krishna, 1978), stacked autoen-
coder with K-Means (SAE-KM) (Vincent et al.,
2010), DEC (Xie et al., 2016), DCN (Yang et al.,
2017), and DeepCluster (Caron et al., 2018) are
directly reported in DeepAligned (Zhang et al.,
2021b).

Semi-supervised Clustering CDAC+ (Lin et al.,
2020) and DeepAligned (Zhang et al., 2021b),
which mainly focus on intent discovery tasks, were
used as the baselines and reproduced using publicly
released code.

Contrastive Learning We reproduced the Con-
trastive Clustering (Li et al., 2021), SimCSE (Gao
et al., 2021) and SCCL (Zhang et al., 2021a) by



using publicly released code. Since Contrastive
Clustering is a clustering model proposed in vi-
sion domain, we adapt it appropriately to text do-
main by replacing backbone model to bert-base-
uncased, and augmentation method to Contextual
Augmenter (Kobayashi, 2018), which is an augmen-
tation method applied in SCCL. SimCSE (sup) and
SCCL (sbert) leverage labeled NLI datasets for fine-
tuning and pre-training, respectively. Otherwise,
SimCSE (unsup) and SCCL (bert) are initilized
with bert-base-uncased for comparing UNICON.

4.3 Evaluation Metric

To compare our model to the baselines, we use
three metrics that are mainly used for clustering
performance evaluation, i.e., Adjusted Rand Index
(ARI), Normalized Mutual Information (NMI), and
Accuracy (ACC). Since the indices of the clusters
are randomly allocated, we measure the accuracy
using Hungarian algorithm that can align the cluster
indices with label indices.

4.4 Implementation Details

We use a pre-trained BERT model (bert-base-
uncased, with 12-layer transformer and 110M pa-
rameters) as a backbone model without any addi-
tional layers in a single P40 GPU. In the code, we
use Huggingface’s Transformers pytorch library!.
To extract the auxiliary representations, we utilize
the unigram TF-IDF. We use training learning rate
of 1e=4, 10% warmup steps and learning rate de-
cay to optimize the parameters. We set temperature
7 to 0.5, v to 0.9, batch size to 1024/450 on the
CLINC and BANKING datasets, respectively. The
model is trained and evaluated three times. All re-
ported values in figures and tables are the average
performance on the test set.

5 Results and Analysis

Table 3 shows the results comparing our method
with the baselines. Our method consistently out-
performs the baselines. In terms of accuracy, we
achieve a new state-of-the-art performance by a
large margin of approximately 10-12% over the
closest competitors, i.e. SimCSE (sup) and SCCL
(sbert) even though the closest competitors utilized
additional resources such as labeled data. The rea-
son for relatively low performance on BANKING
dataset is that CLINC dataset consists of a balanced

"https://huggingface.co/transformers/index.html
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Figure 3: Influence of labeled data ratio on CLINC (first
row) and BANKING (second row) datasets. Using only
5% labeled data can improve performance by about 8%,
and finally using 20% labeled data improve performance
by about 24%.

number of data for each intents, while BANKING
does not.

5.1 Semi-supervised Clustering

In this study, we conduct experiments to see the
effect that assistance of a few labeled data brings.
For the fair comparison, all semi-supervised meth-
ods use 10% of labeled data and we assume that all
classes are known. Table 3 shows the comparison
results. When compared with the baselines, UNI-
CON outperforms competitors by 12% on BANK-
ING dataset and 2.5% on CLINC dataset. UNICON
shows relatively lower performance improvement
in semi-supervised setting. We speculate the de-
crease in the effect of auxiliary representation as
areason. Since labeled data already gives enough
guidance for the positive selection, auxiliary rep-
resentation does not help the model as much as in
unsupervised setting.

Furthermore, we study how the performance



. CLINC BANKING
Setting Method NMI ARl ACC NMI ARl ACC
KM1 70.89 26.86 4596 54.57 12.18 29.55
AGI 73.07 27.70 44.03 57.07 13.13 31.58
SAE-KM1 73.13 2995 46.75 63.79 22.85 38.92
Unsupervised DECt 7483 2746 46.89 67.78 27.21 41.29
DCN1 75.66 31.15 49.29 67.54 26.81 41.99
DACTI 78.40 40.49 5594 4735 1424 2741
DeepCluster? 65.58 19.11 35.70 41.77 895 20.69
SimCSE (unsup) 78.27 39.61 56.27 56.36 20.53 34.84
SimCSE (sup) 81.84 47.84 61.16 61.61 24.89 38.90
Contrastive Clustering | 71.76 26.04 38.67 34.47 448 14.03
SCCL (bert) 72.69 293 451 50.22 1497 28.7
SCCL (sbert) 81.61 46.74 603 642 29.33 439
UNICON (ours) 88.78 63.23 7349 7190 39.57 53.51
Semi-supervised CDAC+‘ 86.65 54.33 69.89 7225 4097 53.83
(ratio=10%) DeepAligned 94.65 82.16 88.53 78.96 51.66 62.50
UNICON (ours) 93.58 8446 91.01 82.13 62.83 74.75

Table 3: Clustering performance comparison between UNICON and baselines. We evaluate both unsupervised and
semi-supervised methods on the test set of CLINC and BANKING datasets. In case of semi-supervised setting, we
leverage 10% labeled data. The highest performance is in bold, and the second highest performance is underlined.
Methods with I indicate that we directly report the scores from the corresponding paper, and the rest of the methods

are reproduced using official code

changes as we use different ratio of labeled data.
The experiment results are shown in Fig. 3. Conse-
quently, the performance improves as more labeled
data is used. Especially, utilizing 5% of labeled
data increases by about 8 points. On the other hand,
there is no significant change in performance when
we add 1% of labeled data because if 1% of utter-
ances are sampled, it is very unlikely for utterances
with the same intent to appear together withing a
mini-batch.

5.2 Auxiliary Representation Study

Ablation Study We carry out ablation studies to
show the importance and complementarity of each
component. First, Fig. 4 shows what the training
process looks like when the auxiliary representa-
tion is removed. Since the loss of PLM-only is
very low, it seems like the training is going well.
However, we can observe that the actual accu-
racy decreases as the training progresses. This phe-
nomenon is caused by the accumulation of noise
coming from the incorrect positive sample selec-
tion. Second, as shown in Table 4, the clustering
accuracy is 51.11% when PLM is removed and
15.56% when the auxiliary representation is re-
moved, which is much lower than the accuracy of
UNICON. This implies that each model cannot be

used for standalone and complements each other.
We conjecture that since PLM based representa-
tions concentrate on grasping the semantics and the
auxiliary representations concentrate on grasping
the existence of the specific words, each conveys
different information and complements each other.

—— UNICON
PLM-only

Loss
Accuracy

Step Step

Figure 4: Losses (left) and clustering accuracies (right)
when auxiliary representation is included across the
training process and when it is not. We perform experi-
ments on CLINC dataset.

Various Auxiliary Representations We study sev-
eral representation methods to compensate the
noise that comes from the incomplete represen-
tation ability of PLM at the early stage of train-
ing. We assume that the word representations can
complement the contextual representations due to
the nature of the intent detection datasets used in
dialogue systems. The datasets consist of short ut-
terances and the utterances in the same intent share



many keywords with each other. As shown in Ta-
ble 4, all word representations consistently improve
the performance of the model. In particular, TF-IDF
method achieves the best performance. The GloVe
word embedding model has relatively lower perfor-
mance than others. This means that the presence
or absence of specific keywords has more helpful
information, as mentioned above.

Method NMI ARI ACC
PLM + TFIDF (ours) | 88.78 63.23 73.49
TFIDF-only 74.49 25.63 51.11
PLM-only 4989 2.82 15.56
PLM + BoW 79.86 42.62 56.31
PLM + GloVe 78.93 40.02 53.16

Table 4: The experiment results about the auxiliary rep-
resentations. The experiments are conducted on CLINC
dataset.

5.3 Clustering Quality Analysis

We raised the problem of instance-level contrastive
learning through data augmentation in Section 1. To
show that UNICON can generate more suitable rep-
resentations for clustering than instance-level con-
trastive learning-based models, we utilize t-SNE
visualization tools on SimCSE, SCCL, Contrastive
Clustering and UNICON. As shown in Fig 5, Sim-
CSE and SCCL that utilizes data augmentation
does not group data with the same label together
nor spread data with the different labels apart. In
the case of the Contrastive Clustering, which lever-
ages not only data augmentation but also cluster-
promoting objective, clusters data better than Sim-
CSE and SCCL. However, many clusters contain
data with various labels which leads to low accu-
racy. Unlike the other three models, the results of
UNICON show that each cluster is well grouped,
and the data in each cluster have consistent labels.

Additionally, we measure intra-cluster distance
of each model. Intra-cluster distance calculates the
euclidean distance between the centroid of the clus-
ter and the data within the cluster, which evaluates
how well the model agglomerates the clusters. As
depicted in Fig. 6, the intra-cluster distance of UNI-
CON has the lowest average value, followed by
Contrastive Clustering and SCCL with clustering-
promoting objective, and SimCSE has the worst
performance.
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Figure 5: We compare UNICON and other baselines
with the contrastive learning through t-SNE visualiza-
tion. We randomly sample 30 intents from CLINC
dataset.

CLINC

Intra-Cluster Distance

: -

SimCSE SCCL Contrastive Clustering ~ UNICON

Figure 6: Intra-cluster distance distribution of each
model on CLINC dataset.

6 Conclusion

In this work, we propose a clustering method that
utilizes power of contrastive learning. To avoid
the semantic distortion problem in language data
augmentation, we propose to pair an instance with
another instance based on the similarity measure.
Additionally, we introduce auxiliary representation
which guides the model to select appropriate pos-
itive pair at the early stage of the training. Exten-
sive experiments on two challenging benchmark
datasets report significant improvement in the both
unsupervised and semi-supervised clustering per-
formance compared to the baselines. In the future,
we plan to study methods to select more robust
positive samples with various datasets.
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