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Abstract

The two key characteristics of a normalizing flow is that it is invertible (in particular,
dimension preserving) and that it monitors the amount by which it changes the
likelihood of data points as samples are propagated along the network. Recently,
multiple generalizations of normalizing flows have been introduced that relax
these two conditions [1, 2]. On the other hand, neural networks only perform
a forward pass on the input, there is neither a notion of an inverse of a neural
network nor is there one of its likelihood contribution. In this paper we argue
that certain neural network architectures can be enriched with a stochastic inverse
pass and that their likelihood contribution can be monitored in a way that they fall
under the generalized notion of a normalizing flow mentioned above. We term this
enrichment flowification. We prove that neural networks only containing linear and
convolutional layers and invertible activations such as LeakyReLU can be flowified
and evaluate them in the generative setting on image datasets.

1 Introduction

Density estimation techniques have proven effective on a wide variety of downstream tasks such
as sample generation and anomaly detection [3–8]. Normalizing flows and autoregressive models
perform very well at density estimation but do not easily scale to large dimensions [8–10] and have
to satisfy strict design constraints to ensure efficient computation of their Jacobians and inverses. Ad-
vances in other areas of machine learning cannot be utilized as flow architectures because they are not
typically seen as being invertible; this restricts the application of highly optimized architectures from
many domains to density estimation, and the use of the likelihood for diagnosing these architectures.

Methods using standard convolutions and residual layers for density estimation have been developed
for architectures with specific properties [11–14]. These methods do not provide a recipe for
converting general architectures into flows. There is no known correspondence between normalizing
flows and the operations defined by linear and convolutional layers.

In this paper we show that a large proportion of machine learning models can be trained as normalizing
flows. The forward pass of these models remains unchanged apart from the possible addition of
uncorrelated noise. To demonstrate our formulation works we apply it to fully connected layers,
convolutions and residual connections.

The contributions of this paper include:

⇤Equal contribution.
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• In §3.1 we show that linear layers induce densities as augmented normalizing flows [2] with
the multi-scale architecture used in RealNVPs [6]. We also show how these layers can be
viewed as funnels [15] to increase their expressivity. We term this process flowification.

• In §3.2 we argue that most ML architectures can be decomposed into simple building
blocks that are easy to flowify. As an example, we derive the specifics for two dimensional
convolutional layers and residual blocks.

• In §4 we flowify multi-layer perceptrons and convolutional networks and train them as
normalizing flows using the likelihood. This demonstrates that models built from standard
layers can be used for density estimation directly.

2 Background

Normalizing flows

Given a base probability density {p0(z)|z 2 Z} and a diffeomorphism f : X ! Z, the pullback
along f induces a probability density {p(x)|x 2 X} on X , where the likelihood of any x 2 X

is given by p(x) = p0(f(x))|det(Jf
x )|, where J

f
x is the Jacobian of f evaluated at x. Thus, the

log-likelihoods of the two densities are related by an additive term, which will be referred to as
the likelihood contribution V(x, z) [1]. Normalizing flows [3] parametrize a family f✓ of invertible
functions from X to Z. The parameters ✓ are then optimized to maximize the likelihood of the
training data. A lot of development has gone into constructing flexible invertible functions with easy
to calculate Jacobians where both the forward and inverse passes are fast to compute [6–8, 16, 17].

As the function f must be invertible it is required to preserve the dimension of the data. This limits
the expressivity of f and makes it expensive to model high dimensional data distributions. To reduce
these issues several works have studied dimension altering variants of flows [2, 1, 18–21].

Dimension altering generalizations of normalizing flows

Reducing the dimensionality A simple method for altering the dimension of a flow is to take
the output of an intermediate layer z

0 and partition it into two pieces z
0 = {z

0
1, z

0
2}. Multi-

scale architectures [6] match z
0
2 directly to a base density and apply further transformations z

0
1.

Funnels [15] generalize this by allowing z
0
2 to depend on z

0
1, i.e. they work with the model

p(z0) = p(f 0(z01))p(z
0
2|f

0(z1))| det J
f 0

z0
1
| where the conditional distribution p(z02|f

0(z1)) is train-
able. It is useful to think of these factorization schemes as dimension reducing mechanisms from
dim(z0) to dim(z01).

Increasing the dimensionality Dimension increasing flow layers can improve a models flexibility,
as demonstrated by augmented normalizing flows [2]. To increase the dimensionality, x is embedded
into a larger dimensional space and data independent noise u is added to the embedding to obtain
a distribution with support of nonzero measure. This noise addition x 7! (x, u) is similar to
dequantization [6, 22], but is orthogonal to the distribution of x and increases its dimension from
dimx to dimx+ dimu. Under an augmentation the likelihood of x can be estimated using

log p(x) = log

Z
du p(x, u) (1)

= log

Z
du

p(u)p(x, u)

p(u)
(2)

�

Z
du p(u) log

p(x, u)

p(u)
(3)

= Eu⇠p(u)

⇥
log

p(x, u)

p(u)

⇤
(4)

= Eu⇠p(u)

⇥
log p(x, u)� log p(u)

⇤
. (5)

In practice, we estimate this expectation value by sampling u everytime a datapoint is passed through
the network. This means the integral is estimated with a single sample as in surVAEs [1].
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3 Flowification

Suppose A is a network architecture with parameter space ⇥. Then for any choice of ✓ 2 ⇥ the
network with parameters ✓ realizes a function A✓ : RD

! RC for some D and C. Similarly, a
normalizing flow model F is a parametric distribution on some RE , where for any choice of � from
their parameter space � they define a density function F� on RE . In this work we show that a large
class of neural network architectures can be thought of as a flow model by constructing a map

n
network

architectures

o
!

n
flow

models

o
. (6)

The embedding of A to its flowification F
A results in a flow model that can realize density functions

on the augmented space RD
⇥ RN for some N � 0, which in turn induces a density on RD by

integrating out the component on RN . The parameter space of FA factorises as ⇥⇥ � where ⇥ is
the parameter space of A and also that of the forward pass of FA, while � parametrises the inverse
pass of FA. In the simplest case � = ;, i.e. flowification does not require additional parameters. It is
in this sense that we claim that a large fraction of machine learning models are normalizing flows.

Terminology In what follows we work with conditional distributions such as p(z|x) and it will
be practical to think of them as “stochastic functions” p : x 7! z, that take an input x and produce
an output z ⇠ p(z|x). Conversely, we think of a function f : x 7! z as the Dirac �-distribution
f(z|x) = �(z � f(x)). These definitions allow us to have a unified notation for deterministic and
stochastic functions such that we can talk about them in the same language. Consequently, when
we say "stochastic function", it will include deterministic functions as a corner case. Depending on
whether f and f

�1 are deterministic or stochastic, we talk about left, right or two-sided inverses. We
will be careful to be precise about this.

Method In the following we consider the standard building blocks of machine learning architectures
and enrich them by defining (stochastic-)inverse functions and calculating the likelihood contribution
of each layer. Treating each layer separately allows density estimation models to be built through
composition [1]. The stochastic inverse can use the funnel approach, which increases the parameter
count, or the multi-scale approach, which does not. For simplicity we will only consider conditional
densities in the inverse as this is more general, though it is not required. We will refer to this process
as flowification and the enriched layers as flowified; non-flowified layers will be called standard
layers. Flowified layers can then be seen as simultaneously being

• Flow layers that are invertible, their likelihood contribution is known and therefore can be
used to train the model to maximize the likelihood.

• Standard layers that can be trained with losses other than the likelihood, but for which the
likelihood can be calculated after this training with fixed weights in the forward direction.

3.1 Linear Layers

Let LW,b : Rn
! Rm denote the the linear layer of a neural network with parameters defined by a

weight matrix W 2 Rm⇥n and bias b 2 Rm. Formally, LW,b is defined as the affine function

x 7! LW,b(x) := Wx+ b x 2 Rn
. (7)

Definition 1. Let �(z|x) : Rn
! Rm be a stochastic function. We say that � is linear in expectation

if there exists W 2 Rm⇥n and b 2 Rm such that for any x 2 Rn the expected value of � coincides
with the application of LW,b

Ez⇠�(z|x)[z] = LW,b(x). (8)

Similarly, we say that a stochastic function  (z|x) is convolutional in expectation if the deterministic
function x 7! Ez⇠ (z|x)[z] is a convolutional layer.

In this section we flowify linear layers, by which we mean we construct a pair of stochastic functions,
a forward L(z|x) : Rn

! Rm and an inverse L
�1(x|z) : Rm

! Rn such that the forward is linear
in expectation and is compatible with the inverse in a way that will be made precise in the following
paragraphs.
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SVD parametrization

To build a flowified linear layer, the first step is to parametrize the weight matrices by the singular
value decomposition (SVD)[23]. This involves writing W 2 Rm⇥n as a product W = V ⌃U , where
U 2 Rn⇥n is orthogonal, ⌃ 2 Rm⇥n is diagonal and V 2 Rm⇥m is orthogonal. This parametrization
is particularly useful for our purposes because the orthogonal transformations are easily invertible
and do not contribute to the likelihood, and the non-invertible piece of the transformation is localized
to ⌃.

Parametrizing U and V We generate elements of the special orthogonal group SO(d) by applying
the matrix-exponential to elements of the Lie algebra so(d) of skew-symmetric matrices. We
parametrize so(d) and perform gradient descent there. As the Lie-algebra is a vector space, this is
significantly easier than working directly with SO(d). See Appendix G for details.

Parametrizing ⌃ The matrix ⌃ is of shape m ⇥ n containing the singular values on the main
diagonal. We ensure maximal rank of ⌃, by parameterizing the logarithm of the main diagonal, this
way all singular values are greater than 0.

It is important to note that this parametrization is not without loss of generality. In particular,
it does not include matrices of non-maximal rank nor orientation reversing ones, where either
U 2 O(n) \SO(n) or V 2 O(m) \SO(m). This implementation detail does not change the general
perspective we provide of linear layers as normalizing flows, but instead simplifies the implementation
of flowified layers.

Reducing the dimensionality

Definition 2. We call the tuple (L(z|x),L�1(x|z)) a dimension decreasing flowified linear layer if
L is dimension decreasing, linear in expectation and the following conditions are satisfied

(i) The forward is deterministic, given by L(z|x) = LW,b(x),

(ii) The layer is right-invertible, L � L
�1 = idz ,

(iii) The likelihood contribution of L can be exactly computed.

To flowify dimension decreasing linear layers, we define the forward function L as a standard linear
layer with parameters W and b,

L(z|x) = �(z � LW,b(x)). (9)
Since W is parametrized by the SVD decomposition, W = V ⌃U , we need to invert V, U and ⌃
separately. As V and U are rotations, they are invertible in the usual sense. To construct a stochastic
inverse to ⌃, we think of it as a funnel [15] and use a neural network pinv((Ux)(m:)|⌃Ux) that
models the n�m dropped coordinates as a function of the m non-dropped coordinates. Again, this
is not required to calculate the likelihood under the model, even a fixed distribution could be used,
but introducing some trainable parameters significantly improves the performance of the flow that
is defined by the layer. We use ⌃�1 to denote this stochastic inverse to ⌃. The stochastic inverse
function L

�1 can then be written as
L
�1(x|z) = U

T
� ⌃�1

� V
T (z � b). (10)

Since the rotations don’t contribute to the log-likelihood, the likelihood of data under a dimension
decreasing flowified linear layer is

log p(x) = log pinv((Ux)(m:)|⌃Ux) + log⌃+ log p(z), (11)
where log⌃ denotes the sum of the logarithms of the diagonal elements of ⌃.
Theorem 3. The above choices for L and L

�1 define a dimension decreasing flowified linear layer.

Sketch of proof. The definition of the forward pass (9) makes the forward pass linear in expectation
and satisfies (i) by definition. Unpacking the definitions and decomposing W into its SVD form
yields right-invertibility (ii) which in turn implies that the likelihood contribution can be exactly
computed (iii).

When the inverse density is not made to be conditional the above ideas can be visualized as a standard
multi-scale flow architecture [6] as shown in Fig. 1.
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Figure 1: A mutli-scale flow with a base density p(z, z02) on the left. A dimension reducing linear
layer with activation � as a multi-scale flow with a base density p(z, z02) on the right.

Increasing the dimensionality

Definition 4. We define the Moore-Penrose pseudoinverse L
+
W,b of a linear layer LW,b : Rn

! Rm

as the affine transformation Rm
! Rn

z 7! L
+
W,b := W

+(z � b) z 2 Rm (12)

where W
+ denotes the Moore-Penrose pseudoinverse of the matrix W .

Definition 5. We call the tuple (L(z|x),L�1(x|z)) a dimension increasing flowified linear layer if
L is dimension increasing, linear in expectation and the following conditions are satisfied

(iv) The inverse L
�1 is deterministic, given by L

�1(x|z) = L
+
W,b(z),

(v) The layer is left-invertible, L�1
� L = idx,

(vi) The likelihood contribution of L can be bounded from below.

To construct dimension increasing flowified linear layers, we rely again on the SVD parametrization
where the only nontrivial component is ⌃. In this case ⌃ is a dimension increasing operation and
we think of it as an augmentation step [2] composed with diagonal scaling. To augment, we sample
m�n coordinates from a distribution p(u) with zero mean and then apply a scaling in m dimensions.
The likelihood contribution is then given by

log p(x) � Eu⇠p(u)

⇥
log p(z)� log p(u)

⇤
+ log⌃, (13)

log p(x) = log⌃+ log p(z), (14)
where log⌃ denotes the sum of the logarithms of the m scaling parameters. The inverse function
L
�1 is the composition of the inverse rotations, the inverse scaling and the dropping of the sampled

coordinates. This sequence of steps is visualized in Fig. 2.

Augment

Augment

SVD

SVD

Figure 2: A dimension increasing flowified linear layer.

Theorem 6. The above choices for L and L
�1 define a dimension increasing flowified linear layer.

Sketch of proof. The augmentation step [2] results in a lower bound on the likelihood contribution,
implying (vi). Since Eu⇠p(u) = 0, the augmentation does not influence the expected value of z, i.e.
the forward pass is linear in expectation. Simple calculations using the SVD decomposition then
imply both (iv) and (v).

Preserving the dimensionality

Dimension preserving layers are a corner case of both of the above scenarios, where padding and
sampling are not needed in either direction and the layer is non-stochastically invertible. All this
implies (i),(ii),(iii),(iv) and (v) are satisfied.
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3.2 Convolutional layers

Convolutions can be seen as a dimension increasing coordinate repetition followed by a matrix
multiplication with weight sharing. In the previous section we derived the specifics of matrix
multiplication. We begin this section with the details of coordinate repetition after which we put the
pieces together to build a flowified convolutional layer. In Appendix H we describe an alternative
approach relying on the Fourier transform.

Repeating coordinates In this paragraph we focus on the N -fold repetition of a single scalar
coordinate x. This significantly simplifies notation, but the technique generalizes in an obvious way.
Intuitively, the idea is to expand the one dimensional volume to N dimensions by first embedding
and then increasing the volume of the embedding such that the volume in the N � 1 directions
complementary to the embedding can be controlled.

We have seen in §2 that the operation

x 7! (x,u) u = (u1, ..., uN�1), (15)

has likelihood contribution Eu[� log p(u)]. Now, we can apply any N -dimensional rotation RN

which maps (1,0) to 1p
N
(1,1) to obtain2

RN (x,u) = RN (x,0) +RN (0,u) =
1

p
N

(x,x) +RN (0,u). (16)

Note that this rotation does not contribute to the likelihood. Finally, we apply a diagonal scaling in N

dimensions with factor
p
N such that

x 7! (x,x) +RN (0,
p

Nu), (17)

where the final scaling has likelihood contribution N log(
p
N) = (N/2) logN and x is now repeated

N times. The overall contribution to the likelihood of the embedding (17) is

V(x, z) = Eu[� log p(u)] + (N/2) logN. (18)

By construction, the padding distribution RN (0,
p
Nu) is orthogonal to the diagonal embedding

x 7! (x, ..., x) of the data distribution. The inverse function is given by the projection to the diagonal
embedding,

(z1, ..., zN ) 7! 1
N

X

i

zi. (19)

General architectures Now that the likelihood contribution of arbitrary linear layers and coordinate
repetition has been computed it is possible to flowify more general architectures such as convolutions
and residual connections. It is important to note that just because an architecture works well for
certain tasks, it is not clear if its flowified version will perform well at density estimation.

Decomposing convolutional layers To flowify convolutional layers, we decompose it as a sequence
of building blocks that are easy to flowify separately. A standard convolutional layer performs the
following sequence of steps:

1. Padding of the input image with zeros to increase its size.

2. Unfolding of the padded image into tiles. This step replicates the data according to the
kernel size and stride.

3. Applying a linear layer. Finally, we apply the same linear layer to each of the tiles produced
in the previous step. The outputs then correspond to the pixels of the output image.

20 and 1 denote the (N � 1)-dimensional vectors (0, ...0) and (1, ..., 1), respectively. Similarly x denotes
the (N � 1)-dimensional vector (x, ..., x).
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Flowification Steps 1 and 3 are already flowified, i.e.
their likelihood contribution is computed and an inverse
is constructed, in §3.1. We denote their flowification
with Pad and Linear, respectively. Step 2 fits into the
discussion of the previous paragraph of repeating coor-
dinates, where both its inverse (19) and its likelihood
contribution (18) are given. We will denote this opera-
tion by Unfold.
Definition 7. Let Linear,Unfold and Pad be as above
and define C and C

�1 be the following stochastic func-
tions

C = Linear �Unfold �Pad (20)

C
�1 = Pad�1

�Unfold�1
�Linear�1 (21)

call the resulting layer (C, C�1) a flowified convolu-
tional layer.

Augment

Augment

SVD

SVD

Figure 3: A flowified 1D-convolution
with kernel size 2 applied to a vector
with 3 features. The x2 component ap-
pears in the operation twice, and so it is
first duplicated so that the kernel can be
applied to non-overlapping tiles.

A flowified convolutional layer (C, C�1) is then convolutional in expectation (Definition 1), i.e. there
exists a convolutional layer C✓ with parameters ✓ such that

Ez⇠C(z|x)[z] = C✓(x). (22)

The flowification of a convolution without padding can be seen in Fig. 3. The Unfold operation is
implemented as coordinate duplication and Linear is a flowified linear layer parameterized by the
SVD.

Activation functions Functions that are surjective onto R and invertible fit well in our framework
as they can be used out of the box without any modifications. In our experiments we use LeakyReLU
and rational-quadratic splines [7] as activations functions. Non-invertible activations can also be used
when equipped with additional densities [1].

Residual connections Residual connections can be seen as coordinate duplication followed by
two separate computational graphs {f1, f2} with the outputs recombined in a sum. The sum can be
inverted by defining a density over one of the summands p(f1(x + u)|f1(x + u), f2(x � u)) and
sampling from this density, which will also define the likelihood contribution. Then, if the likelihood
contribution can be calculated for each individual computational graph, the likelihood of the total
operation can be calculated [1].

4 Experiments

To test the constructions described in the previous section we flowify multilayer perceptrons and
convolutional architectures and train them to maximize the likelihood of different datasets.

Tabular data In this section we study a selection of UCI datasets [24] and the BSDS300 collection
of natural images [25] using the preprocessed dataset used by masked autoregressive flows [17, 26].
We compare the performance with several baselines for comparison in Table 1. We see that the
flowified models have the right order of magnitude for the likelihood but are not competitive.

Table 1: Test log likelihood (in nats, higher is better) for UCI datasets and BSDS300, with error bars
corresponding to two standard deviations.

MODEL POWER GAS HEPMASS MINBOONE BSDS300

GLOW 0.38± 0.01 12.02± 0.02 �17.22± 0.02 �10.65± 0.45 156.96± 0.28
NSF 0.63± 0.01 13.02± 0.02 �14.92± 0.02 �9.58± 0.48 157.61± 0.28

FMLP �0.50± 0.02 5.35± 0.02 �19.56± 0.04 �14.05± 0.48 144.22± 0.28
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Image Data In this section we use the MNIST [27] and CIFAR10 [28] datasets with the standard
training and test splits. The data is uniformly dequantized as required to train on image data [29, 30].
For both datasets we trained networks consisting only of flowified linear layers (FMLP) and also
networks consisting of convolutional layers followed by dense layers (FCONV1). To minimize the
number of augmentation steps that occur in each model we define additional architectures with similar
numbers of parameters but with non-overlapping kernels in the convolutional layers (FCONV2). The
exact architectures can be found in Appendix F.1. The flowified layers sample from N (0, a) for
dimension increasing operations, where a is a per-layer trainable parameter. We use rational quadratic
splines [7] with 8 knots and a tail bound of 2 as activation functions, where the same function is
applied per output node. We also ran experiments with coupling layers using rational quadratic
splines [7] mixed into FCONV2, in all other cases the parameters of the model are not data-dependent
operations. The improved performance of these models suggests that flowified layers do not mismodel
the density of the data, but they do lack the capacity to model it well. Samples from these models are
shown in Appendix C.

Table 2: Test-set bits per dimension (BPD) for MNIST and CIFAR-10 models, lower is better. Results
from several other works were included for comparison. Flowified models with overlapping kernels
FCONV1 and non-overlapping kernels FCONV2 are shown, with a similar parameter budget to the
neural spline flow [7]. The models FCONV1 + NSF and FCONV2 + NSF correspond to architectures
using rational quadratic spline layers in-between the flowified layers of FCONV1 and FCONV2,
respectively. Samples from these models can be found in Appendix C.

MODEL MNIST CIFAR-10

GLOW [8] 1.05 3.35
REALNVP [6] - 3.49
NSF [7] - 3.38
I-RESNET [11] 1.06 3.45
I-CONVNET [14] 4.61
MAF [17] 1.91 4.31

FMLP 4.19 5.45
FCONV1 3.11 4.91
FCONV2 1.41 4.20
FCONV1 + NSF 2.70 3.93
FCONV2 + NSF 1.35 3.69

The results of the density modelling can be seen in Table. 2. The images in the left column of Fig. 4
are generated by sampling from a standard gaussian in the latent space and taking the expected output
of the inverse in every layer. The images in the right column use the same latent samples as the left
column but also sample from the distribution defined by the inverse pass of the layers.

As seen in Fig. 2 the FMLP models are outperformed by the FCONV models and the convolutional
models with non-overlapping kernels achieve better results than the ones with overlapping kernels.
This suggests both that the inductive bias of the convolution is useful for modelling distributions of
images and that the augmentation step costs more in terms of likelihood than it provides in terms of
increased expressivity.

5 Related Work

Several works have developed methods that allow standard layers to be made invertible, but these
approaches restrict the space of the models, whereas we consider networks in their full generality.
Invertible ResNets [11, 12] require that each residual block has a Lipschitz constant less than one, but
even with this restriction they attain competitive results on both classification and density estimation.
The same Lipschitz constraint can also be applied to other networks [13]. In these architectures the
multi-scale architecture used in RealNVPs [6] is not leveraged, and so no information is discarded
by the model. It is unclear why this approach outperforms flowified layers, as seen in Table. 2,
but it could be due to the preservation of information through the model, the very large number
of parameters that are used in these approaches, the restricted subspace of the models, or some
combination of these three.
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Figure 4: Samples from flowified multilayer perceptrons (top two rows) convolutional networks
with overlapping (third and fourth rows) and non-overlapping (bottom two rows) kernels trained on
MNIST and CIFAR-10. Samples where the mean is used to invert the SVD in the inverse pass (left
column). Samples generated by drawing from the inverse density to invert the SVD in the inverse
pass (right column).More samples from these models can be found in Appendix E.

It can also be shown that convolutions with the same number of input and output channels can be made
invertible [14]. These layers perform poorly at the task of density estimation and are outperformed
by flowified layers. This is likely due to the increased expressivity that comes from considering
a larger space of architectures. There have been several works that develop convolution inspired
invertible transformations [31–33], but these architectures consider restricted transformations to
maintain invertibility.

6 Future Work and Conlusion

Our experiments suggest that flowified convolutional networks do not match the density estimation
performance of similarly sized normalizing flows. A possible explanation is that the dimension
reducing steps discard information and more expressive encoding layers are necessary to transform
the distributions before reducing the dimensionality. This is supported by the experiments using NSF
layers in-between the flowified layers (see App. C). The addition of NSF layers leads to improved
performance both in terms of visual quality and also BPD values. Possibly the main limitation of a
network consisting purely of flowified layers is the fact that, unlike flow layers, the forward passes of
standard linear and convolutional layers are not data-dependent. This is reinforced by the fact that the
entanglement capability typically used in flows also appears in attention mechanisms, which have
been shown to excel at capturing complex statistical structures [34–36].
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With further development – such as increased capacity given to the inverse density, or data dependent
parameters in the forward pass – standard architectures could become competitive density estimators
in their own right and allow for general purpose models to be developed. The focus of this work was
on employing standard layers for density estimation, but it is possible that designing data dependent
variants of standard layers that are more flow-like could improve their performance on tasks such
as classification and regression. The flowification procedure provides a useful means for designing
such models, and demonstrates that standard architectures can be considered a subset of normalizing
flows, a correspondence that has not previously been demonstrated.

The code for reproducing our experiments is available under MIT license at
https://github.com/balintmate/flowification.

7 Acknowledgement

The authors would like to acknowledge funding through the SNSF Sinergia grant called Robust Deep
Density Models for High-Energy Particle Physics and Solar Flare Analysis (RODEM) with funding
number CRSII5_193716.

References
[1] Didrik Nielsen, Priyank Jaini, Emiel Hoogeboom, Ole Winther, and Max Welling. Survae

flows: Surjections to bridge the gap between vaes and flows. Advances in Neural Information
Processing Systems, 33:12685–12696, 2020.

[2] Chin-Wei Huang, Laurent Dinh, and Aaron Courville. Augmented normalizing flows: Bridging
the gap between generative flows and latent variable models, 2020.

[3] Esteban G Tabak and Cristina V Turner. A family of nonparametric density estimation algo-
rithms. Communications on Pure and Applied Mathematics, 66(2):145–164, 2013.

[4] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. arXiv preprint arXiv:1705.07057, 2017.

[5] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference, 2021.

[6] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
arXiv preprint arXiv:1605.08803, 2016.

[7] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Neural spline flows,
2019.

[8] Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolu-
tions. arXiv preprint arXiv:1807.03039, 2018.

[9] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan.
Do deep generative models know what they don’t know?, 2019.

[10] Claudius Krause and David Shih. Caloflow: Fast and accurate generation of calorimeter showers
with normalizing flows, 2021.

[11] Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and Jörn-Henrik Jacobsen.
Invertible residual networks. 2018. doi: 10.48550/ARXIV.1811.00995. URL https://arxiv.
org/abs/1811.00995.

[12] Ricky T. Q. Chen, Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacobsen. Residual flows
for invertible generative modeling, 2019. URL https://arxiv.org/abs/1906.02735.

[13] Yura Perugachi-Diaz, Jakub M. Tomczak, and Sandjai Bhulai. Invertible densenets, 2020. URL
https://arxiv.org/abs/2010.02125.

10

https://github.com/balintmate/flowification
https://arxiv.org/abs/1811.00995
https://arxiv.org/abs/1811.00995
https://arxiv.org/abs/1906.02735
https://arxiv.org/abs/2010.02125


[14] Marc Finzi, Pavel Izmailov, Wesley Maddox, Polina Kirichenko, and Andrew Gordon Wilson.
Invertible convolutional networks. In Workshop on Invertible Neural Nets and Normalizing
Flows, International Conference on Machine Learning, 2019.

[15] Samuel Klein, John A Raine, Sebastian Pina-Otey, Slava Voloshynovskiy, and Tobias
Golling. Funnels: Exact maximum likelihood with dimensionality reduction. arXiv preprint
arXiv:2112.08069, 2021.

[16] Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max
Welling. Improving variational inference with inverse autoregressive flow, 2016. URL https:
//arxiv.org/abs/1606.04934.

[17] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation, 2017. URL https://arxiv.org/abs/1705.07057.

[18] Johann Brehmer and Kyle Cranmer. Flows for simultaneous manifold learning and density
estimation, 2020. URL https://arxiv.org/abs/2003.13913.

[19] Edmond Cunningham and Madalina Fiterau. A change of variables method for rectangular
matrix-vector products. In Arindam Banerjee and Kenji Fukumizu, editors, Proceedings of
The 24th International Conference on Artificial Intelligence and Statistics, volume 130 of
Proceedings of Machine Learning Research, pages 2755–2763. PMLR, 13–15 Apr 2021. URL
https://proceedings.mlr.press/v130/cunningham21a.html.

[20] Anthony L. Caterini, Gabriel Loaiza-Ganem, Geoff Pleiss, and John P. Cunningham. Rectangu-
lar flows for manifold learning, 2021. URL https://arxiv.org/abs/2106.01413.

[21] Brendan Leigh Ross and Jesse C. Cresswell. Tractable density estimation on learned manifolds
with conformal embedding flows, 2021. URL https://arxiv.org/abs/2106.05275.

[22] Benigno Uria, Iain Murray, and Hugo Larochelle. Rnade: The real-valued neural autoregressive
density-estimator. 2013. doi: 10.48550/ARXIV.1306.0186. URL https://arxiv.org/abs/
1306.0186.

[23] Jakub M. Tomczak and Max Welling. Improving variational auto-encoders using householder
flow, 2016. URL https://arxiv.org/abs/1611.09630.

[24] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

[25] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images
and its application to evaluating segmentation algorithms and measuring ecological statistics.
In Proc. 8th Int’l Conf. Computer Vision, volume 2, pages 416–423, July 2001.

[26] George Papamakarios. Preprocessed datasets for maf experiments, January 2018. URL https:
//doi.org/10.5281/zenodo.1161203.

[27] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http:
//yann.lecun.com/exdb/mnist/.

[28] Alex Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis,
Department of Computer Science, University of Toronto, 2009.

[29] Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving
flow-based generative models with variational dequantization and architecture design, 2019.
URL https://arxiv.org/abs/1902.00275.

[30] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models, 2015. URL https://arxiv.org/abs/1511.01844.

[31] Mahdi Karami, Dale Schuurmans, Jascha Sohl-Dickstein, Laurent Dinh, and Daniel Duckworth.
Invertible convolutional flow. Advances in Neural Information Processing Systems, 32, 2019.

[32] Emiel Hoogeboom, Rianne van den Berg, and Max Welling. Emerging convolutions for
generative normalizing flows, 2019.

11

https://arxiv.org/abs/1606.04934
https://arxiv.org/abs/1606.04934
https://arxiv.org/abs/1705.07057
https://arxiv.org/abs/2003.13913
https://proceedings.mlr.press/v130/cunningham21a.html
https://arxiv.org/abs/2106.01413
https://arxiv.org/abs/2106.05275
https://arxiv.org/abs/1306.0186
https://arxiv.org/abs/1306.0186
https://arxiv.org/abs/1611.09630
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.5281/zenodo.1161203
https://doi.org/10.5281/zenodo.1161203
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1902.00275
https://arxiv.org/abs/1511.01844


[33] Emiel Hoogeboom, Victor Garcia Satorras, Jakub M. Tomczak, and Max Welling. The con-
volution exponential and generalized sylvester flows, 2020. URL https://arxiv.org/abs/
2006.01910.

[34] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

[35] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. 2020.

[36] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale, 2020. URL https://arxiv.org/abs/2010.11929.

[37] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. 2017. URL https://arxiv.org/abs/1912.01703.

[38] Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.
wandb.com/. Software available from wandb.com.

[39] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. nflows: normalizing
flows in PyTorch, November 2020. URL https://doi.org/10.5281/zenodo.4296287.

[40] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2016.
URL https://arxiv.org/abs/1608.03983.

[41] B. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction. Graduate
Texts in Mathematics. Springer International Publishing, 2015.

12

https://arxiv.org/abs/2006.01910
https://arxiv.org/abs/2006.01910
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1912.01703
https://www.wandb.com/
https://www.wandb.com/
https://doi.org/10.5281/zenodo.4296287
https://arxiv.org/abs/1608.03983

	Introduction
	Background
	Flowification
	Linear Layers
	Convolutional layers

	Experiments
	Related Work
	Future Work and Conlusion
	Acknowledgement
	SurVAE
	Padding in dimension increasing operations
	Flowification + NSF
	Complete proofs of Theorems 3 and 6 
	Samples from fMLP, fConv1 and fConv2
	Experimental details
	Architectures

	Parametrizing rotations via the Lie algebra so(d)
	Flowifying convolutions through the FFT

