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Abstract
Although fine-tuning pre-trained language001
models (PLMs) renders strong performance in002
many NLP tasks, it relies on excessive labeled003
data. Recently, researchers have resorted to004
active fine-tuning for enhancing the label effi-005
ciency of PLM fine-tuning, but existing meth-006
ods of this type usually ignore the potential of007
unlabeled data. We develop ACTUNE, a new008
framework that improves the label efficiency009
of active PLM fine-tuning by unleashing the010
power of unlabeled data via self training. AC-011
TUNE switches between data annotation and012
model self-training based on uncertainty: the013
unlabeled samples of high-uncertainty are se-014
lected for annotation, while the ones from low-015
uncertainty regions are used for model self-016
training. Additionally, we design (1) a region-017
aware sampling strategy to avoid redundant018
samples when querying annotations and (2)019
a momentum-based memory bank to dynam-020
ically aggregate the model’s pseudo labels to021
suppress label noise in self-training. Exper-022
iments on 6 text classification datasets show023
that ACTUNE outperforms the strongest active024
learning and self-training baselines and im-025
proves the label efficiency of PLM fine-tuning026
by 56.2% on average.027

1 Introduction028

Fine-tuning pre-trained language models (PLMs)029

has achieved enormous success in natural language030

processing (NLP) (Devlin et al., 2019; Liu et al.,031

2019; Brown et al., 2020), one of which is the032

competitive performance it offers when consuming033

only a few labeled data (Bansal et al., 2020; Gao034

et al., 2021). However, there are still significant035

gaps between few-shot and fully-supervised PLM036

fine-tuning in many classification tasks. Besides,037

the performance of few-shot PLM fine-tuning can038

vary substantially with different sets of training039

data (Bragg et al., 2021). Therefore, there is a040

crucial need for PLM fine-tuning approaches with041

better label-efficiency and being robust to selection042

of training data, especially for applications where 043

labeled data are scarce and expensive to obtain. 044

Towards this goal, researchers have resorted to 045

active fine-tuning of PLMs and achieved compara- 046

ble performance to fully-supervised methods with 047

much less annotated samples (Ein-Dor et al., 2020; 048

Margatina et al., 2021a,b; Yuan et al., 2020). Never- 049

theless, they usually neglect unlabeled data, which 050

can be useful for improving label efficiency for 051

PLM fine-tuning (Du et al., 2021). To leverage 052

those unlabeled data to improve label efficiency 053

of active learning, efforts have been made in the 054

semi-supervised active learning literature (Wang 055

et al., 2016; Rottmann et al., 2018; Siméoni et al., 056

2020), but the proposed query strategies can return 057

highly redundant samples due to limited representa- 058

tion power, resulting in suboptimal label efficiency. 059

Moreover, they usually rely on pseudo-labeling to 060

utilize unlabeled data, which requires greater (yet 061

often absent) care to denoise the pseudo labels, 062

otherwise the errors could accumulate and deteri- 063

orate the model performance. This phenomenon 064

can be even more severe for PLMs, as the fine- 065

tuning process often suffers from the instability 066

issue caused by different weight initialization and 067

data orders (Dodge et al., 2020). Thus, it still re- 068

mains open and challenging to design robust and 069

label efficient method for active PLM fine-tuning. 070

To tackle above challenges, we propose AC- 071

TUNE, a new method that improves the label effi- 072

ciency and robustness of active PLM fine-tuning 073

with self-training. Based on the estimated uncer- 074

tainty of data, ACTUNE chooses from one of the 075

following cases in each learning round: (1) when 076

the average uncertainty of a region is low, we 077

trust the model’s prediction and select most cer- 078

tain predictions within the region for self-training; 079

(2) when the average uncertainty of a region is high, 080

indicating inadequate observations for parameter 081

learning, we actively annotate most uncertain sam- 082

ples within the region to improve the model. Dif- 083
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ferent from existing AL methods that only leverage084

uncertainty for querying labels, our uncertainty-085

driven self-training paradigm gradually unleash the086

data with low uncertainty via self-training, while087

reducing the chance of error propagation triggered088

by highly-uncertain mis-labeled data.089

To further boost the performance on downstream090

tasks, we design two techniques, namely region-091

aware sampling (RS) and momentum-based mem-092

ory bank (MMB) to improve the query strategies093

and suppress label noise for ACTUNE. Inspired by094

the fact that existing uncertainty-based AL meth-095

ods often end up choosing uncertain yet repeti-096

tive data (Ein-Dor et al., 2020; Margatina et al.,097

2021b), we design a region-aware sampling tech-098

nique to promote both diversity and representa-099

tiveness by leveraging the representation power of100

PLMs. Specifically, we first estimate the uncertain-101

ties of the unlabeled data with PLMs, then cluster102

the data using their PLM representations and weigh103

the data by the corresponding uncertainty. Such a104

clustering scheme partitions the embedding space105

into small sub-regions with an emphasis on highly-106

uncertain samples. Finally, by sampling over mul-107

tiple high-uncertainty regions, our strategy selects108

data with high uncertainty and low redundancy.109

To rectify the erroneous pseudo labels derived by110

self-training, we design a simple but effective way111

to select low-uncertainty data for self-training. Our112

method is motivated by the fact that fine-tuning113

PLMs suffer from instability issues — distinct ini-114

tializations and data orders can result in a large vari-115

ance of the task performance (Dodge et al., 2020;116

Zhang et al., 2020; Mosbach et al., 2021). However,117

previous approaches only select pseudo-labeled118

data based on the prediction of the current round119

and therefore are less reliable. In contrast, we main-120

tain a dynamic memory bank to save the predictions121

of unlabeled samples for later use. we propose a122

momentum updating method to dynamically aggre-123

gate the predictions from preceding rounds (Laine124

and Aila, 2016) and select low-uncertainty samples125

based on aggregated prediction. As a consequence,126

only the samples with high prediction confidence127

over multiple rounds will be used for self-training,128

which mitigates the issue of label noise. We high-129

light that our active self-training approach is an130

efficient substitution to existing AL methods, re-131

quiring ignorable extra computational cost.132

Our key contributions are: (1) an active self-133

training paradigm ACTUNE that integrates the ben-134

efit of self-training and active learning in a prin- 135

cipled way to minimize the labeling cost for fine- 136

tuning PLMs; (2) a region-aware querying strategy 137

to enforce both the informativeness and the diver- 138

sity of queried samples during AL; (3) a simple 139

and effective momentum-based method to harness 140

the predictions for preceding rounds to alleviate the 141

label noise in self-training and (4) experiments on 142

6 benchmarks demonstrating ACTUNE improves 143

the label efficiency over existing self-training and 144

active learning baselines by 56.2%. 145

2 Uncertainty-aware Active Self-training 146

2.1 Problem Formulation 147

We study active fine-tuning of pre-trained lan- 148

guage models for text classification, formulated 149

as follows: Given a small number of labeled sam- 150

ples Xl = {(xi, yi)}Li=1 and unlabeled samples 151

Xu = {xj}Uj=1 (|Xl| � |Xu|), we aim to fine-tune 152

a pre-trained language model f(x; θ) : X → Y in 153

an interactive way: we perform active self-training 154

for T rounds with the total labeling budget b. In 155

each round, we aim to query B = b/T samples 156

denoted as B from Xu to fine-tune a pre-trained 157

language model f(x; θ) with both Xl,B and Xu 158

to maximize the performance on downstream text 159

classification tasks. Here X = Xl ∪ Xu denotes 160

all samples and Y = {1, 2, · · · , C} is the label set, 161

where C is the number of classes. 162

2.2 Overview of ACTUNE Framework 163

We now present our active self-training paradigm 164

ACTUNE underpinned by estimated uncertainty. 165

We begin the active self-training loop by fine- 166

tuning a BERT f(θ(0)) on the initial labeled data 167

XL. Formally, we solve the following optimization 168

problem 169

min
θ

1

|XL|
∑

(xi,yi)∈XL

`CE

(
f(xi; θ

(0)), yi

)
, (1) 170

In round t (1 ≤ t ≤ T ) of the active self-training 171

procedure, we first calculate the uncertainty score 172

based on a given function a(t)i = a(xi, θ
(t)) 1 for 173

all xi ∈ Xu. Then, we query labeled samples 174

and generate pseudo-labels for unlabeled data Xu 175

simultaneously to facilitate self-training. For each 176

sample xi, the pseudo-label ỹ is calculated based 177

on the current model’s output: 178

ỹ = argmax
j∈Y

[
f(x; θ(t))

]
j
, (2) 179

1Note that ACTUNE is agnostic to the way uncertainty
score a(t)i is computed.
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Algorithm 1: Training Procedures of ACTUNE.
Input: Initial labeled samples Xl; Unlabeled samples

Xu; Pre-trained LM f(·; θ), number of active
self-training rounds T .

// Fine-tune the LM with initial labeled data.
1. Calculate θ(0) based on Eq. (1).
2. Initialize the memory bank g(x; θt) based on the

current prediction.
// Conduct active self-training with all data.
for t = 1, 2, · · · , T do

1. Run weighted K-Means (Eq. (3), (4)) until
convergence.

2. Select sample setQ(t) for AL and S(t) for
self-training from Xu based on Eq. (11) or (13).

3. Augment the labeled set XL = XL ∪Q(t).
4. Obtain θ(t) by finetuning f(·; θt) with LST (

Eq. (14)) using AdamW.
5. Update memory bank g(x; θt) with Eq. (10)
or (12).

Output: The final fine-tuned model f(·; θT ).

where f(x; θ(t)) ∈ RC is a probability simplex180

and [f(x; θ(t))]j is the j-th entry. The procedure181

of ACTUNE is summarized in Algorithm 1.182

2.3 Region-aware Sampling for Active183

Learning on High-uncertainty Data184
After obtaining the uncertainty for unlabeled data,185

we aim to query annotation for high-uncertainty186

samples. However, directly sampling the most187

uncertain samples gives suboptimal result since188

uncertainty-based sampling tends to query repeti-189

tive data (Ein-Dor et al., 2020) and results in poor190

representativeness of the overall data distribution.191

To tackle this issue, we propose region-aware192

sampling to capture both uncertainty and diversity193

during active self-training. Specifically, in the t-194

th round, we first conduct the weighted K-means195

clustering (Huang et al., 2005), which weights sam-196

ples based on their uncertainty. Denote K the197

number of clusters and v(t)i = BERT(xi) the rep-198

resentation of xi from the penultimate layer of199

BERT. The weighted K-means first initializes the200

center of each each cluster µi(1 ≤ i ≤ K) via201

K-Means++ (Arthur and Vassilvitskii, 2007). Then,202

it jointly updates the centroid of each cluster and203

assigns each sample to cluster ci as204

c
(t)
i = argmin

k=1,...,K
‖vi − µk‖2 , (3)205

206

µ
(t)
k =

∑
xi∈C(t)

k

a(xi, θ
(t)) · v(t)

i∑
x∈C(t)

k

a(xi, θ(t))
(4)207

208

where C(t)k = {x(t)
i |c

(t)
i = k}(k = 1, . . . ,K)209

stands for the k-th cluster. The above two steps in210

Eq. (3), (4) are repeated until convergence. Com-211

pared with vanilla K-Means method, the weighting212

scheme increases the density of the samples with 213

high uncertainty, thus enabling the K-Means meth- 214

ods to discover clusters with high uncertainty. After 215

obtaining K regions with the corresponding data 216

C(t)k , we calculate the uncertainty of each region as 217

u
(t)
k = U(C(t)k ) + βI(C(t)k ) (5) 218

where 219

U(C(t)k ) =
1

|C(t)k |

∑
xi∈C(t)

k

a(xi, θ
(t)) (6) 220

stands for the average uncertainty of samples and 221

I(C(t)k ) = −
∑
j∈C

f
(t)
j log f

(t)
j (7) 222

stands for the inter-class diversity within cluster 223

k and f (t)j =
∑

i 1{ỹi=j}
|C(t)k |

represents the frequency 224

of class j on cluster k. Notably, the term U(C(t)k ) 225

assigns higher score for clusters with more uncer- 226

tain samples, and I(C(t)k ) grants higher scores for 227

clusters containing samples with more diverse pre- 228

dicted classes from pseudo labels since such clus- 229

ters would be closer to the decision boundary. 230

Then, we rank the clusters in an ascending or- 231

der according to u(t)k . A high score indicates high 232

uncertainty of the model in these regions, and we 233

need to actively annotate the associated instances to 234

reduce uncertainty and improve the model’s perfor- 235

mance. We adopt a hierarchical sampling strategy: 236

we first select the M clusters with the highest un- 237

certainty, and then sample b′ = b BM c data with the 238

highest uncertainty to form the batch Q(t).2 239

K(t)
a = top-M

k∈{1,...,K}
u
(t)
k ,

Q(t) =
⋃

k∈K(t)
a

C(t)a,k where C(t)a,k = Top-b′

xi∈C(t)
k

a(xi, θ
(t)).

(8) 240
We remark that such a hierarchical sampling strat- 241

egy queries most uncertain samples from differ- 242

ent regions, thus the uncertainty and diversity of 243

queried samples can be both achieved. 244

2.4 Self-training for Most Confident Data 245

from Low-uncertainty Regions 246

For self-training, we aim to select unlabeled sam- 247

ples which are most likely to have been correctly 248

classified by the current model. This requires the 249

sample to have low uncertainty. Therefore, we 250

select the top k samples from the M lowest uncer- 251

tainty regions to form the acquired batch S(t): 252

2If the number of samples in the i-th cluster Ci is smaller
than b′, then we sample all the data within Ci and increase the
budget for the (i+ 1)-th cluster by b′ − |Ci|.
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C(t)s =
⋃

k∈K(t)
s

C(t)k where K(t)
s = bottom-M

k∈{1,...,K}
u
(t)
k ,

S(t) = bottom-k
xi∈C(t)

s

a(xi, θ
(t)),

(9)253

254 Momentum-based Memory Bank for Self-255

training. As PLMs are sensitive to the stochas-256

ticity involved in fine-tuning, the model suffers257

from the instability issue — different weight ini-258

tialization and data orders may result in different259

predictions on the same dataset (Dodge et al., 2020).260

Additionally, if the model gives inconsistent pre-261

dictions in different rounds for a specific sample,262

then it is potentially uncertain about the sample,263

and adding it to the training set may harm the ac-264

tive self-training process. For example, for a two-265

class classification problem, suppose we obtain266

f(x; θ(t−1)) = [0.65, 0.35] for sample x the round267

(t−1) and f(x; θ(t)) = [0.05, 0.95] for the round t.268

Although the model is quite ‘confident’ on the class269

of x when we only consider the result of the round270

t, it gives contradictory predictions over these two271

consecutive rounds, which indicates that the model272

is still uncertain to which class x belongs.273

To effectively mitigate the noise and stabilize the274

active self-training process, we maintain a dynamic275

memory bank to save the results from previous276

rounds, and use momentum update (He et al., 2020;277

Laine and Aila, 2016) to aggregate the results from278

both the previous and current rounds. Then, during279

active self-training, we will select samples with the280

highest aggregated score. In this way, only those281

samples that the model is certain about over all pre-282

vious rounds will be selected for self-training. We283

design two variants for the memory bank, namely284

prediction-based and value-based aggregation.285

Prediction based Momentum Update. We adopt286

an exponential moving average approach to aggre-287

gate the prediction g(x; θ(t)) on round t as288

g(x; θ(t)) = mt×f(x; θ(t))+(1−mt)×g(x; θ(t−1)),
(10)289

where mt = (1 − t
T )mL + t

TmH (0 < mL ≤290

mH ≤ 1) is a momentum coefficient. We gradu-291

ally increase the weight for models on later rounds,292

since they are trained with more labeled data293

thus being able to provide more reliable predic-294

tions. Then, we calculate the uncertainty based on295

g(x; θ(t)) and rewrite Eq. (9) and (2) as296

S(t) = bottom-k
xi∈C

(t)
s

a
(
xi, g(x; θ

(t)), θ(t)
)

ỹ = argmax
j∈Y

[
g(x; θ(t))

]
j
,

(11)297

Value-based Momentum Update. For methods 298

that do not directly use prediction for uncertainty 299

estimation, we aggregate the uncertainty value as 300

g(x; θ(t)) = mt×a(x; θ(t))+(1−mt)×g(x; θ(t−1)).
(12) 301

Then, we use Eq. (12) to sample low-uncertainty 302

data for self-training as 303

S(t) = bottom-k
xi∈C

(t)
s

g(xi, θ
(t)),

ỹ = argmax
j∈Y

[
f(x; θ(t))

]
j
.

(13) 304

By aggregating the prediction results over previ- 305

ous rounds, we filter the sample with inconsistent 306

predictions to suppress noisy labels. 307

2.5 Model Learning and Update 308

After obtaining both the labeled data and pseudo- 309

labeled data, we fine-tune a new pre-trained BERT 310

model θ(t+1) on them. Although we only include 311

low-uncertainty samples during self-training, it is 312

difficult to eliminate all the wrong pseudo-labels, 313

and such mislabeled samples can still hurt model 314

performance. To suppress such label noise, we 315

use a threshold-based strategy to further remove 316

noisy labels by selecting samples that agree with 317

the corresponding pseudo labels. The loss objective 318

of optimizing θ(t+1) is 319

LST =
1

|XL ∪Q(t)|
∑

xi∈XL∪Q(t)

`CE

(
f(xi; θ

(t+1)), yi
)

+
λ

|S(t)|
∑

x̃i∈S(t)

ωi`CE

(
f(x̃i; θ

(t+1)), ỹi
)
,

(14) 320

where λ is a hyper-parameter balancing the weight 321

between clean and pseudo labels, and ωi = 322

1{
[
f(xi; θ

(t+1))
]
ỹi
> γ} stands for the thresh- 323

olding function. 324

Complexity Analysis. The running time of AC- 325

TUNE is mainly consisted of two parts: the in- 326

ference time O(|Xu|) and the time for K-Means 327

clustering O(dK|Xu|), where d is the dimension 328

of the BERT feature v. Note that the clustering can 329

be efficiently implemented with FAISS (Johnson 330

et al., 2019), and will not excessively increase the 331

total running time. For self-training, the size of 332

the memory bank g(x; θ) is proportional to |Xu|, 333

while the extra computation of maintaining this dic- 334

tionary is ignorable since we do not inference over 335

the unlabeled data for multiple times in each round 336

as BALD (Gal et al., 2017) does. The running time 337

of ACTUNE will be shown in section C. 338
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Dataset Label Type # Class # Train # Dev #Test

SST-2 Sentiment 2 60.6k 0.8k 1.8k
AG News News Topic 4 119k 1k 7.6k
Pubmed Medical Abstract 5 180k 1k 30.1k
DBPedia Wikipedia Topic 14 280k 1k 70k

TREC Question 6 5.0k 0.5k 0.5k
Chemprot Medical Abstract 10 12.8k 0.5k 1.6k

Table 1: Dataset Statistics. For DBPedia, we randomly
sample 20k sample from each class due to the limited
computational resource.

3 Experiments339

3.1 Experiment Setup340

Tasks and Datasets. In our main experiments,341

we study over 4 benchmark datasets, including342

SST-2 (Socher et al., 2013) for sentiment analy-343

sis, AGNews (Zhang et al., 2015) for news topic344

classification, Pubmed-RCT (Dernoncourt and Lee,345

2017) for medical abstract classification, and DBPe-346

dia (Zhang et al., 2015) for wikipedia topic classi-347

fication. For weakly-supervised text classification,348

we choose 2 datasets, namely TREC (Li and Roth,349

2002) and Chemprot (Krallinger et al., 2017) from350

the WRENCH benchmark (Zhang et al., 2021) for351

evaluation. The statistics are shown in table 1.352

Active Learning Setups. Following (Yuan et al.,353

2020), we set the number of rounds T = 10, the354

overall budget for all datasets b = 1000 and the355

initial size of the labeled |Xl| is set to 100. To sim-356

ulate AL, in each round, we sample a batch of 100357

samples from the unlabeled setXu and query labels358

for them. Then we move this batch to the labeled359

set. Since large development sets are impractical360

in low-resource settings (Kann et al., 2019), we361

keep the size of development set as 1000, which362

is the same as the labeling budget3. For weakly-363

supervised text classification, since the datasets are364

much smaller, we keep the labeling budget and the365

size of development set to b = 500.366

Implementation Details. We choose RoBERTa-367

base (Liu et al., 2019) from the HuggingFace code-368

base (Wolf et al., 2020) as the backbone for AC-369

TUNE and all baselines except for Pubmed and370

Chemprot, where we use SciBERT (Beltagy et al.,371

2019), a BERT model pre-trained on scientific cor-372

pora. In each round, we train from scratch to avoid373

badly overfitting the data collected in earlier rounds374

as observed by Hu et al. (2019). More details are375

in Appendix B.376

Hyperparameters. The hyperparameters setting377

is in Appendix B.6 for ACTUNE and B.7 for base-378

3This is often neglected in previous low-resource AL stud-
ies, and we highlight it to ensure the true low-resource setting.

lines. In the t-th round of active self-training, we 379

increase the number of pseudo-labeled samples by 380

k, where k equals to 500 for TREC and Chemprot, 381

3000 for SST-2 and Pubmed-RCT, and 5000 for 382

others. For the momentum factor, we tunemL from 383

[0.6, 0.7, 0.8] and mH from [0.8, 0.9, 1.0] and re- 384

port the best {mL,mH} based on the performance 385

of the development set. 386

Baselines. 387

Self-training Methods: (1) Self-training (ST, 388

Lee (2013)): It is the vanilla self-training method 389

that generates pseudo labels for unlabeled data. 390

(2) UST (Mukherjee and Awadallah, 2020; Rizve 391

et al., 2021): It is an uncertainty-based self-training 392

method that only uses low-uncertainty data for self- 393

training. (3) COSINE (Yu et al., 2021): It uses 394

self-training to fine-tune LM with weakly-labeled 395

data, which achieves SOTA performance on vari- 396

ous text datasets in WRENCH benchmark (Zhang 397

et al., 2021). Note that for these two baselines, we 398

randomly sample b labeled data as the initializa- 399

tion. Also, UST is only used in main experiments 400

in Sec. 3.2 and COSINE is evaluated in Sec 3.3. 401

Active Learning Methods: (1) Random: It ac- 402

quires annotation randomly, which serves as a base- 403

line for all methods. (2) Entropy (Holub et al., 404

2008): It is an uncertainty-based method that ac- 405

quires annotations on samples with the highest pre- 406

dictive entropy. (3) BALD (Gal et al., 2017): It 407

is also an uncertainty-based method, which calcu- 408

lates model uncertainty using MC Dropout (Gal 409

and Ghahramani, 2015). (4) BADGE (Ash et al., 410

2020): It first selects high uncertainty samples then 411

uses KMeans++ over the gradient embedding to 412

sample data. (5) ALPS (Yuan et al., 2020): It uses 413

the masked language model (MLM) loss of BERT 414

to query labels for samples. (6) CAL (Margatina 415

et al., 2021b) is the most recent AL method for pre- 416

trained LMs. It calculates the uncertainty of each 417

sample based on the KL divergence between the 418

prediction of itself and its neighbors’ prediction. 419

Semi-supervised Active Learning (SSAL) Meth- 420

ods: (1) ASST (Tomanek and Hahn, 2009; 421

Siméoni et al., 2020) is an active semi-supervised 422

learning method that jointly queries labels for AL 423

and samples pseudo labels for self-training. (2) 424

CEAL (Wang et al., 2016) acquires annotations 425

on informative samples, and uses high-confidence 426

samples with predicted pseudo labels for weights 427

updating. (3) BASS (Rottmann et al., 2018) is sim- 428

ilar to CEAL, but use MC dropout for querying 429
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labeled sample. (4) REVIVAL (Guo et al., 2021)430

is the most recent SSAL method, which uses an431

adversarial loss to query samples and leverage label432

propagation to exploit adversarial examples.433

Our Method: We experiment with both Entropy434

and CAL as uncertainty measures for ACTUNE.435

Note that when compared with active learning base-436

lines, we do not augment the train set with pseudo-437

labeled data (Eq. (9)) to ensure fair comparisons.438

3.2 Main Result439

Figure 1 reports the performance of ACTUNE and440

the baselines on 4 benchmarks. From the results,441

we have the following observations:442

• ACTUNE consistently outperforms baselines in443

most of the cases. Different from studies in the444

computer vision (CV) domain (Siméoni et al.,445

2020) where the model does not perform well in446

the low-data regime, pre-trained LM has achieved447

competitive performance with only a few labeled448

data, which makes further improvements to the449

vanilla fine-tuning challenging. Nevertheless, AC-450

TUNE surpasses baselines in more than 90% of the451

rounds and achieves 0.4%-0.7% and 0.3%-1.5%452

absolute gain at the end of AL and SSAL respec-453

tively. Figure 2 quantitatively measures the num-454

ber of labels needed for the most advanced active455

learning model and self-training model (UST) to456

outperform ACTUNE with 1000 labels. These457

baselines need >2000 clean labeled samples to458

reach the performance as ours. ACTUNE saves459

on average 56.2% and 57.0% of the labeled sam-460

ples than most advanced active learning and self-461

training baselines respectively, which justifies its462

promising performance under low-resource scenar-463

ios. Such improvements show the merits of two key464

designs under our active self-training framework:465

the region-aware sampling for active learning and466

the momentum-based memory bank for robust self-467

training, which will be discussed in the section 3.5.468

• Compared with the previous AL baselines, AC-469

TUNE can bring consistent performance gain, while470

previous semi-supervised active learning methods471

cannot. For instance, BASS is based on BALD472

for active learning, but sometimes it performs even473

worse than BALD with the same number of la-474

beled data (see Fig. 5(b) and Fig. 1(f)). This is475

mainly because previous methods simply combine476

noisy pseudo labels with clean labels for training477

without explicitly rectifying the wrongly-labeled478

data, which will cause the LM to overfit these haz-479

ardous labels. Moreover, previous methods do not480

exploit momentum updates to stabilize the learning 481

process, as there are oscillations in the beginning 482

rounds. In contrast, ACTUNE achieves a more 483

stable learning process and enables an active self- 484

training process to benefit from more labeled data. 485

• The self-training methods (ST & UST) achieve 486

superior performance with limited labels. However, 487

they mainly focus on leveraging unlabeled data 488

for improving the performance, while our results 489

demonstrate that adaptive selecting the most useful 490

data for fine-tuning is also important for improving 491

the performance. With a powerful querying policy, 492

ACTUNE can improve these self-training baselines 493

by 1.05% in terms of accuracy on average. 494

3.3 Extension to Weakly-supervised 495

Learning 496

ACTUNE can be naturally extended to weakly- 497

supervised classification, where Xl is a set of data 498

annotated by linguistic patterns or rules. Since the 499

initial label set is noisy, then the model trained with 500

Eq. (1) will overfit to the label noise, and we can 501

actively query labeled data to refine the model. 502

We conduct experiments on the TREC and 503

Chemprot dataset4, where we first use Snorkel (Rat- 504

ner et al., 2017) to obtain weak label set Xl, then 505

fine-tune the pre-trained LM f(θ(0)) on Xl. After 506

that, we adopt ACTUNE for active self-training. 507

Fig. 5 shows the results of these two datasets5. 508

When combining ACTUNE with CAL, the perfor- 509

mance is unsatisfactory. We argue it is because 510

CAL requires clean labels to calculate uncertain- 511

ties. When labels are inaccurate, it will prevent AC- 512

TUNE from querying informative samples. In con- 513

trast, ACTUNE achieves the best performance over 514

baselines when using Entropy as the uncertainty 515

measure. The performance gain is more notable 516

on the TREC dataset, where we achieve 96.68% 517

accuracy, close to the fully supervised performance 518

(96.80%) with only ∼6% of clean labels. 519

3.4 Combination with Other AL Methods 520

Fig. 4(a) demonstrates the performance of AC- 521

TUNE combined with other AL methods (e.g. 522

BADGE, ALPS) on SST-2 dataset. It is clear that 523

even if the AL methods are not uncertainty-based 524

(e.g. BADGE), when using the entropy as an un- 525

certainty measure to select pseudo-labeled data for 526

4Details for labeling functions are in Zhang et al. (2021).
5We don’t show AL methods since they perform worse

than SSAL methods on these datasets in general.
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Figure 1: The comparision of ACTUNE with active learning, semi-supervised active learning and self-training
baselines. The first row is the result under active learning setting (AL, i.e. no unlabeled data is used), the second
row is the result under semi-supervised active learning (SSAL) setting. The metric is accuracy. †: REVIVAL
causes OOM error for DBPedia dataset.
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Figure 2: The label-efficiency of ACTUNE compared
with AL and self-training baselines. According to
Fig. 1, the best AL method is Entropy for DBPedia and
CAL for others.

self-training, ACTUNE can further boost the perfor-527

mance. This indicates that ACTUNE is a general528

active self-training approach, as it can serve as an529

efficient plug-in module for existing AL methods.530

3.5 Ablation and Hyperparameter Study531

The Effect of Different Components in AC-532

TUNE. We inspect different components of533

ACTUNE, including the region-sampling (RS),534

momentum-based memory bank (MMB), and535

weighted clustering (WClus)6. Experimental re-536

sults (Fig. 4(b)) shows that all the three compo-537

nents contribute to the final performance, as remov-538

ing any of them hurts the classification accuracy.539

Also, we find that when removing MMB, the perfor-540

mance hurts most in the beginning rounds, which541

indicates that MMB effectively suppresses label542

noise when the model’s capacity is weak. Con-543

6For models w/o RS, we directly select samples with high-
est uncertainty during AL. For models w/o MMB, we only
use the prediction from the current round for self-training. For
models w/o WClus, we cluster data with vanilla K-Means.

versely, removing WClus hurts the performance on 544

later rounds, as it enables the model to select most 545

informative samples. 546

Hyperparameter Study. We study two hyperpa- 547

rameters, namely β and K used in querying la- 548

bels. Figure 6(e) and 6(f) show the results. In 549

general, the model is insensitive to β as the per- 550

formance difference is less than 0.6%. The model 551

cannot perform well with smaller K since it cannot 552

pinpoint to high-uncertainty regions. For larger 553

K, the performance also drops as some of the 554

high-uncertainty regions can be outliers and sam- 555

pling from them would hurt the model perfor- 556

mance (Karamcheti et al., 2021). 557

A Closer Look at the Momentum-based Mem- 558

ory Bank. To examine the role of MMB, we show 559

the overall accuracy of pseudo-labels on AG News 560

dataset in Fig. 6(g). From the result, it is clear that 561

the momentum-based memory bank can stabilize 562

the active self-training process, as the accuracy of 563

pseudo labels increases around 1%, especially in 564

later rounds. Fig 6(h) and 3(e) illustrates the model 565

performance with different mL and mH . Over- 566

all, we find that our model is robust to different 567

choices as ACTUNE outperform the baseline with- 568

out momentum update consistently. Moreover, we 569

find that the larger mH will generally lead to bet- 570

ter performance in later rounds. This is mainly 571

because in later rounds, the model’s prediction is 572

more reliable. Conversely, at the beginning of the 573

training, the model’s prediction might be oscillat- 574

ing on unlabeled data. In this case, using a smaller 575

mL will favor samples with consistent predictions 576
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Figure 3: Parameter study. Note the effect of different mL and mH is conducted on AG News dataset.
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Figure 4: Results of ACTUNE with different AL
methods (SST-2), ablation study (SST-2 with AC-
TUNE+Entropy).

50 100 150 200 250 300 350 400 450 500

90

92

94

96

Pe
rfo

rm
an

ce

ASST
BASS
CEAL
REVIVAL

AcTune+Entropy
AcTune+CAL
ST
COSINE

(a) TREC

50 100 150 200 250 300 350 400 450 500

56

58

60

62

64

66

Pe
rfo

rm
an

ce

ASST
BASS
CEAL
REVIVAL

AcTune+Entropy
AcTune+CAL
ST
COSINE

(b) Chemprot

Figure 5: The comparison of ACTUNE and baselines
on weakly-supervised classification tasks.

to improve the robustness of active self-training.577

Another finding is that for different AL methods,578

the optimal memory bank can be different. For579

Entropy, probability-based memory bank leads to580

a better result, while for CAL, simple aggregating581

over uncertainty score achieves better performance.582

This is mainly because the method used in CAL583

is more complicated, and using probability-based584

memory bank may hurt the uncertainty calculation.585

4 Related Work586

Active Learning. Active learning has been widely587

applied to various NLP tasks (Yuan et al., 2020;588

Zhao et al., 2020; Shelmanov et al., 2021; Karam-589

cheti et al., 2021). So far, AL methods can be590

categorized into uncertainty-based methods (Gal591

et al., 2017; Margatina et al., 2021a,b), diversity-592

based methods (Ru et al., 2020; Sener and Savarese,593

2018) and hybrid methods (Yuan et al., 2020; Ash594

et al., 2020; Kirsch et al., 2019). Ein-Dor et al.595

(2020) offer an empirical study of active learning596

with PLMs. In our study, we leverage the power597

of unlabeled instances via self-training to further598

promote the performance of AL.599

Semi-supervised Active Learning (SSAL). Gao600

et al. (2020); Song et al. (2019); Guo et al. (2021)601

design query strategies for specific semi-supervised 602

methods, Tomanek and Hahn (2009); Rottmann 603

et al. (2018); Siméoni et al. (2020) exploit the most- 604

certain samples from the unlabeled with pseudo- 605

labeling to augment the training set. So far, most 606

of the SSAL approaches are designed for CV do- 607

main and it remains unknown how this paradigm 608

performs with PLMs on NLP tasks. In contrast, we 609

propose ACTUNE to effectively leverage unlabeled 610

data during finetuing PLMs for NLP tasks. 611

Self-training. Self-training first generates pseudo 612

labels for high-confidence samples, then fits a new 613

model on pseudo labeled data to improve the gener- 614

alization ability (Rosenberg et al., 2005; Lee, 2013). 615

However, it is known to be vulnerable to error prop- 616

agation (Arazo et al., 2020; Rizve et al., 2021). 617

To alleviate this, we adopt a simple momentum- 618

based method to select high confidence samples, 619

effectively reducing the pseudo labels noise for ac- 620

tive learning. Note that although Mukherjee and 621

Awadallah (2020); Rizve et al. (2021) also leverage 622

uncertainty information for self-training, their fo- 623

cus is on developing better self-training methods, 624

while we aim to jointly query high-uncertainty sam- 625

ples and generate pseudo-labels for low-uncertainty 626

samples. The experiments in Sec. 3 show that with 627

appropriate querying methods, ACTUNE can fur- 628

ther improve the performance of self-training. 629

5 Conclusion 630

In this paper, we develop ACTUNE, a general active 631

self-training framework for enhancing both label 632

efficiency and model performance in fine-tuning 633

pre-trained language models (PLMs). We propose 634

a region-aware sampling approach to guarantee 635

both the uncertainty the diversity for querying la- 636

bels. To combat the label noise propagation issue, 637

we design a momentum-based memory bank to 638

effectively utilize the model predictions for pre- 639

ceding AL rounds. Empirical results on 6 public 640

text classification benchmarks suggest the superi- 641

ority of ACTUNE to conventional active learning 642

and semi-supervised active learning methods for 643

fine-tuning PLMs with limited resources. 644
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A Datasets Details981

A.1 Data Source982

The seven benchmarks in our experiments are all983

publicly available. Below are the links to down-984

loadable versions of these datasets.985

� SST-2: We use the datasets from https://986

huggingface.co/datasets/glue.987

� AGNews: We use the datasets from https://988

huggingface.co/datasets/ag_news.989

� Pubmed-RCT: Dataset is available at https:990

//github.com/Franck-Dernoncourt/991

pubmed-rct.992

� DBPedia: Dataset is available at993

https://huggingface.co/datasets/994

dbpedia_14.995

For two weakly-supervised classification tasks,996

we use the data from WRENCH benchmark (Zhang997

et al., 2021).998

� TREC: Dataset is available at https:999

//drive.google.com/drive/u/1/1000

folders/1v55IKG2JN9fMtKJWU48B_5_1001

DcPWGnpTq.1002

� ChemProt: The raw dataset is avail-1003

able at http://www.cbs.dtu.dk/1004

services/ChemProt/ChemProt-2.0/.1005

The preprocessed dataset is available at1006

https://drive.google.com/drive/u/1007

1/folders/1v55IKG2JN9fMtKJWU48B_1008

5_DcPWGnpTq.1009

A.2 Train/Test Split1010

For all the datasets, we use the original1011

train/dev/test split from the web. To keep the size1012

of the development set small, we randomly sample1013

1000 data for SST-2, AGNews, Pubmed-RCT, DB-1014

Pedia and randomly sample 500 samples for TREC,1015

ChemProt.1016

B Details on Implementation and1017

Experiment Setups1018

B.1 Computing Infrastructure1019

System: Ubuntu 18.04.3 LTS; Python 3.6; Pytorch1020

1.6.1021

CPU: Intel(R) Core(TM) i7-5930K CPU @1022

3.50GHz.1023

GPU: NVIDIA 2080Ti.1024

1025

B.2 Number of Parameters 1026

ACTUNE and all baselines use Roberta-base (Liu 1027

et al., 2019) with a task-specific classification head 1028

on the top as the backbone, which contains 125M 1029

trainable parameters. We do not introduce any 1030

other parameters in our experiments. 1031

B.3 Experiment Setups 1032

Following (Ein-Dor et al., 2020; Yuan et al., 2020; 1033

Margatina et al., 2021b), all of our methods and 1034

baselines are run with 3 different random seed and 1035

the result is based on the average performance 1036

on them. This indeed creates 4 (the number of 1037

datasets) × 3 (the number of random seeds) × 1038

11 (the number of methods) × 10 (the number of 1039

fine-tuning rounds in AL) = 1320 experiments for 1040

fine-tuning PLMs, which is almost the limit of our 1041

computational resources, not to mention additional 1042

experiments on weakly-supervised text classifica- 1043

tion as well as different hyper-parameter tuning. 1044

We have show both the mean and the standard de- 1045

viation of the performance in our experiment sec- 1046

tions. All the results have passed a paired t-test 1047

with p < 0.05 (Dror et al., 2018). 1048

B.4 Implementations Baselines 1049

We implement Entropy, BALD by ourselves as they 1050

are easy to implement and are classic methods for 1051

AL. For REVIVAL (Guo et al., 2021), since we do 1052

not find the implementations released by authors, 1053

we implement on our own it based on the informa- 1054

tion in the original paper. For other baselines, we 1055

run the experiments based on the implementations 1056

on the web. We list the link for the implementations 1057

as belows: 1058

� BADGE: https://github.com/ 1059

JordanAsh/badge. 1060

� ALPS: https://github.com/ 1061

forest-snow/alps. 1062

� CAL: https://github.com/mourga/ 1063

contrastive-active-learning. 1064

� UST: https://github.com/ 1065

microsoft/UST. 1066

� COSINE: https://github.com/ 1067

yueyu1030/COSINE. 1068

For these three baselines listed below, since 1069

they are mainly used in CV tasks, thus the code 1070

is hard to directly used for our experiments. 1071

We re-implement these methods based on their 1072

implementations, especially for SSAL part. 1073

� ASST: https:// 1074
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Hyper-parameter SST-2 AG News Pubmed DBPedia TREC Chemprot

Dropout Ratio 0.1
Maximum Tokens 32 96 96 64 64 128
Batch Size for Xl 8

Batch Size for Xu in Self-training 32 48 48 32 16 24
Weight Decay 10−8

Learning Rate 2× 10−5

β 0.5
M 25 30 30 40 40 40
K 5 10
γ 0.7 0.6
mL 0.8 0.9 0.7 0.8 0.8 0.8
mH 0.9 0.9 0.8 0.9 0.9 1.0
λ 1

Table 2: Hyper-parameter configurations. Note that we only keep certain number of tokens.

Method
Dataset

Pubmed DBPedia
Finetune (Random) <0.1s <0.1s
Entropy (Holub et al., 2008) 461s 646s
BALD (Gal et al., 2017) 4595s 6451s
ALPS (Yuan et al., 2020) 488s 677s
BADGE (Ash et al., 2020) 554s 1140s
CAL (Margatina et al., 2021b) 493s 688s
REVIVAL (Guo et al., 2021) 3240s OOM
ACTUNE + Entropy 477s 733s

w/ RS for Active Learning 15.8s 44.9s
w/ MMB for Self-training 0.12s 0.18s

ACTUNE + CAL 510s 735s
w/ RS for Active Learning 16.6s 46.4s
w/ MMB for Self-training 0.12s 0.18s

Table 3: The running time of different baselines. Note
that for ASST, CEAL and BASS, they directly use ex-
isting active learning methods so we do not list the run-
ning time here.

github.com/osimeoni/1075

RethinkingDeepActiveLearning.1076

� CEAL: https://github.com/rafikg/1077

CEAL.1078

� BASS: https://github.com/1079

mrottmann/DeepBASS.1080

Our implementation of ACTUNE will be pub-1081

lished upon acceptance.1082

B.5 Hyper-parameters for General1083

Experiments1084

We use AdamW (Loshchilov and Hutter, 2019) as1085

the optimizer, and the learning rate is chosen from1086

1× 10−5, 2× 10−5}. A linear learning rate decay1087

schedule with warm-up 0.1 is used, and the number1088

of training epochs is 15 for fine-tuning. For active1089

self-training & SSAL baselines, we tune the model 1090

with 2000 steps, and evaluate the performance on 1091

the development set in every 50 steps. Finally, 1092

we use the model with best performance on the 1093

development set for testing. 1094

B.6 Hyper-parameters for ACTUNE 1095

Although ACTUNE introduces several hyper- 1096

parameters including K, M , mL, mH , β, γ, λ, 1097

most of them are keep fixed during our experiments, 1098

thus it does not require heavy hyper-parameter tun- 1099

ing. The hyper-parameters we use are shown in 1100

Table 2. Specifically, we search T1 from 10 to 1101

2000, T2 from 1000 to 5000, T3 from 10 to 500, ξ 1102

from 0 to 1, and λ from 0 to 0.5. All results are 1103

reported as the average over three runs. 1104

In our experiments, we keep β = 0.5, λ = 1 for 1105

all datasets. For other parameters, we use a grid 1106

search to find the optimal setting for each datasets. 1107

Specifically, we search γ from [0.5, 0.6, 0.7], mL 1108

from [0.6, 0.7, 0.8], mH from [0.8, 0.9, 1]. For AC- 1109

TUNE with Entropy, we use probability based ag- 1110

gregation and for ACTUNE with CAL, we use value 1111

based aggregation by default. 1112

B.7 Hyperparameters for Baselines 1113

For other SSAL methods, we mainly tune their key 1114

hyperparameters. Note that Entropy (Holub et al., 1115

2008), BALD (Gal et al., 2017), ALPS (Yuan et al., 1116

2020), BADGE (Ash et al., 2020) do not intro- 1117

duce any new hyperparameters. For CAL (Mar- 1118

gatina et al., 2021b), we tune the number for 1119

KNN k from [5, 10, 20] and report the best per- 1120

formance. For ST (Lee, 2013), CEAL (Wang 1121
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et al., 2016) & BASS (Rottmann et al., 2018), it1122

uses a threshold δ for selecting high-confidence1123

data. We tune δ from [0.6, 0.7, 0.8, 0.9] to report1124

the best performance. For UST (Mukherjee and1125

Awadallah, 2020), we tune the number of low-1126

uncertainty samples used in the next round from1127

[1024, 2048, 4096]. For COSINE (Yu et al., 2021),1128

we set the weight for confidence regularization λ as1129

0.1, the threshold τ for selecting high-confidence1130

data from [0.7, 0.9] and the update period of self-1131

training from [50, 100, 150]. For REVIVAL (Guo1132

et al., 2021), it calculates uncertainty with adversar-1133

ial perturbation, we tune the size of the perturbation1134

ε from [1e− 3, 1e− 4, 1e− 5].1135

C Runtime Analysis.1136

Table 3 shows the time in one active learning1137

round of ACTUNE and baselines. Here we high-1138

light that the additional time for region-aware sam-1139

pling and momentum-based memory bank is rather1140

small compared with the inference time. Among1141

all baselines, we find that the running time of1142

clustering-based method is faster than the origi-1143

nal reported time in the paper. This is because1144

we use FAISS (Johnson et al., 2019) instead of1145

SKLearn (Pedregosa et al., 2011) for clustering,1146

which accelerates the clustering step significantly.1147

Also, we find that BALD and REVIVAL are not1148

so efficient. For BALD, it needs to infer the uncer-1149

tainty of the model by passing the data to model1150

with multitple times. Such an operation will make1151

the total inference time for PLMs very long. For1152

REVIVAL, we find that calculating the adversarial1153

gradient needs extra forward passes and backward1154

passes, which could be time-consuming for PLMs1155

with millions of parameters7.1156

D Limitations1157

First, since our focus is on fine-tuning pre-trained1158

language models, we use the representation of1159

[CLS] token for classification. In the future work,1160

we can consider using prompt tuning (Gao et al.,1161

2021; Schick and Schütze, 2021), a more data-1162

efficient method for adopting pre-trained language1163

models on classification tasks to further promote1164

the efficiency. Also, due to the computational re-1165

source constraints, we do not use larger pre-trained1166

language models such as RoBERTa-large (Liu et al.,1167

7The original model is proposed with CV tasks and they
use ResNet-18 as the backbone which only contains 11M
parameters (around 10% of the parameters of Roberta-base).

2019) which shown even better performance with 1168

only a few labels (Du et al., 2021). Last, apart from 1169

the text classification task, we can also extend our 1170

work into other tasks such as sequence labeling and 1171

natural language inference. 1172

E Case Study 1173

Here we give an example of our querying strat- 1174

egy on AG News and Pubmed dataset for the 1st 1175

round of active self-training process in figure 6. 1176

Note that we use t-SNE algorithm (Van der Maaten 1177

and Hinton, 2008) for dimension reduction, and 1178

the black triangle stands for the queried samples 1179

while other circles stands for the unlabeled data. 1180

Different colors stands for different classes. From 1181

the comparision, we can see that the existing uncer- 1182

tainty based methods such as Entropy and CAL, are 1183

suffered from the issue of limited diversity. How- 1184

ever, when combined with ACTUNE, the diversity 1185

is much improved. Such results, compared with the 1186

main results in figure 1, demonstrate the efficacy 1187

of ACTUNE empirically. 1188
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Figure 6: Visualization of the querying strategy of ACTUNE.
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