ACTUNE: Uncertainty-Aware Active Self-Training for Active Fine-Tuning of Pretrained Language Models

Anonymous ACL submission

Abstract

Although fine-tuning pre-trained language models (PLMs) renders strong performance in many NLP tasks, it relies on excessive labeled data. Recently, researchers have resorted to active fine-tuning for enhancing the label efficiency of PLM fine-tuning, but existing methods of this type usually ignore the potential of unlabeled data. We develop ACTUNE, a new framework that improves the label efficiency of active PLM fine-tuning by unleashing the power of unlabeled data via self-training. ACTUNE switches between data annotation and model self-training based on uncertainty: the unlabeled samples of high-uncertainty are selected for annotation, while the ones from low-uncertainty regions are used for model self-training. Additionally, we design (1) a region-aware sampling strategy to avoid redundant samples when querying annotations and (2) a momentum-based memory bank to dynamicaly aggregate the model’s pseudo labels to suppress label noise in self-training. Experiments on 6 text classification datasets show that ACTUNE outperforms the strongest active learning baselines and improves the label efficiency of PLM fine-tuning by 56.2% on average.

1 Introduction

Fine-tuning pre-trained language models (PLMs) has achieved enormous success in natural language processing (NLP) (Devlin et al., 2019; Liu et al., 2019; Brown et al., 2020), one of which is the competitive performance it offers when consuming only a few labeled data (Bansal et al., 2020; Gao et al., 2021). However, there are still significant gaps between few-shot and fully-supervised PLM fine-tuning in many classification tasks. Besides, the performance of few-shot PLM fine-tuning can vary substantially with different sets of training data (Bragg et al., 2021). Therefore, there is a crucial need for PLM fine-tuning approaches with better label-efficiency and being robust to selection of training data, especially for applications where labeled data are scarce and expensive to obtain.

Towards this goal, researchers have resorted to active fine-tuning of PLMs and achieved comparable performance to fully-supervised methods with much less annotated samples (Ein-Dor et al., 2020; Margatina et al., 2021a,b; Yuan et al., 2020). Nevertheless, they usually neglect unlabeled data, which can be useful for improving label efficiency for PLM fine-tuning (Du et al., 2021). To leverage those unlabeled data to improve label efficiency of active learning, efforts have been made in the semi-supervised active learning literature (Wang et al., 2016; Rottmann et al., 2018; Siméoni et al., 2020), but the proposed query strategies can return highly redundant samples due to limited representation power, resulting in suboptimal label efficiency. Moreover, they usually rely on pseudo-labeling to utilize unlabeled data, which requires greater (yet often absent) care to denoise the pseudo labels, otherwise the errors could accumulate and deteriorate the model performance. This phenomenon can be even more severe for PLMs, as the fine-tuning process often suffers from the instability issue caused by different weight initialization and data orders (Dodge et al., 2020). Thus, it still remains open and challenging to design robust and label efficient method for active PLM fine-tuning.

To tackle above challenges, we propose ACTUNE, a new method that improves the label efficiency and robustness of active PLM fine-tuning with self-training. Based on the estimated uncertainty of data, ACTUNE chooses from one of the following cases in each learning round: (1) when the average uncertainty of a region is low, we trust the model’s prediction and select most certain predictions within the region for self-training; (2) when the average uncertainty of a region is high, indicating inadequate observations for parameter learning, we actively annotate most uncertain samples within the region to improve the model. Diff-
ferent from existing AL methods that only leverage uncertainty for querying labels, our uncertainty-driven self-training paradigm gradually unleash the data with low uncertainty via self-training, while reducing the chance of error propagation triggered by highly-uncertain mis-labeled data.

To further boost the performance on downstream tasks, we design two techniques, namely region-aware sampling (RS) and momentum-based memory bank (MMB) to improve the query strategies and suppress label noise for ACTUNE. Inspired by the fact that existing uncertainty-based AL methods often end up choosing uncertain yet repetitive data (Ein-Dor et al., 2020; Margatina et al., 2021b), we design a region-aware sampling technique to promote both diversity and representativeness by leveraging the representation power of PLMs. Specifically, we first estimate the uncertainties of the unlabeled data with PLMs, then cluster the data using their PLM representations and weigh the data by the corresponding uncertainty. Such a clustering scheme partitions the embedding space into small sub-regions with an emphasis on highly-uncertain samples. Finally, by sampling over multiple high-uncertainty regions, our strategy selects data with high uncertainty and low redundancy.

To rectify the erroneous pseudo labels derived by self-training, we design a simple but effective way to select low-uncertainty data for self-training. Our method is motivated by the fact that fine-tuning PLMs suffer from instability issues — distinct initializations and data orders can result in a large variance of the task performance (Dodge et al., 2020; Zhang et al., 2020; Mosbach et al., 2021). However, previous approaches only select pseudo-labeled data based on the prediction of the current round and therefore are less reliable. In contrast, we maintain a dynamic memory bank to save the predictions of unlabeled samples for later use. We propose a momentum updating method to dynamically aggregate the predictions from preceding rounds (Laine and Aila, 2016) and select low-uncertainty samples based on aggregated prediction. As a consequence, only the samples with high prediction confidence over multiple rounds will be used for self-training, which mitigates the issue of label noise. We highlight that our active self-training approach is an efficient substitution to existing AL methods, requiring ignorable extra computational cost.

Our key contributions are: (1) an active self-training paradigm ACTUNE that integrates the benefit of self-training and active learning in a principled way to minimize the labeling cost for fine-tuning PLMs; (2) a region-aware querying strategy to enforce both the informativeness and the diversity of queried samples during AL; (3) a simple and effective momentum-based method to harness the predictions for preceding rounds to alleviate the label noise in self-training and (4) experiments on 6 benchmarks demonstrating ACTUNE improves the label efficiency over existing self-training and active learning baselines by 56.2%.

2 Uncertainty-aware Active Self-training

2.1 Problem Formulation

We study active fine-tuning of pre-trained language models for text classification, formulated as follows: Given a small number of labeled samples \(X_l = \{(x_i, y_i)\}_{i=1}^{L} \) and unlabeled samples \(X_u = \{x_j\}_{j=1}^{U} \) (\(|X_u| << |X_u| \)), we aim to fine-tune a pre-trained language model \(f(x; \theta) : \mathcal{X} \rightarrow \mathcal{Y} \) in an interactive way: we perform active self-training for \(T \) rounds with the total labeling budget \(b \). In each round, we aim to query \(B = b/T \) samples denoted as \(B \) from \(X_u \) to fine-tune a pre-trained language model \(f(x; \theta) \) with both \(X_l \) and \(X_u \) to maximize the performance on downstream text classification tasks. Here \(\mathcal{X} = X_l \cup X_u \) denotes all samples and \(\mathcal{Y} = \{1, 2, \cdots, C\} \) is the label set, where \(C \) is the number of classes.

2.2 Overview of ACTUNE Framework

We now present our active self-training paradigm ACTUNE underpinned by estimated uncertainty. We begin the active self-training loop by fine-tuning a BERT \(f(\theta(0)) \) on the initial labeled data \(X_l \). Formally, we solve the following optimization problem

\[
\min_{\theta} \frac{1}{|X_l|} \sum_{(x_i, y_i) \in X_l} \ell_{CE} \left(f(x_i; \theta(0)), y_i \right),
\]

(1)

In round \(t (1 \leq t \leq T) \) of the active self-training procedure, we first calculate the uncertainty score based on a given function \(a_{i}^{(t)} = a(x_i, \theta^{(t)}) \) for all \(x_i \in X_u \). Then, we query labeled samples and generate pseudo-labels for unlabeled data \(X_u \) simultaneously to facilitate self-training. For each sample \(x_i \), the pseudo-label \(\tilde{y} \) is calculated based on the current model’s output:

\[
\tilde{y} = \arg\max_{j \in \mathcal{Y}} f(x_i; \theta^{(t)}),
\]

(2)

Note that ACTUNE is agnostic to the way uncertainty score \(a_{i}^{(t)} \) is computed.
Algorithm 1: Training Procedures of ACTUNE.

Input: Initial labeled samples X_l; Unlabeled samples X_u; Pre-trained LM $f(\cdot; \theta)$; number of active self-training rounds T.

1. Calculate $g^{(0)}$ based on Eq. (1).
2. Initialize the memory bank $g(x; \theta^0)$ based on the current prediction.

Training Procedures of ACTUNE:

for $t = 1, 2, \ldots, T$ do

1. Run weighted K-Means (Eq. (3), (4)) until convergence.
2. Select sample set $Q^{(t)}$ for AL and $S^{(t)}$ for self-training from X_u based on Eq. (11) or (13).
3. Augment the labeled set $X_l = X_l \cup Q^{(t)}$.
4. Obtain $\theta^{(t)}$ by finetuning $f(\cdot; \theta^t)$ with ℓ_{ST} (Eq. (14)) using AdamW.
5. Update memory bank $g(x; \theta^t)$ with Eq. (10) or (12).

Output: The final fine-tuned model $f(\cdot; \theta^T)$.

where $f(x; \theta^{(t)}) \in \mathbb{R}^C$ is a probability simplex and $[f(x; \theta^{(t)})]_j$ is the j-th entry. The procedure of ACTUNE is summarized in Algorithm 1.

2.3 Region-aware Sampling for Active Learning on High-uncertainty Data

After obtaining the uncertainty for unlabeled data, we aim to query annotation for high-uncertainty samples. However, directly sampling the most uncertain samples gives suboptimal result since uncertainty-based sampling tends to query repetitive uncertain samples. Therefore, we adopt a hierarchical sampling strategy: we first select the M clusters with the highest uncertainty, and then sample $b' = \left\lceil \frac{b}{M} \right\rceil$ data with the highest uncertainty to form the batch $Q^{(t)}$.

$$k^{(t)}_a = \text{top-M}_k u_k^{(t)} \cap M$$

$$Q^{(t)} = \bigcup_{k \in k^{(t)}_a} c^{(t)}_{a, k}$$

We remark that such a hierarchical sampling strategy queries most uncertain samples from different regions, thus the uncertainty and diversity of queried samples can be both achieved.

2.4 Self-training for Most Confident Data from Low-uncertainty Regions

For self-training, we aim to select unlabeled samples which are most likely to have been correctly classified by the current model. This requires the sample to have low uncertainty. Therefore, we select the top k samples from the M lowest uncertainty regions to form the acquired batch $S^{(t)}$:
\[
C_k^{(t)} = \bigcup_{k \in K_k^{(t)}} C_k^{(t)} \quad \text{where} \quad K_k^{(t)} = \text{bottom-M} \ u_k^{(t)},
\]
\[
S^{(t)} = \text{bottom-k} \ a(x_i, \theta^{(t)}),
\]

Momentum-based Memory Bank for Self-training. As PLMs are sensitive to the stochasticity involved in fine-tuning, the model suffers from the instability issue — different weight initialization and data orders may result in different predictions on the same dataset (Dodge et al., 2020). Additionally, if the model gives inconsistent predictions in different rounds for a specific sample, then it is potentially uncertain about the sample, and adding it to the training set may harm the active self-training process. For example, for a two-class classification problem, suppose we obtain \(f(x; \theta^{(t-1)}) = [0.65, 0.35] \) for sample \(x \) the round \((t-1)\) and \(f(x; \theta^{(t)}) = [0.05, 0.95] \) for the round \(t \). Although the model is quite ‘confident’ on the class of \(x \) when we only consider the result of the round \(t \), it gives contradictory predictions over these two consecutive rounds, which indicates that the model is still uncertain to which class \(x \) belongs.

To effectively mitigate the noise and stabilize the active self-training process, we maintain a dynamic memory bank to save the results from previous rounds, and use momentum update (He et al., 2020; Laine and Aila, 2016) to aggregate the results from both the previous and current rounds. Then, during active self-training, we will select samples with the highest aggregated score. In this way, only those samples that the model is certain about over all previous rounds will be selected for self-training. We design two variants for the memory bank, namely prediction-based and value-based aggregation.

Prediction based Momentum Update. We adopt an exponential moving average approach to aggregate the prediction \(g(x; \theta^{(t)}) \) on round \(t \) as
\[
g(x; \theta^{(t)}) = m_t \times f(x; \theta^{(t)}) + (1 - m_t) \times g(x; \theta^{(t-1)}),
\]
where \(m_t = (1 - \frac{1}{t})m_L + \frac{1}{t}m_H \) \((0 < m_L \leq m_H \leq 1)\) is a momentum coefficient. We gradually increase the weight for models on later rounds, since they are trained with more labeled data thus being able to provide more reliable predictions. Then, we calculate the uncertainty based on \(g(x; \theta^{(t)}) \) and rewrite Eq. (9) and (2) as
\[
S^{(t)} = \text{bottom-k} \ a(x_i, g(x; \theta^{(t)}), \theta^{(t)}),
\]
\[
\tilde{y} = \underset{j \in Y}{\operatorname{argmax}} \left[g(x; \theta^{(t)}) \right],
\]

Value-based Momentum Update. For methods that do not directly use prediction for uncertainty estimation, we aggregate the uncertainty value as \(g(x; \theta^{(t)}) = m_t \times a(x; \theta^{(t)}) + (1 - m_t) \times g(x; \theta^{(t-1)}) \).

Then, we use Eq. (12) to sample low-uncertainty data for self-training as
\[
S_k^{(t)} = \text{bottom-k} \ g(x_i, \theta^{(t)}),
\]
\[
\tilde{y} = \underset{j \in Y}{\operatorname{argmax}} \left[f(x; \theta^{(t)}) \right].
\]

By aggregating the prediction results over previous rounds, we filter the sample with inconsistent predictions to suppress noisy labels.

2.5 Model Learning and Update

After obtaining both the labeled data and pseudo-labeled data, we fine-tune a new pre-trained BERT model \(\theta^{(t+1)} \) on them. Although we only include low-uncertainty samples during self-training, it is difficult to eliminate all the wrong pseudo-labels, and such mislabeled samples can still hurt model performance. To suppress such label noise, we use a threshold-based strategy to further remove noisy labels by selecting samples that agree with the corresponding pseudo labels. The loss objective of optimizing \(\theta^{(t+1)} \) is

\[
\mathcal{L}_{ST} = \frac{1}{|X_t \cup Q^{(t)}|} \sum_{x_i \in X_t \cup Q^{(t)}} \mathcal{L}_{CE} \left(f(x_i; \theta^{(t+1)}), \tilde{y}_i \right) + \frac{\lambda}{|S^{(t)}|} \sum_{x_i \in S^{(t)}} \omega_i \mathcal{L}_{CE} \left(f(x_i; \theta^{(t+1)}), \tilde{y}_i \right),
\]

where \(\lambda \) is a hyper-parameter balancing the weight between clean and pseudo labels, and \(\omega_i = 1 \{ \left[f(x_i; \theta^{(t+1)}) \right] > \gamma \} \) stands for the thresholding function.

Complexity Analysis. The running time of ACTUNE is mainly consisted of two parts: the inference time \(O(|X_u|) \) and the time for K-Means clustering \(O(dK|X_u|) \), where \(d \) is the dimension of the BERT feature \(v \). Note that the clustering can be efficiently implemented with FAISS (Johnson et al., 2019), and will not excessively increase the total running time. For self-training, the size of the memory bank \(g(x; \theta) \) is proportional to \(|X_u| \), while the extra computation of maintaining this dictionary is ignorable since we do not inference over the unlabeled data for multiple times in each round as BALD (Gal et al., 2017) does. The running time of ACTUNE will be shown in section C.
<table>
<thead>
<tr>
<th>Dataset</th>
<th>Label Type</th>
<th># Class</th>
<th># Train</th>
<th># Dev</th>
<th># Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST-2</td>
<td>Sentiment</td>
<td>2</td>
<td>60.6k</td>
<td>0.8k</td>
<td>1.8k</td>
</tr>
<tr>
<td>AG News</td>
<td>News Topic</td>
<td>4</td>
<td>119k</td>
<td>1k</td>
<td>7.6k</td>
</tr>
<tr>
<td>Pubmed</td>
<td>Medical Abstract</td>
<td>5</td>
<td>180k</td>
<td>1k</td>
<td>30.1k</td>
</tr>
<tr>
<td>DBPedia</td>
<td>Wikipedia Topic</td>
<td>14</td>
<td>280k</td>
<td>1k</td>
<td>70k</td>
</tr>
<tr>
<td>TREC</td>
<td>Question</td>
<td>6</td>
<td>5.0k</td>
<td>0.5k</td>
<td>0.5k</td>
</tr>
<tr>
<td>Chemprot</td>
<td>Medical Abstract</td>
<td>10</td>
<td>12.8k</td>
<td>0.5k</td>
<td>1.6k</td>
</tr>
</tbody>
</table>

Table 1: Dataset Statistics. For DBPedia, we randomly sample 20k sample from each class due to the limited computational resource.

3 Experiments

3.1 Experiment Setup

Tasks and Datasets. In our main experiments, we study over 4 benchmark datasets, including SST-2 (Socher et al., 2013) for sentiment analysis, AGNews (Zhang et al., 2015) for news topic classification, Pubmed-RCT (Dernoncourt and Lee, 2017) for medical abstract classification, and DBPedia (Zhang et al., 2015) for Wikipedia topic classification. For weakly-supervised text classification, we choose 2 datasets, namely TREC (Li and Roth, 2002) and Chemprot (Krattinger et al., 2017) from the WRENCH benchmark (Zhang et al., 2021) for evaluation. The statistics are shown in Table 1.

Active Learning Setups. Following (Yuan et al., 2020), we set the number of rounds $T = 10$, the overall budget for all datasets $b = 1000$ and the initial size of the labeled $|X|$ is set to 100. To simulate AL, in each round, we sample a batch of 100 samples from the unlabeled set X_u and query labels for them. Then we move this batch to the labeled set. Since large development sets are impractical in low-resource settings (Kann et al., 2019), we keep the size of development set to 1000, which is the same as the labeling budget. For weakly-supervised text classification, since the datasets are much smaller, we keep the labeling budget and the size of development set to $b = 500$.

Implementation Details. We choose RoBERTa-base (Liu et al., 2019) from the HuggingFace codebase (Wolf et al., 2020) as the backbone for ACTUNE and all baselines except for Pubmed and Chemprot, where we use SciBERT (Beltagy et al., 2019), a BERT model pre-trained on scientific corpora. In each round, we train from scratch to avoid badly overfitting the data collected in earlier rounds as observed by Hu et al. (2019). More details are in Appendix B.

Hyperparameters. The hyperparameters setting is in Appendix B.6 for ACTUNE and B.7 for base-
labeled sample. (4) REVIVAL (Guo et al., 2021) is the most recent SSAL method, which uses an adversarial loss to query samples and leverage label propagation to exploit adversarial examples.

Our Method: We experiment with both Entropy and CAL as uncertainty measures for ActUNE. Note that when compared with active learning baselines, we do not augment the train set with pseudo-labeled data (Eq. (9)) to ensure fair comparisons.

3.2 Main Result

Figure 1 reports the performance of ActUNE and the baselines on 4 benchmarks. From the results, we have the following observations:

- ActUNE consistently outperforms baselines in most of the cases. Different from studies in the computer vision (CV) domain (Siméoni et al., 2020) where the model does not perform well in the low-data regime, pre-trained LM has achieved competitive performance with only a few labeled data, which makes further improvements to the vanilla fine-tuning challenging. Nevertheless, ActUNE surpasses baselines in more than 90% of the rounds and achieves 0.4%-0.7% and 0.3%-1.5% absolute gain at the end of AL and SSAL respectively. Figure 2 quantitatively measures the number of labels needed for the most advanced active learning model and self-training model (UST) to outperform ActUNE with 1000 labels. These baselines need >2000 clean labeled samples to reach the performance as ours. ActUNE saves on average 56.2% and 57.0% of the labeled samples than most advanced active learning and self-training baselines respectively, which justifies its promising performance under low-resource scenarios. Such improvements show the merits of two key designs under our active self-training framework: the region-aware sampling for active learning and the momentum-based memory bank for robust self-training, which will be discussed in the section 3.5.

- Compared with the previous AL baselines, ActUNE can bring consistent performance gain, while previous semi-supervised active learning methods cannot. For instance, BASS is based on BALD for active learning, but sometimes it performs even worse than BALD with the same number of labeled data (see Fig. 5(b) and Fig. 1(f)). This is mainly because previous methods simply combine noisy pseudo labels with clean labels for training without explicitly rectifying the wrongly-labeled data, which will cause the LM to overfit these hazardous labels. Moreover, previous methods do not exploit momentum updates to stabilize the learning process, as there are oscillations in the beginning rounds. In contrast, ActUNE achieves a more stable learning process and enables an active self-training process to benefit from more labeled data.

- The self-training methods (ST & UST) achieve superior performance with limited labels. However, they mainly focus on leveraging unlabeled data for improving the performance, while our results demonstrate that adaptive selecting the most useful data for fine-tuning is also important for improving the performance. With a powerful querying policy, ActUNE can improve these self-training baselines by 1.05% in terms of accuracy on average.

3.3 Extension to Weakly-supervised Learning

ActUNE can be naturally extended to weakly-supervised classification, where X_l is a set of data annotated by linguistic patterns or rules. Since the initial label set is noisy, then the model trained with Eq. (1) will overfit to the label noise, and we can actively query labeled data to refine the model.

We conduct experiments on the TREC and Chemprot dataset, where we first use Snorkel (Ratner et al., 2017) to obtain weak label set X_l, then fine-tune the pre-trained LM $f(\theta^{(0)})$ on X_l. After that, we adopt ActUNE for active self-training.

Fig. 5 shows the results of these two datasets. When combining ActUNE with CAL, the performance is unsatisfactory. We argue it is because CAL requires clean labels to calculate uncertainties. When labels are inaccurate, it will prevent ActUNE from querying informative samples. In contrast, ActUNE achieves the best performance over baselines when using Entropy as the uncertainty measure. The performance gain is more notable on the TREC dataset, where we achieve 96.68% accuracy, close to the fully supervised performance (96.80%) with only ~6% of clean labels.

3.4 Combination with Other AL Methods

Fig. 4(a) demonstrates the performance of ActUNE combined with other AL methods (e.g. BADGE, ALPS) on SST-2 dataset. It is clear that even if the AL methods are not uncertainty-based (e.g. BADGE), when using the entropy as an uncertainty measure to select pseudo-labeled data for

1Details for labeling functions are in Zhang et al. (2021).

2We don’t show AL methods since they perform worse than SSAL methods on these datasets in general.
self-training, ACTUNE can further boost the performance. This indicates that ACTUNE is a general active self-training approach, as it can serve as an efficient plug-in module for existing AL methods.

3.5 Ablation and Hyperparameter Study

The Effect of Different Components in ACTUNE

We inspect different components of ACTUNE, including the region-sampling (RS), momentum-based memory bank (MMB), and weighted clustering (WClus)\(^6\). Experimental results (Fig. 4(b)) shows that all the three components contribute to the final performance, as removing any of them hurts the classification accuracy. Also, we find that when removing MMB, the performance hurts most in the beginning rounds, which indicates that MMB effectively suppresses label noise when the model’s capacity is weak. Conversely, removing WClus hurts the performance on later rounds, as it enables the model to select most informative samples.

Hyperparameter Study. We study two hyperparameters, namely β and K used in querying labels. Figure 6(e) and 6(f) show the results. In general, the model is insensitive to β as the performance difference is less than 0.6%. The model cannot perform well with smaller K since it cannot pinpoint to high-uncertainty regions. For larger K, the performance also drops as some of the high-uncertainty regions can be outliers and sampling from them would hurt the model performance (Karamcheti et al., 2021).

A Closer Look at the Momentum-based Memory Bank.

To examine the role of MMB, we show the overall accuracy of pseudo-labels on AG News dataset in Fig. 6(g). From the result, it is clear that the momentum-based memory bank can stabilize the active self-training process, as the accuracy of pseudo labels increases around 1%, especially in later rounds. Fig 6(h) and 3(e) illustrates the model performance with different m_L and m_H. Overall, we find that our model is robust to different choices as ACTUNE outperform the baseline without momentum update consistently. Moreover, we find that the larger m_H will generally lead to better performance in later rounds. This is mainly because in later rounds, the model’s prediction is more reliable. Conversely, at the beginning of the training, the model’s prediction might be oscillating on unlabeled data. In this case, using a smaller m_L will favor samples with consistent predictions.

\(^6\)For models w/o RS, we directly select samples with highest uncertainty during AL. For models w/o MMB, we only use the prediction from the current round for self-training. For models w/o WClus, we cluster data with vanilla K-Means.
Figure 3: Parameter study. Note the effect of different m_L and m_H is conducted on AG News dataset.

Figure 4: Results of ACTUNE with different AL methods (SST-2), ablation study (SST-2 with ACTUNE+Entropy).

Figure 5: The comparison of ACTUNE and baselines on weakly-supervised classification tasks.

to improve the robustness of active self-training.

Another finding is that for different AL methods, the optimal memory bank can be different. For Entropy, probability-based memory bank leads to a better result, while for CAL, simple aggregating over uncertainty score achieves better performance. This is mainly because the method used in CAL is more complicated, and using probability-based memory bank may hurt the uncertainty calculation.

4 Related Work

Active Learning. Active learning has been widely applied to various NLP tasks (Yuan et al., 2020; Zhao et al., 2020; Shelmanov et al., 2021; Karamcheti et al., 2021). So far, AL methods can be categorized into uncertainty-based methods (Gal et al., 2017; Margatina et al., 2021a,b), diversity-based methods (Ru et al., 2020; Sener and Savarese, 2018) and hybrid methods (Yuan et al., 2020; Ash et al., 2020; Kirsch et al., 2019). Ein-Dor et al. (2020) offer an empirical study of active learning with PLMs. In our study, we leverage the power of unlabeled instances via self-training to further promote the performance of AL.

Semi-supervised Active Learning (SSAL). Gao et al. (2020); Song et al. (2019); Guo et al. (2021) design query strategies for specific semi-supervised methods. Tomonak and Hahn (2009); Rottmann et al. (2018); Siméoni et al. (2020) exploit the most certain samples from the unlabeled with pseudo-labeling to augment the training set. So far, most of the SSAL approaches are designed for CV domain and it remains unknown how this paradigm performs with PLMs on NLP tasks. In contrast, we propose ACTUNE to effectively leverage unlabeled data during finetuning PLMs for NLP tasks.

Self-training. Self-training first generates pseudo labels for high-confidence samples, then fits a new model on pseudo labeled data to improve the generalization ability (Rosenberg et al., 2005; Lee, 2013). However, it is known to be vulnerable to error propagation (Arzano et al., 2020; Rizve et al., 2021). To alleviate this, we adopt a simple momentum-based method to select high confidence samples, effectively reducing the pseudo labels noise for active learning. Note that although Mukherjee and Awadallah (2020); Rizve et al. (2021) also leverage uncertainty information for self-training, their focus is on developing better self-training methods, while we aim to jointly query high-uncertainty samples and generate pseudo-labels for low-uncertainty samples. The experiments in Sec. 3 show that with appropriate querying methods, ACTUNE can further improve the performance of self-training.
References

A Datasets Details

A.1 Data Source

The seven benchmarks in our experiments are all publicly available. Below are the links to downloadable versions of these datasets.

- **SST-2**: We use the datasets from https://huggingface.co/datasets/glue.
- **AGNews**: We use the datasets from https://huggingface.co/datasets/ag_news.
- **Pubmed-RCT**: Dataset is available at https://github.com/Franck-Dernoncourt/pubmed-rct.
- **DBPedia**: Dataset is available at https://huggingface.co/datasets/dbpedia_14.

For two weakly-supervised classification tasks, we use the data from WRENCH benchmark (Zhang et al., 2021).

- **TREC**: Dataset is available at https://drive.google.com/drive/u/1/folders/1v55IKG2JN9fMtKJWU48B_5_DcPWGnpTq.

The preprocessed dataset is available at https://drive.google.com/drive/u/1/folders/1v55IKG2JN9fMtKJWU48B_5_DcPWGnpTq.

A.2 Train/Test Split

For all the datasets, we use the original train/dev/test split from the web. To keep the size of the development set small, we randomly sample 1000 data for SST-2, AGNews, Pubmed-RCT, DBPedia and randomly sample 500 samples for TREC, ChemProt.

B Details on Implementation and Experiment Setups

B.1 Computing Infrastructure

System: Ubuntu 18.04.3 LTS; Python 3.6; Pytorch 1.6.

CPU: Intel(R) Core(TM) i7-5930K CPU @ 3.50GHz.

GPU: NVIDIA 2080Ti.

B.2 Number of Parameters

ACTUNE and all baselines use Roberta-base (Liu et al., 2019) with a task-specific classification head on the top as the backbone, which contains 125M trainable parameters. We do not introduce any other parameters in our experiments.

B.3 Experiment Setups

Following (Ein-Dor et al., 2020; Yuan et al., 2020; Margatina et al., 2021b), all of our methods and baselines are run with 3 different random seed and the result is based on the average performance on them. This indeed creates 4 (the number of datasets) × 3 (the number of random seeds) × 11 (the number of methods) × 10 (the number of fine-tuning rounds in AL) = 1320 experiments for fine-tuning PLMs, which is almost the limit of our computational resources, not to mention additional experiments on weakly-supervised text classification as well as different hyper-parameter tuning. We have show both the mean and the standard deviation of the performance in our experiment sections. All the results have passed a paired t-test with $p < 0.05$ (Dror et al., 2018).

B.4 Implementations Baselines

We implement Entropy, BALD by ourselves as they are easy to implement and are classic methods for AL. For REVIVAL (Guo et al., 2021), since we do not find the implementations released by authors, we implement on our own it based on the information in the original paper. For other baselines, we run the experiments based on the implementations on the web. We list the link for the implementations as belows:

- **ALPS**: https://github.com/forest-snow/alps.
- **UST**: https://github.com/microsoft/UST.
- **COSINE**: https://github.com/yueyu1030/COSINE.

For these three baselines listed below, since they are mainly used in CV tasks, thus the code is hard to directly used for our experiments. We re-implement these methods based on their implementations, especially for SSAL part.

- **ASST**: https://yueyu1030/COSINE.
<table>
<thead>
<tr>
<th>Hyper-parameter</th>
<th>SST-2</th>
<th>AG News</th>
<th>Pubmed</th>
<th>DBPedia</th>
<th>TREC</th>
<th>Chemprot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dropout Ratio</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Tokens</td>
<td>32</td>
<td>96</td>
<td>96</td>
<td>64</td>
<td>64</td>
<td>128</td>
</tr>
<tr>
<td>Batch Size for X_l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batch Size for X_u in Self-training</td>
<td>32</td>
<td>48</td>
<td>48</td>
<td>32</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>Weight Decay</td>
<td>10^{-8}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning Rate</td>
<td>2×10^{-5}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>25</td>
<td>30</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>K</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m_L</td>
<td>0.8</td>
<td>0.9</td>
<td>0.7</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>m_H</td>
<td>0.9</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>λ</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Hyper-parameter configurations. Note that we only keep certain number of tokens.

<table>
<thead>
<tr>
<th>Method</th>
<th>Dataset</th>
<th>Pubmed</th>
<th>DBPedia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finetune (Random)</td>
<td><0.1s</td>
<td><0.1s</td>
<td></td>
</tr>
<tr>
<td>Entropy (Holub et al., 2008)</td>
<td>461s</td>
<td>646s</td>
<td></td>
</tr>
<tr>
<td>BALD (Gal et al., 2017)</td>
<td>4595s</td>
<td>6451s</td>
<td></td>
</tr>
<tr>
<td>ALPS (Yuan et al., 2020)</td>
<td>488s</td>
<td>677s</td>
<td></td>
</tr>
<tr>
<td>BADGE (Ash et al., 2020)</td>
<td>554s</td>
<td>1140s</td>
<td></td>
</tr>
<tr>
<td>CAL (Margatina et al., 2021b)</td>
<td>493s</td>
<td>688s</td>
<td></td>
</tr>
<tr>
<td>REVIVAL (Guo et al., 2021)</td>
<td>3240s</td>
<td>OOM</td>
<td></td>
</tr>
<tr>
<td>ActTUNE + Entropy</td>
<td>477s</td>
<td>733s</td>
<td></td>
</tr>
<tr>
<td>w/ RS for Active Learning</td>
<td>15.8s</td>
<td>44.9s</td>
<td></td>
</tr>
<tr>
<td>w/ MMB for Self-training</td>
<td>0.12s</td>
<td>0.18s</td>
<td></td>
</tr>
<tr>
<td>ActTUNE + CAL</td>
<td>510s</td>
<td>735s</td>
<td></td>
</tr>
<tr>
<td>w/ RS for Active Learning</td>
<td>16.6s</td>
<td>46.4s</td>
<td></td>
</tr>
<tr>
<td>w/ MMB for Self-training</td>
<td>0.12s</td>
<td>0.18s</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: The running time of different baselines. Note that for ASST, CEAL and BASS, they directly use existing active learning methods so we do not list the running time here.

- **CEAL**: https://github.com/rafikg/CEAL.

Our implementation of ActTUNE will be published upon acceptance.

B.5 Hyper-parameters for General Experiments

We use AdamW (Loshchilov and Hutter, 2019) as the optimizer, and the learning rate is chosen from $1 \times 10^{-5}, 2 \times 10^{-5}$. A linear learning rate decay schedule with warm-up 0.1 is used, and the number of training epochs is 15 for fine-tuning. For active self-training & SSAL baselines, we tune the model with 2000 steps, and evaluate the performance on the development set in every 50 steps. Finally, we use the model with best performance on the development set for testing.

B.6 Hyper-parameters for ActTUNE

Although ActTUNE introduces several hyperparameters including K, M, m_L, m_H, β, γ, λ, most of them are kept fixed during our experiments, thus it does not require heavy hyper-parameter tuning. The hyper-parameters we use are shown in Table 2. Specifically, we search T_1 from 10 to 2000, T_2 from 1000 to 5000, T_3 from 10 to 500, ξ from 0 to 1, and λ from 0 to 0.5. All results are reported as the average over three runs.

In our experiments, we keep $\beta = 0.5$, $\lambda = 1$ for all datasets. For other parameters, we use a grid search to find the optimal setting for each dataset. Specifically, we search γ from $[0.5, 0.6, 0.7]$, m_L from $[0.6, 0.7, 0.8]$, m_H from $[0.8, 0.9, 1]$. For ActTUNE with Entropy, we use probability based aggregation and for ActTUNE with CAL, we use value based aggregation by default.

B.7 Hyperparameters for Baselines

For other SSAL methods, we mainly tune their key hyperparameters. Note that Entropy (Holub et al., 2008), BALD (Gal et al., 2017), ALPS (Yuan et al., 2020), BADGE (Ash et al., 2020) do not introduce any new hyperparameters. For CAL (Margatina et al., 2021b), we tune the number for KNN k from $[5, 10, 20]$ and report the best performance. For ST (Lee, 2013), CEAL (Wang...
et al., 2016) & BASS (Rottmann et al., 2018), it uses a threshold δ for selecting high-confidence data. We tune δ from $[0.6, 0.7, 0.8, 0.9]$ to report the best performance. For UST (Mukherjee and Awadallah, 2020), we tune the number of low-uncertainty samples used in the next round from $[1024, 2048, 4096]$. For COSINE (Yu et al., 2021), we set the weight for confidence regularization λ as 0.1, the threshold τ for selecting high-confidence data from $[0.7, 0.9]$ and the update period of self-training from $[50, 100, 150]$. For REVIVAL (Guo et al., 2021), it calculates uncertainty with adversarial perturbation, we tune the size of the perturbation ϵ from $[1e^{-3}, 1e^{-4}, 1e^{-5}]$.

C Runtime Analysis.

Table 3 shows the time in one active learning round of ACtUNE and baselines. Here we highlight that the additional time for region-aware sampling and momentum-based memory bank is rather small compared with the inference time. Among all baselines, we find that the running time of clustering-based method is faster than the original reported time in the paper. This is because we use FAISS (Johnson et al., 2019) instead of SKLearn (Pedregosa et al., 2011) for clustering, which accelerates the clustering step significantly. Also, we find that BALD and REVIVAL are not so efficient. For BALD, it needs to infer the uncertainty of the model by passing the data to model with multiple times. Such an operation will make the total inference time for PLMs very long. For REVIVAL, we find that calculating the adversarial gradient needs extra forward passes and backward passes, which could be time-consuming for PLMs with millions of parameters.

D Limitations

First, since our focus is on fine-tuning pre-trained language models, we use the representation of [CLS] token for classification. In the future work, we can consider using prompt tuning (Gao et al., 2021; Schick and Schütze, 2021), a more data-efficient method for adopting pre-trained language models on classification tasks to further promote the efficiency. Also, due to the computational resource constraints, we do not use larger pre-trained language models such as RoBERTa-large (Liu et al., 2019) which shown even better performance with only a few labels (Du et al., 2021). Last, apart from the text classification task, we can also extend our work into other tasks such as sequence labeling and natural language inference.

E Case Study

Here we give an example of our querying strategy on AG News and Pubmed dataset for the 1st round of active self-training process in figure 6. Note that we use t-SNE algorithm (Van der Maaten and Hinton, 2008) for dimension reduction, and the black triangle stands for the queried samples while other circles stands for the unlabeled data. Different colors stands for different classes. From the comparison, we can see that the existing uncertainty based methods such as Entropy and CAL, are suffered from the issue of limited diversity. However, when combined with ACtUNE, the diversity is much improved. Such results, compared with the main results in figure 1, demonstrate the efficacy of ACtUNE empirically.
Figure 6: Visualization of the querying strategy of ACTUNE.