ACTUNE: Uncertainty-Aware Active Self-Training for
Active Fine-Tuning of Pretrained Language Models

Anonymous ACL submission

Abstract

Although fine-tuning pre-trained language
models (PLMs) renders strong performance in
many NLP tasks, it relies on excessive labeled
data. Recently, researchers have resorted to
active fine-tuning for enhancing the label effi-
ciency of PLM fine-tuning, but existing meth-
ods of this type usually ignore the potential of
unlabeled data. We develop ACTUNE, a new
framework that improves the label efficiency
of active PLM fine-tuning by unleashing the
power of unlabeled data via self training. AC-
TUNE switches between data annotation and
model self-training based on uncertainty: the
unlabeled samples of high-uncertainty are se-
lected for annotation, while the ones from low-
uncertainty regions are used for model self-
training. Additionally, we design (1) a region-
aware sampling strategy to avoid redundant
samples when querying annotations and (2)
a momentum-based memory bank to dynam-
ically aggregate the model’s pseudo labels to
suppress label noise in self-training. Exper-
iments on 6 text classification datasets show
that ACTUNE outperforms the strongest active
learning and self-training baselines and im-
proves the label efficiency of PLM fine-tuning
by 56.2% on average.

1 Introduction

Fine-tuning pre-trained language models (PLMs)
has achieved enormous success in natural language
processing (NLP) (Devlin et al., 2019; Liu et al.,
2019; Brown et al., 2020), one of which is the
competitive performance it offers when consuming
only a few labeled data (Bansal et al., 2020; Gao
et al., 2021). However, there are still significant
gaps between few-shot and fully-supervised PLM
fine-tuning in many classification tasks. Besides,
the performance of few-shot PLM fine-tuning can
vary substantially with different sets of training
data (Bragg et al., 2021). Therefore, there is a
crucial need for PLM fine-tuning approaches with
better label-efficiency and being robust to selection

of training data, especially for applications where
labeled data are scarce and expensive to obtain.

Towards this goal, researchers have resorted to
active fine-tuning of PLMs and achieved compara-
ble performance to fully-supervised methods with
much less annotated samples (Ein-Dor et al., 2020;
Margatina et al., 2021a,b; Yuan et al., 2020). Never-
theless, they usually neglect unlabeled data, which
can be useful for improving label efficiency for
PLM fine-tuning (Du et al., 2021). To leverage
those unlabeled data to improve label efficiency
of active learning, efforts have been made in the
semi-supervised active learning literature (Wang
et al., 2016; Rottmann et al., 2018; Siméoni et al.,
2020), but the proposed query strategies can return
highly redundant samples due to limited representa-
tion power, resulting in suboptimal label efficiency.
Moreover, they usually rely on pseudo-labeling to
utilize unlabeled data, which requires greater (yet
often absent) care to denoise the pseudo labels,
otherwise the errors could accumulate and deteri-
orate the model performance. This phenomenon
can be even more severe for PLMs, as the fine-
tuning process often suffers from the instability
issue caused by different weight initialization and
data orders (Dodge et al., 2020). Thus, it still re-
mains open and challenging to design robust and
label efficient method for active PLM fine-tuning.

To tackle above challenges, we propose AC-
TUNE, a new method that improves the label effi-
ciency and robustness of active PLM fine-tuning
with self-training. Based on the estimated uncer-
tainty of data, ACTUNE chooses from one of the
following cases in each learning round: (1) when
the average uncertainty of a region is low, we
trust the model’s prediction and select most cer-
tain predictions within the region for self-training;
(2) when the average uncertainty of a region is high,
indicating inadequate observations for parameter
learning, we actively annotate most uncertain sam-
ples within the region to improve the model. Dif-



ferent from existing AL methods that only leverage
uncertainty for querying labels, our uncertainty-
driven self-training paradigm gradually unleash the
data with low uncertainty via self-training, while
reducing the chance of error propagation triggered
by highly-uncertain mis-labeled data.

To further boost the performance on downstream
tasks, we design two techniques, namely region-
aware sampling (RS) and momentum-based mem-
ory bank (MMB) to improve the query strategies
and suppress label noise for ACTUNE. Inspired by
the fact that existing uncertainty-based AL meth-
ods often end up choosing uncertain yet repeti-
tive data (Ein-Dor et al., 2020; Margatina et al.,
2021b), we design a region-aware sampling tech-
nique to promote both diversity and representa-
tiveness by leveraging the representation power of
PLMs. Specifically, we first estimate the uncertain-
ties of the unlabeled data with PLMs, then cluster
the data using their PLM representations and weigh
the data by the corresponding uncertainty. Such a
clustering scheme partitions the embedding space
into small sub-regions with an emphasis on highly-
uncertain samples. Finally, by sampling over mul-
tiple high-uncertainty regions, our strategy selects
data with high uncertainty and low redundancy.

To rectify the erroneous pseudo labels derived by
self-training, we design a simple but effective way
to select low-uncertainty data for self-training. Our
method is motivated by the fact that fine-tuning
PLMs suffer from instability issues — distinct ini-
tializations and data orders can result in a large vari-
ance of the task performance (Dodge et al., 2020;
Zhang et al., 2020; Mosbach et al., 2021). However,
previous approaches only select pseudo-labeled
data based on the prediction of the current round
and therefore are less reliable. In contrast, we main-
tain a dynamic memory bank to save the predictions
of unlabeled samples for later use. we propose a
momentum updating method to dynamically aggre-
gate the predictions from preceding rounds (Laine
and Aila, 2016) and select low-uncertainty samples
based on aggregated prediction. As a consequence,
only the samples with high prediction confidence
over multiple rounds will be used for self-training,
which mitigates the issue of label noise. We high-
light that our active self-training approach is an
efficient substitution to existing AL methods, re-
quiring ignorable extra computational cost.

Our key contributions are: (1) an active self-
training paradigm ACTUNE that integrates the ben-

efit of self-training and active learning in a prin-
cipled way to minimize the labeling cost for fine-
tuning PLMs; (2) a region-aware querying strategy
to enforce both the informativeness and the diver-
sity of queried samples during AL; (3) a simple
and effective momentum-based method to harness
the predictions for preceding rounds to alleviate the
label noise in self-training and (4) experiments on
6 benchmarks demonstrating ACTUNE improves
the label efficiency over existing self-training and
active learning baselines by 56.2%.

2 Uncertainty-aware Active Self-training

2.1 Problem Formulation

We study active fine-tuning of pre-trained lan-
guage models for text classification, formulated
as follows: Given a small number of labeled sam-
ples X; = {(z;,3:)}2, and unlabeled samples
Xy = {x; Y5, (|A] < | X)), we aim to fine-tune
a pre-trained language model f(x;0) : X — Y in
an interactive way: we perform active self-training
for T rounds with the total labeling budget b. In
each round, we aim to query B = b/T samples
denoted as B from X, to fine-tune a pre-trained
language model f(x;6) with both A}, B and X,
to maximize the performance on downstream text
classification tasks. Here X = A U X, denotes
all samples and ) = {1,2,--- ,C'} is the label set,
where C' is the number of classes.

2.2 Overview of ACTUNE Framework

We now present our active self-training paradigm
ACTUNE underpinned by estimated uncertainty.
We begin the active self-training loop by fine-
tuning a BERT f(#(?)) on the initial labeled data
X'r. Formally, we solve the following optimization

problem
1
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Inround ¢ (1 < ¢ < T) of the active self-training
procedure, we first calculate the uncertainty score
based on a given function agt) = a(x;, M) ! for
all x; € X,. Then, we query labeled samples
and generate pseudo-labels for unlabeled data &,
simultaneously to facilitate self-training. For each
sample x;, the pseudo-label y is calculated based
on the current model’s output:

Yy = argmax [f(ar;, 9(”)} . 2
Jjey J
"Note that ACTUNE is agnostic to the way uncertainty

t) .
score ag ) is computed.



Algorithm 1: Training Procedures of ACTUNE.

Input: Initial labeled samples A7; Unlabeled samples
X.; Pre-trained LM f(+; ), number of active
self-training rounds 7.

/I Fine-tune the LM with initial labeled data.

1. Calculate 0©) based on Eq. (1).

2. Initialize the memory bank g(a; #") based on the

current prediction.

/I Conduct active self-training with all data.

fort=1,2,--- ,Tdo

1. Run weighted K-Means (Eq. (3), (4)) until
convergence.

2. Select sample set Qm for AL and S® for
self-training from &, based on Eq. (11) or (13).

3. Augment the labeled set X7, = X, U Q(t).

4. Obtain 8@ by finetuning f(+; Gt) with Lst (
Eq. (14)) using AdamW.

5. Update memory bank g(a; 6*) with Eq. (10)

| or(12).

Output: The final fine-tuned model f(-; 7).

where f(z;60®") € R is a probability simplex
and [f(a; 01)); is the j-th entry. The procedure
of ACTUNE is summarized in Algorithm 1.

2.3 Region-aware Sampling for Active

Learning on High-uncertainty Data
After obtaining the uncertainty for unlabeled data,

we aim to query annotation for high-uncertainty
samples. However, directly sampling the most
uncertain samples gives suboptimal result since
uncertainty-based sampling tends to query repeti-
tive data (Ein-Dor et al., 2020) and results in poor
representativeness of the overall data distribution.

To tackle this issue, we propose region-aware
sampling to capture both uncertainty and diversity
during active self-training. Specifically, in the ¢-
th round, we first conduct the weighted K-means
clustering (Huang et al., 2005), which weights sam-
ples based on their uncertainty. Denote K the

number of clusters and vi(t) = BERT(x;) the rep-
resentation of x; from the penultimate layer of
BERT. The weighted K-means first initializes the
center of each each cluster p;(1 < i < K) via
K-Means++ (Arthur and Vassilvitskii, 2007). Then,
it jointly updates the centroid of each cluster and

assigns each sample to cluster ¢; as

Cgt) = argmin H’Ul - IflkH27 (3)
k
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where Cl(f) = {wgt)]cgt) =kik=1,...,K)
stands for the k-th cluster. The above two steps in
Eq. (3), (4) are repeated until convergence. Com-
pared with vanilla K-Means method, the weighting

scheme increases the density of the samples with
high uncertainty, thus enabling the K-Means meth-
ods to discover clusters with high uncertainty. After
obtaining K regions with the corresponding data

C lit), we calculate the uncertainty of each region as

w) = U () +BI(C;") 5)
where
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stands for the average uncertainty of samples and
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stands for the inter-class diversity within cluster
t 1{Ti=j
pana ) = 2o
of class j on cluster k. Notably, the term U (C,(f))
assigns higher score for clusters with more uncer-
tain samples, and | (C,(:)) grants higher scores for
clusters containing samples with more diverse pre-
dicted classes from pseudo labels since such clus-
ters would be closer to the decision boundary.
Then, we rank the clusters in an ascending or-
der according to u,(:). A high score indicates high
uncertainty of the model in these regions, and we
need to actively annotate the associated instances to
reduce uncertainty and improve the model’s perfor-
mance. We adopt a hierarchical sampling strategy:
we first select the M clusters with the highest un-

certainty, and then sample b’ = | £ | data with the

represents the frequency

highest uncertainty to form the batch Q2

ICff): top-M uff),

ke{l,...,K}
Q(t) = U Cfﬁc where Cc(fi = Top-b’ a(mi,ﬁ(t)).
keklH wecy?)
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We remark that such a hierarchical sampling strat-
egy queries most uncertain samples from differ-
ent regions, thus the uncertainty and diversity of
queried samples can be both achieved.

2.4 Self-training for Most Confident Data
from Low-uncertainty Regions

For self-training, we aim to select unlabeled sam-
ples which are most likely to have been correctly
classified by the current model. This requires the
sample to have low uncertainty. Therefore, we
select the top k£ samples from the M lowest uncer-
tainty regions to form the acquired batch S):

*If the number of samples in the i-th cluster C; is smaller
than &', then we sample all the data within C; and increase the
budget for the (i + 1)-th cluster by b" — |C;].
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Momentum-based Memory Bank for Self-
training. As PLMs are sensitive to the stochas-
ticity involved in fine-tuning, the model suffers
from the instability issue — different weight ini-
tialization and data orders may result in different
predictions on the same dataset (Dodge et al., 2020).
Additionally, if the model gives inconsistent pre-
dictions in different rounds for a specific sample,
then it is potentially uncertain about the sample,
and adding it to the training set may harm the ac-
tive self-training process. For example, for a two-
class classification problem, suppose we obtain
f(z; 011 = [0.65, 0.35] for sample 2 the round
(t—1) and f(a;0®) = [0.05,0.95] for the round #.
Although the model is quite ‘confident’ on the class
of & when we only consider the result of the round
t, it gives contradictory predictions over these two
consecutive rounds, which indicates that the model
is still uncertain to which class x belongs.

To effectively mitigate the noise and stabilize the
active self-training process, we maintain a dynamic
memory bank to save the results from previous
rounds, and use momentum update (He et al., 2020;
Laine and Aila, 2016) to aggregate the results from
both the previous and current rounds. Then, during
active self-training, we will select samples with the
highest aggregated score. In this way, only those
samples that the model is certain about over all pre-
vious rounds will be selected for self-training. We
design two variants for the memory bank, namely
prediction-based and value-based aggregation.
Prediction based Momentum Update. We adopt
an exponential moving average approach to aggre-
gate the prediction g(z; #®)) on round ¢ as

g(; 00 = myx f(2;00)+(1—my) x g(a; 0
(10)
where my = (1 — #)mg + #=mpy (0 < my <

mp < 1) is a momentum coefficient. We gradu-
ally increase the weight for models on later rounds,
since they are trained with more labeled data
thus being able to provide more reliable predic-
tions. Then, we calculate the uncertainty based on
g(x;0®) and rewrite Eq. (9) and (2) as

S — bottom)—k a <£Bi, g(x; G(t)), G(t))
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[g(w; G(t))]j :

1D

Yy = argmax

JjeY

)

?

Value-based Momentum Update. For methods
that do not directly use prediction for uncertainty
estimation, we aggregate the uncertainty value as
g(x;00) = myxa(a; 6)+(1—my) x g(a; 001,
(12)

Then, we use Eq. (12) to sample low-uncertainty
data for self-training as

S = bottom-k g(;, 6

wiecgt)

t) )7
(13)
Yy = argmax [f(w, H(t))] .
Jjey J
By aggregating the prediction results over previ-
ous rounds, we filter the sample with inconsistent
predictions to suppress noisy labels.

2.5 Model Learning and Update

After obtaining both the labeled data and pseudo-
labeled data, we fine-tune a new pre-trained BERT
model #¢+1) on them. Although we only include
low-uncertainty samples during self-training, it is
difficult to eliminate all the wrong pseudo-labels,
and such mislabeled samples can still hurt model
performance. To suppress such label noise, we
use a threshold-based strategy to further remove
noisy labels by selecting samples that agree with
the corresponding pseudo labels. The loss objective
of optimizing 0+ is

1
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(14)
where A is a hyper-parameter balancing the weight
between clean and pseudo labels, and w;
1{[f(i; 0 t“‘l))]m > ~} stands for the thresh-
olding function.

Complexity Analysis. The running time of AC-
TUNE is mainly consisted of two parts: the in-
ference time O(|X,|) and the time for K-Means
clustering O(dK|X,|), where d is the dimension
of the BERT feature v. Note that the clustering can
be efficiently implemented with FAISS (Johnson
et al., 2019), and will not excessively increase the
total running time. For self-training, the size of
the memory bank g(x;0) is proportional to
while the extra computation of maintaining this dic-
tionary is ignorable since we do not inference over
the unlabeled data for multiple times in each round
as BALD (Gal et al., 2017) does. The running time
of ACTUNE will be shown in section C.




Dataset Label Type # Class | # Train ‘ # Dev ‘ #Test
SST-2 Sentiment 2 60.6k 0.8k | 1.8k
AG News News Topic 4 119k 1k 7.6k
Pubmed | Medical Abstract 5 180k 1k 30.1k
DBPedia | Wikipedia Topic 14 280k 1k 70k
TREC Question 6 5.0k 0.5k | 0.5k
Chemprot | Medical Abstract 10 12.8k 0.5k 1.6k

Table 1: Dataset Statistics. For DBPedia, we randomly
sample 20k sample from each class due to the limited
computational resource.

3 Experiments

3.1 Experiment Setup

Tasks and Datasets. In our main experiments,
we study over 4 benchmark datasets, including
SST-2 (Socher et al., 2013) for sentiment analy-
sis, AGNews (Zhang et al., 2015) for news topic
classification, Pubmed-RCT (Dernoncourt and Lee,
2017) for medical abstract classification, and DBPe-
dia (Zhang et al., 2015) for wikipedia topic classi-
fication. For weakly-supervised text classification,
we choose 2 datasets, namely TREC (Li and Roth,
2002) and Chemprot (Krallinger et al., 2017) from
the WRENCH benchmark (Zhang et al., 2021) for
evaluation. The statistics are shown in table 1.
Active Learning Setups. Following (Yuan et al.,
2020), we set the number of rounds 7" = 10, the
overall budget for all datasets b = 1000 and the
initial size of the labeled |A7| is set to 100. To sim-
ulate AL, in each round, we sample a batch of 100
samples from the unlabeled set X, and query labels
for them. Then we move this batch to the labeled
set. Since large development sets are impractical
in low-resource settings (Kann et al., 2019), we
keep the size of development set as 1000, which
is the same as the labeling budget®. For weakly-
supervised text classification, since the datasets are
much smaller, we keep the labeling budget and the
size of development set to b = 500.
Implementation Details. We choose RoBERTa-
base (Liu et al., 2019) from the HuggingFace code-
base (Wolf et al., 2020) as the backbone for Ac-
TUNE and all baselines except for Pubmed and
Chemprot, where we use SciBERT (Beltagy et al.,
2019), a BERT model pre-trained on scientific cor-
pora. In each round, we train from scratch to avoid
badly overfitting the data collected in earlier rounds
as observed by Hu et al. (2019). More details are
in Appendix B.

Hyperparameters. The hyperparameters setting
is in Appendix B.6 for ACTUNE and B.7 for base-

3This is often neglected in previous low-resource AL stud-
ies, and we highlight it to ensure the true low-resource setting.

lines. In the ¢-th round of active self-training, we
increase the number of pseudo-labeled samples by
k, where k equals to 500 for TREC and Chemprot,
3000 for SST-2 and Pubmed-RCT, and 5000 for
others. For the momentum factor, we tune m, from
[0.6,0.7,0.8] and my from [0.8,0.9,1.0] and re-
port the best {m, my} based on the performance
of the development set.

Baselines.

Self-training Methods: (1) Self-training (ST,
Lee (2013)): It is the vanilla self-training method
that generates pseudo labels for unlabeled data.
(2) UST (Mukherjee and Awadallah, 2020; Rizve
et al., 2021): It is an uncertainty-based self-training
method that only uses low-uncertainty data for self-
training. (3) COSINE (Yu et al., 2021): It uses
self-training to fine-tune LM with weakly-labeled
data, which achieves SOTA performance on vari-
ous text datasets in WRENCH benchmark (Zhang
et al., 2021). Note that for these two baselines, we
randomly sample b labeled data as the initializa-
tion. Also, UST is only used in main experiments
in Sec. 3.2 and COSINE is evaluated in Sec 3.3.

Active Learning Methods: (1) Random: It ac-
quires annotation randomly, which serves as a base-
line for all methods. (2) Entropy (Holub et al.,
2008): It is an uncertainty-based method that ac-
quires annotations on samples with the highest pre-
dictive entropy. (3) BALD (Gal et al., 2017): It
is also an uncertainty-based method, which calcu-
lates model uncertainty using MC Dropout (Gal
and Ghahramani, 2015). (4) BADGE (Ash et al.,
2020): It first selects high uncertainty samples then
uses KMeans++ over the gradient embedding to
sample data. (5) ALPS (Yuan et al., 2020): It uses
the masked language model (MLM) loss of BERT
to query labels for samples. (6) CAL (Margatina
et al., 2021b) is the most recent AL method for pre-
trained LMs. It calculates the uncertainty of each
sample based on the KL divergence between the
prediction of itself and its neighbors’ prediction.

Semi-supervised Active Learning (SSAL) Meth-
ods: (1) ASST (Tomanek and Hahn, 2009;
Siméoni et al., 2020) is an active semi-supervised
learning method that jointly queries labels for AL
and samples pseudo labels for self-training. (2)
CEAL (Wang et al., 2016) acquires annotations
on informative samples, and uses high-confidence
samples with predicted pseudo labels for weights
updating. (3) BASS (Rottmann et al., 2018) is sim-
ilar to CEAL, but use MC dropout for querying



labeled sample. (4) REVIVAL (Guo et al., 2021)
is the most recent SSAL method, which uses an
adversarial loss to query samples and leverage label
propagation to exploit adversarial examples.

Our Method: We experiment with both Entropy
and CAL as uncertainty measures for ACTUNE.
Note that when compared with active learning base-
lines, we do not augment the train set with pseudo-
labeled data (Eq. (9)) to ensure fair comparisons.

3.2 Main Result

Figure 1 reports the performance of ACTUNE and
the baselines on 4 benchmarks. From the results,
we have the following observations:

e ACTUNE consistently outperforms baselines in
most of the cases. Different from studies in the
computer vision (CV) domain (Siméoni et al.,
2020) where the model does not perform well in
the low-data regime, pre-trained LM has achieved
competitive performance with only a few labeled
data, which makes further improvements to the
vanilla fine-tuning challenging. Nevertheless, AC-
TUNE surpasses baselines in more than 90% of the
rounds and achieves 0.4%-0.7% and 0.3%-1.5%
absolute gain at the end of AL and SSAL respec-
tively. Figure 2 quantitatively measures the num-
ber of labels needed for the most advanced active
learning model and self-training model (UST) to
outperform ACTUNE with 1000 labels. These
baselines need >2000 clean labeled samples to
reach the performance as ours. ACTUNE saves
on average 56.2% and 57.0% of the labeled sam-
ples than most advanced active learning and self-
training baselines respectively, which justifies its
promising performance under low-resource scenar-
ios. Such improvements show the merits of two key
designs under our active self-training framework:
the region-aware sampling for active learning and
the momentum-based memory bank for robust self-
training, which will be discussed in the section 3.5.
e Compared with the previous AL baselines, AC-
TUNE can bring consistent performance gain, while
previous semi-supervised active learning methods
cannot. For instance, BASS is based on BALD
for active learning, but sometimes it performs even
worse than BALD with the same number of la-
beled data (see Fig. 5(b) and Fig. 1(f)). This is
mainly because previous methods simply combine
noisy pseudo labels with clean labels for training
without explicitly rectifying the wrongly-labeled
data, which will cause the LM to overfit these haz-
ardous labels. Moreover, previous methods do not

exploit momentum updates to stabilize the learning
process, as there are oscillations in the beginning
rounds. In contrast, ACTUNE achieves a more
stable learning process and enables an active self-
training process to benefit from more labeled data.
e The self-training methods (ST & UST) achieve
superior performance with limited labels. However,
they mainly focus on leveraging unlabeled data
for improving the performance, while our results
demonstrate that adaptive selecting the most useful
data for fine-tuning is also important for improving
the performance. With a powerful querying policy,
ACTUNE can improve these self-training baselines
by 1.05% in terms of accuracy on average.

3.3 Extension to Weakly-supervised
Learning

ACTUNE can be naturally extended to weakly-
supervised classification, where A] is a set of data
annotated by linguistic patterns or rules. Since the
initial label set is noisy, then the model trained with
Eq. (1) will overfit to the label noise, and we can
actively query labeled data to refine the model.
We conduct experiments on the TREC and
Chemprot dataset*, where we first use Snorkel (Rat-
ner et al., 2017) to obtain weak label set Aj, then
fine-tune the pre-trained LM f(6(9) on X;. After
that, we adopt ACTUNE for active self-training.
Fig. 5 shows the results of these two datasets®.
When combining ACTUNE with CAL, the perfor-
mance is unsatisfactory. We argue it is because
CAL requires clean labels to calculate uncertain-
ties. When labels are inaccurate, it will prevent AC-
TUNE from querying informative samples. In con-
trast, ACTUNE achieves the best performance over
baselines when using Entropy as the uncertainty
measure. The performance gain is more notable
on the TREC dataset, where we achieve 96.68%
accuracy, close to the fully supervised performance
(96.80%) with only ~6% of clean labels.

3.4 Combination with Other AL Methods

Fig. 4(a) demonstrates the performance of AcC-
TUNE combined with other AL methods (e.g.
BADGE, ALPS) on SST-2 dataset. It is clear that
even if the AL methods are not uncertainty-based
(e.g. BADGE), when using the entropy as an un-
certainty measure to select pseudo-labeled data for

“Details for labeling functions are in Zhang et al. (2021).
SWe don’t show AL methods since they perform worse
than SSAL methods on these datasets in general.
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Figure 1: The comparision of ACTUNE with active learning, semi-supervised active learning and self-training
baselines. The first row is the result under active learning setting (AL, i.e. no unlabeled data is used), the second
row is the result under semi-supervised active learning (SSAL) setting. The metric is accuracy. T: REVIVAL
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Figure 2: The label-efficiency of ACTUNE compared
with AL and self-training baselines. According to
Fig. 1, the best AL method is Entropy for DBPedia and
CAL for others.

self-training, ACTUNE can further boost the perfor-
mance. This indicates that ACTUNE is a general
active self-training approach, as it can serve as an
efficient plug-in module for existing AL methods.

3.5 Ablation and Hyperparameter Study

The Effect of Different Components in AcC-
TUNE. We inspect different components of
ACTUNE, including the region-sampling (RS),
momentum-based memory bank (MMB), and
weighted clustering (WClus)®. Experimental re-
sults (Fig. 4(b)) shows that all the three compo-
nents contribute to the final performance, as remov-
ing any of them hurts the classification accuracy.
Also, we find that when removing MMB, the perfor-
mance hurts most in the beginning rounds, which
indicates that MMB effectively suppresses label
noise when the model’s capacity is weak. Con-

8For models w/o RS, we directly select samples with high-
est uncertainty during AL. For models w/o MMB, we only
use the prediction from the current round for self-training. For
models w/o WClus, we cluster data with vanilla K-Means.

versely, removing WClus hurts the performance on
later rounds, as it enables the model to select most
informative samples.

Hyperparameter Study. We study two hyperpa-
rameters, namely 3 and K used in querying la-
bels. Figure 6(e) and 6(f) show the results. In
general, the model is insensitive to 5 as the per-
formance difference is less than 0.6%. The model
cannot perform well with smaller K since it cannot
pinpoint to high-uncertainty regions. For larger
K, the performance also drops as some of the
high-uncertainty regions can be outliers and sam-
pling from them would hurt the model perfor-
mance (Karamcheti et al., 2021).

A Closer Look at the Momentum-based Mem-
ory Bank. To examine the role of MMB, we show
the overall accuracy of pseudo-labels on AG News
dataset in Fig. 6(g). From the result, it is clear that
the momentum-based memory bank can stabilize
the active self-training process, as the accuracy of
pseudo labels increases around 1%, especially in
later rounds. Fig 6(h) and 3(e) illustrates the model
performance with different my and mpy. Over-
all, we find that our model is robust to different
choices as ACTUNE outperform the baseline with-
out momentum update consistently. Moreover, we
find that the larger my will generally lead to bet-
ter performance in later rounds. This is mainly
because in later rounds, the model’s prediction is
more reliable. Conversely, at the beginning of the
training, the model’s prediction might be oscillat-
ing on unlabeled data. In this case, using a smaller
my, will favor samples with consistent predictions
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Figure 5: The comparison of ACTUNE and baselines
on weakly-supervised classification tasks.

to improve the robustness of active self-training.
Another finding is that for different AL methods,
the optimal memory bank can be different. For
Entropy, probability-based memory bank leads to
a better result, while for CAL, simple aggregating
over uncertainty score achieves better performance.
This is mainly because the method used in CAL
is more complicated, and using probability-based
memory bank may hurt the uncertainty calculation.

4 Related Work

Active Learning. Active learning has been widely
applied to various NLP tasks (Yuan et al., 2020;
Zhao et al., 2020; Shelmanov et al., 2021; Karam-
cheti et al., 2021). So far, AL methods can be
categorized into uncertainty-based methods (Gal
et al., 2017; Margatina et al., 2021a,b), diversity-
based methods (Ru et al., 2020; Sener and Savarese,
2018) and hybrid methods (Yuan et al., 2020; Ash
et al., 2020; Kirsch et al., 2019). Ein-Dor et al.
(2020) offer an empirical study of active learning
with PLMs. In our study, we leverage the power
of unlabeled instances via self-training to further
promote the performance of AL.

Semi-supervised Active Learning (SSAL). Gao
et al. (2020); Song et al. (2019); Guo et al. (2021)

design query strategies for specific semi-supervised
methods, Tomanek and Hahn (2009); Rottmann
et al. (2018); Siméoni et al. (2020) exploit the most-
certain samples from the unlabeled with pseudo-
labeling to augment the training set. So far, most
of the SSAL approaches are designed for CV do-
main and it remains unknown how this paradigm
performs with PLMs on NLP tasks. In contrast, we
propose ACTUNE to effectively leverage unlabeled
data during finetuing PLMs for NLP tasks.
Self-training. Self-training first generates pseudo
labels for high-confidence samples, then fits a new
model on pseudo labeled data to improve the gener-
alization ability (Rosenberg et al., 2005; Lee, 2013).
However, it is known to be vulnerable to error prop-
agation (Arazo et al., 2020; Rizve et al., 2021).
To alleviate this, we adopt a simple momentum-
based method to select high confidence samples,
effectively reducing the pseudo labels noise for ac-
tive learning. Note that although Mukherjee and
Awadallah (2020); Rizve et al. (2021) also leverage
uncertainty information for self-training, their fo-
cus is on developing better self-training methods,
while we aim to jointly query high-uncertainty sam-
ples and generate pseudo-labels for low-uncertainty
samples. The experiments in Sec. 3 show that with
appropriate querying methods, ACTUNE can fur-
ther improve the performance of self-training.

5 Conclusion

In this paper, we develop ACTUNE, a general active
self-training framework for enhancing both label
efficiency and model performance in fine-tuning
pre-trained language models (PLMs). We propose
a region-aware sampling approach to guarantee
both the uncertainty the diversity for querying la-
bels. To combat the label noise propagation issue,
we design a momentum-based memory bank to
effectively utilize the model predictions for pre-
ceding AL rounds. Empirical results on 6 public
text classification benchmarks suggest the superi-
ority of ACTUNE to conventional active learning
and semi-supervised active learning methods for
fine-tuning PLMs with limited resources.
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A Datasets Details

A.1 Data Source

The seven benchmarks in our experiments are all
publicly available. Below are the links to down-
loadable versions of these datasets.

o SST-2: We use the datasets from https://
huggingface.co/datasets/glue.

o AGNews: We use the datasets from https://
huggingface.co/datasets/ag_news.

o Pubmed-RCT: Dataset is available at https:
//github.com/Franck—-Dernoncourt/
pubmed-rct.

¢ DBPedia: Dataset is available
https://huggingface.co/datasets/
dbpedia_14.

For two weakly-supervised classification tasks,
we use the data from WRENCH benchmark (Zhang
et al., 2021).

o TREC: Dataset https:
//drive.google.com/drive/u/1/
folders/1v55IKG2INIEfMtKIWU48B_5_

at

is available at

DcPWGnpT4g.
o ChemProt: The raw dataset is avail-
able at http://www.cbs.dtu.dk/

services/ChemProt/ChemProt-2.0/.
The preprocessed dataset is available
https://drive.google.com/drive/u/
1/folders/1v55IKG2IN9fMtKIWU48B_
5_DcPWGnpTaq.

at

A.2 Train/Test Split

For all the datasets, we use the original
train/dev/test split from the web. To keep the size
of the development set small, we randomly sample
1000 data for SS7-2, AGNews, Pubmed-RCT, DB-
Pedia and randomly sample 500 samples for TREC,
ChemProt.

B Details on Implementation and
Experiment Setups

B.1 Computing Infrastructure

System: Ubuntu 18.04.3 LTS; Python 3.6; Pytorch
1.6.

CPU: Intel(R) Core(TM) i7-5930K CPU @
3.50GHz.

GPU: NVIDIA 2080Ti.
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B.2 Number of Parameters

ACTUNE and all baselines use Roberta-base (Liu
et al., 2019) with a task-specific classification head
on the top as the backbone, which contains 125M
trainable parameters. We do not introduce any
other parameters in our experiments.

B.3 Experiment Setups

Following (Ein-Dor et al., 2020; Yuan et al., 2020;
Margatina et al., 2021b), all of our methods and
baselines are run with 3 different random seed and
the result is based on the average performance
on them. This indeed creates 4 (the number of
datasets) x 3 (the number of random seeds) x
11 (the number of methods) x 10 (the number of
fine-tuning rounds in AL) = 1320 experiments for
fine-tuning PLMs, which is almost the limit of our
computational resources, not to mention additional
experiments on weakly-supervised text classifica-
tion as well as different hyper-parameter tuning.
We have show both the mean and the standard de-
viation of the performance in our experiment sec-
tions. All the results have passed a paired t-test
with p < 0.05 (Dror et al., 2018).

B.4 Implementations Baselines

We implement Entropy, BALD by ourselves as they
are easy to implement and are classic methods for
AL. For REVIVAL (Guo et al., 2021), since we do
not find the implementations released by authors,
we implement on our own it based on the informa-
tion in the original paper. For other baselines, we
run the experiments based on the implementations
on the web. We list the link for the implementations
as belows:

o BADGE: https://github.com/
JordanAsh/badge.
o ALPS: https://github.com/

forest-snow/alps.
¢ CAL: https://github.com/mourga/
contrastive-active-learning.

o UST: https://github.com/
microsoft/UST.

o COSINE: https://github.com/
yueyul030/COSINE.

For these three baselines listed below, since
they are mainly used in CV tasks, thus the code
is hard to directly used for our experiments.
We re-implement these methods based on their
implementations, especially for SSAL part.

o ASST: https://
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Hyper-parameter

| SST-2 | AG News | Pubmed | DBPedia | TREC | Chemprot

Dropout Ratio 0.1
Maximum Tokens 32 [ 9% [ 9% [ 64 | 64 | 128
Batch Size for A 8
Batch Size for X, in Self-training | 32 | 48 | 48 | 32 | 16 | 24
Weight Decay 1078
Learning Rate 2 x 1077
B 0.5
M 25 30 30 40 40 40
K 5 10
v 0.7 0.6
mr 0.8 0.9 0.7 0.8 0.8 0.8
my 0.9 0.9 0.8 0.9 0.9 K
A 1

Table 2: Hyper-parameter configurations. Note that we only keep certain number of tokens.

Dataset
Method Pubmed | DBPedia
Finetune (Random) <0.1s <0.1s
Entropy (Holub et al., 2008) 461s 646s
BALD (Gal et al., 2017) 4595s 6451s
ALPS (Yuan et al., 2020) 488s 677s
BADGE (Ash et al., 2020) 554s 1140s
CAL (Margatina et al., 2021b) 493s 688s
REVIVAL (Guo et al., 2021) 3240s OOM
ACTUNE + Entropy 477s 733s
w/ RS for Active Learning 15.8s 44.9s
w/ MMB for Self-training 0.12s 0.18s
ACTUNE + CAL 510s 735s
w/ RS for Active Learning 16.6s 46.4s
w/ MMB for Self-training 0.12s 0.18s

Table 3: The running time of different baselines. Note
that for ASST, CEAL and BASS, they directly use ex-
isting active learning methods so we do not list the run-
ning time here.

github.com/osimeoni/
RethinkingDeepActivelLearning.
o CEAL: https://github.com/rafikg/
CEAL.
o BASS: https://github.com/
mrottmann/DeepBASS.

Our implementation of ACTUNE will be pub-
lished upon acceptance.

B.5 Hyper-parameters for General
Experiments

We use AdamW (Loshchilov and Hutter, 2019) as
the optimizer, and the learning rate is chosen from
1 x 107%,2 x 1075}. A linear learning rate decay
schedule with warm-up 0.1 is used, and the number
of training epochs is 15 for fine-tuning. For active
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self-training & SSAL baselines, we tune the model
with 2000 steps, and evaluate the performance on
the development set in every 50 steps. Finally,
we use the model with best performance on the
development set for testing.

B.6 Hyper-parameters for ACTUNE

Although ACTUNE introduces several hyper-
parameters including K, M, mr, mpm, 5,7, A,
most of them are keep fixed during our experiments,
thus it does not require heavy hyper-parameter tun-
ing. The hyper-parameters we use are shown in
Table 2. Specifically, we search 7} from 10 to
2000, T, from 1000 to 5000, T3 from 10 to 500, &
from 0 to 1, and A from O to 0.5. All results are
reported as the average over three runs.

In our experiments, we keep 8 = 0.5, A = 1 for
all datasets. For other parameters, we use a grid
search to find the optimal setting for each datasets.
Specifically, we search « from [0.5,0.6,0.7], m[,
from [0.6,0.7,0.8], m g from [0.8,0.9, 1]. For Ac-
TUNE with Entropy, we use probability based ag-
gregation and for ACTUNE with CAL, we use value
based aggregation by default.

B.7 Hyperparameters for Baselines

For other SSAL methods, we mainly tune their key
hyperparameters. Note that Entropy (Holub et al.,
2008), BALD (Gal et al., 2017), ALPS (Yuan et al.,
2020), BADGE (Ash et al., 2020) do not intro-
duce any new hyperparameters. For CAL (Mar-
gatina et al., 2021b), we tune the number for
KNN £ from [5, 10, 20] and report the best per-
formance. For ST (Lee, 2013), CEAL (Wang


https://github.com/osimeoni/RethinkingDeepActiveLearning
https://github.com/osimeoni/RethinkingDeepActiveLearning
https://github.com/osimeoni/RethinkingDeepActiveLearning
https://github.com/osimeoni/RethinkingDeepActiveLearning
https://github.com/osimeoni/RethinkingDeepActiveLearning
https://github.com/rafikg/CEAL
https://github.com/rafikg/CEAL
https://github.com/rafikg/CEAL
https://github.com/mrottmann/DeepBASS
https://github.com/mrottmann/DeepBASS
https://github.com/mrottmann/DeepBASS

et al., 2016) & BASS (Rottmann et al., 2018), it
uses a threshold ¢ for selecting high-confidence
data. We tune 4 from [0.6,0.7,0.8,0.9] to report
the best performance. For UST (Mukherjee and
Awadallah, 2020), we tune the number of low-
uncertainty samples used in the next round from
[1024, 2048, 4096]. For COSINE (Yu et al., 2021),
we set the weight for confidence regularization X as
0.1, the threshold 7 for selecting high-confidence
data from [0.7,0.9] and the update period of self-
training from [50, 100, 150]. For REVIVAL (Guo
et al., 2021), it calculates uncertainty with adversar-
ial perturbation, we tune the size of the perturbation
e from [le — 3,1e — 4, 1le — 5].

C Runtime Analysis.

Table 3 shows the time in one active learning
round of ACTUNE and baselines. Here we high-
light that the additional time for region-aware sam-
pling and momentum-based memory bank is rather
small compared with the inference time. Among
all baselines, we find that the running time of
clustering-based method is faster than the origi-
nal reported time in the paper. This is because
we use FAISS (Johnson et al., 2019) instead of
SKLearn (Pedregosa et al., 2011) for clustering,
which accelerates the clustering step significantly.
Also, we find that BALD and REVIVAL are not
so efficient. For BALD, it needs to infer the uncer-
tainty of the model by passing the data to model
with multitple times. Such an operation will make
the total inference time for PLMs very long. For
REVIVAL, we find that calculating the adversarial
gradient needs extra forward passes and backward
passes, which could be time-consuming for PLMs
with millions of parameters’.

D Limitations

First, since our focus is on fine-tuning pre-trained
language models, we use the representation of
[CLS] token for classification. In the future work,
we can consider using prompt tuning (Gao et al.,
2021; Schick and Schiitze, 2021), a more data-
efficient method for adopting pre-trained language
models on classification tasks to further promote
the efficiency. Also, due to the computational re-
source constraints, we do not use larger pre-trained
language models such as RoBERTa-large (Liu et al.,

"The original model is proposed with CV tasks and they
use ResNet-18 as the backbone which only contains 11M
parameters (around 10% of the parameters of Roberta-base).
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2019) which shown even better performance with
only a few labels (Du et al., 2021). Last, apart from
the text classification task, we can also extend our
work into other tasks such as sequence labeling and
natural language inference.

E Case Study

Here we give an example of our querying strat-
egy on AG News and Pubmed dataset for the 1st
round of active self-training process in figure 6.
Note that we use t-SNE algorithm (Van der Maaten
and Hinton, 2008) for dimension reduction, and
the black triangle stands for the queried samples
while other circles stands for the unlabeled data.
Different colors stands for different classes. From
the comparision, we can see that the existing uncer-
tainty based methods such as Entropy and CAL, are
suffered from the issue of limited diversity. How-
ever, when combined with ACTUNE, the diversity
is much improved. Such results, compared with the
main results in figure 1, demonstrate the efficacy
of ACTUNE empirically.



(g) Pubmed, CAL (h) Pubmed, ACTUNE w/ CAL

Figure 6: Visualization of the querying strategy of ACTUNE.
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