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Abstract

To estimate item frequencies of data streams with limited space, sketches are widely1

used in real applications, including real-time web analytics, network monitoring,2

and self-driving. Sketches can be viewed as a model which maps the identifier of a3

stream item to the corresponding frequency domain. Starting from the premise, we4

envision a neural data structure, which we term the meta-sketch, to go beyond the5

basic structure of conventional sketches. The meta-sketch learns basic sketching6

abilities from meta-tasks constituted with synthetic datasets following Zipf distribu-7

tions in the pre-training phase, and can be fast adapted to real (skewed) distributions8

in the adaption phase. Extensive experiments demonstrate the performance gains9

of the meta-sketch and offer insights into our proposals.10

1 Introduction11

Estimating item frequency is a basic topic in data stream processing, which finds applications in12

the fields of networking, databases, and machine learning, such as real-time data analyzing [1–4],13

network traffic monitoring [5–7], natural language processing [8] and search ranking [9]. Towards14

infinite data streams, a common class of solutions [10–15] use a compact structure taking sublinear15

space for counting the number of occurrences of each stream item, called the sketch.16

Under the prevalent evidence of skewed distributions in data streams, basic sketches achieve the space17

compactness by hashing and approximately aggregating stream items. Basic sketches, including18

CM-sketch [10], C-sketch [11] and CU-sketch [12], use a 2D array of counters as the core structure.19

To optimize the sketching performance, there arise augmented sketches [13,14], which attach filters to20

basic sketches, to capture the preliminary patterns of skewed distributions (e.g., high/low-frequency21

items). By separately maintaining the filtered high/low-frequency items, augmented sketches strive22

to eliminate the estimation error incurred by hash collisions between the high- and low-frequency23

items. Further, learned augmented sketches [15] improve the filters of the augmented sketches by24

memorizing short-term high/low-frequency items via a pre-trained neural network (NN in short)25

classifier. But it is not clear how the pre-trained NN can be adapted to dynamic streaming scenarios,26

where the correspondence between items and frequencies varies. In a nutshell, sketches are structures27

compactly summarizing stream distributions to count item frequencies with limited space budgets.28

From the retrospective analysis of sketches, an observation can be drawn that the evolution of29

sketches conforms with the exploitation of data distributions. It is thus a natural evolution to consider30

a sketch that generally and automatically captures more distribution patterns with limited space31

budgets. In this paper, we envision a novel neural sketch, called the meta-sketch, with techniques32

of meta-learning and memory-augmented neural networks. The meta-sketch learns the sketching33

abilities from automatically generated meta-tasks. Depending on the types of meta-tasks, we study34

two versions of the meta-sketch, called basic and advanced meta-sketches.35
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Figure 1: The Framework of the Meta-sketch

The basic meta-sketch implements the simulation of basic sketches, through the training process with36

basic meta-tasks following Zipf distributions, which are prevalent in the scenes of real data streams [16–37

20]. The advanced meta-sketch extends the basic version to fast adapt to the specific runtime of stream38

processing, through the training with adaptive meta-tasks, which are generated by online sampling39

of real data streams. Our work follows a typical setting where the distribution of item frequencies40

follows a skewed distribution, but the correspondence between items and frequencies varies. For41

example, in software-defined networks (SDN), sketches are deployed to programmable switches to42

collect per-flow statistics, where IP packets follow heavy-tailed distributions [15, 21]. In distributed43

databases, it gives advances to collect statistics of data shards to optimize data placement and44

query caching, where query phrases follow approximate Zipf distributions [15]. Given that the item45

population follows a specific distribution, the local distributions, i.e., item-frequency correspondences46

on shards or flows, are different. Instead of retraining learned augmented sketches on each local47

distribution, the advanced-sketch can be quickly adapted to different local distributions once trained.48

As a member of the neural data structure family [15, 22–24], the meta-sketch significantly differs49

from conventional sketches, in terms of the structure and working mechanism. The meta-sketch50

utilizes NN’s powerful encoding/decoding capabilities to perceive data distributions and express51

and compress explicit or implicit information to retrieve item frequencies with better accuracies.52

Meanwhile, the meta-sketch is differentiable to fully perceive frequency patterns for self-optimization.53

Our contributions are as follows. 1) We propose the meta-sketch, the first neural data structure for the54

problem of item frequency estimation, based on meta-learning. 2) The basic meta-sketch acquires55

sketching abilities by learning from synthetic datasets, and outperforms basic sketches in real datasets.56

The advanced meta-sketch automatically encompasses the ability analogous to the auxiliary structures57

deliberately devised in (learned) augmented sketches, yet yielding better accuracies and robustness58

when adapted to dynamic scenes. 3) Through extensive empirical studies on real and synthetic59

datasets, we evaluate our proposed meta-sketches and analyze the mechanism of major modules.60

2 Meta-sketch Structure61

2.1 Preliminaries62

We consider a standard data stream scenario [19]. Suppose a data stream SN : {e1, ..., eN} with N63

items and n distinct items. Each item ei ∈ SN takes a value from the item domain X = {x1, ..., xn}64

where xi 6= xj . The frequency fi is equal to the number of times that item xi appears in SN .65

To leverage learning techniques for item frequency estimation, a naïve way is to train a NN model66

(e.g., MLP/LSTM) that learns/memorizes the mapping relationship between items and frequencies67

with multiple training iterations, similar to [15, 22, 24]. However, it violates the typical setting of68

stream processing where item observations are transient and are therefore handled in one pass [18].69

More, the costly procedure has to be repeated from the scratch for a new data stream. Inspired by the70

meta-bloom filter [23], we consider a case of one-shot learning (fitting for one-pass stream processing)71

by using meta-learning [25, 26] and memory-augmented networks [27, 28]. Meta-learning employs72

sampled meta-tasks to learn the ability to solve a class of domain tasks rather than memorizing patterns73

for a specific task. The memory-augmented networks incorporate external memories into NN models,74

significantly enhancing the potentials of NN models with more learnable parameters. Meanwhile, it75

performs efficient and explicit operations (i.e., reading and storing) for external memories, allowing76

NN models to process information similarly to conventional data structures.77

The framework of the meta-sketch consists of 4 functional modules, Embedding (FE), Sparse78

addressing (FSa), Compressed storage matrix (M ), and Decoding (Fdec), as shown in Figure 1. Like79

traditional sketches, the meta-sketch encodes and memorizes online stream items in one pass, and80

answers queries by decoding corresponding item-frequency information from the structure.81

Thus, we define 2 operations, Store and Query. Specifically, the Store operation first passes each82

incoming stream item to FE for the embedding representation, and then writes the embedding vector83

into M , according to the address derived by FSa. When estimating the frequency of an item, the84
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Query operation calculates the item’s address in M via FSa, reads the corresponding information85

vector from M , and decodes the item frequency by Fdec from the retrieved information vector .86

2.2 Modules87

Embedding. The module FE has two purposes: 1) performing representational transformation for88

an incoming item ei and mapping it into a dense embedding vector zi that holds implicit features89

about item-frequency distributions and serves as the basis for identifying stream items; 2) decoupling90

the embedding vector zi to obtain a refined vector ri, which is used to derive the address for91

reading/writing on the compressed storage matrix M .92

Accordingly, FE consists of the embedding network gemb and the address network gadd. We assume93

that an item ei ∈ SN is numerically encoded for the unique identification, following the conventions94

of stream processing [18, 19]. Thus, we have zi, ri ← FE(ei), where zi ← gemb(ei) and ri ←95

gadd(zi). Here, zi ∈ Rlz is an embedding vector of length lz , and ri ∈ Rlr is a refined vector of96

length lr. The vector zi serves multiple intents: 1) it makes a basis for deriving the address of an item97

in FSa; 2) it serves as the compressed vector of an item written into M ; 3) it works as a partial input98

of Fdec for decoding the item frequency; 4) it also plays the role of perceiving/compressing patterns99

of a specific frequency distribution, as discussed in Section 5. In addition, to enhance the addressing100

functionality and eliminate other interference factors, we decouple zi to generate a refined vector ri,101

instead of using zi directly for the addressing.102

Sparse addressing. The module FSa aims to derive the address ai for storing the embedding vector103

zi into the storage matrix: ai ← FSa(ri). In terms of functionality, FSa is analogous to the hash104

functions of traditional sketches, except that FSa is parameterized and differentiable. Specifically,105

the addressing of the meta-sketch is done via a 3D addressing matrix A of parameters to be learned106

and a sparse SoftMax function: ai ← SparseMax(rTi A), where A ∈ Rd1×lr×d2 . Then, the batch107

matrix multiplication of A and the transpose of ri results in the addressing vector ai ∈ Rd1×1×d2 .108

The setting of d1 and d2 determines the size of address space for storing the embedding vectors.109

Typical addressing methods [23, 28] use a 2D matrix (lr × d2) for recording the mapping of an110

embedding vector to a slot (d2 is the number of slots). In contrast, we add one more dimension d1111

to simulate the multi-hash setting of traditional sketches, in view of that a 2D addressing matrix112

can reach a differentiable simulation of a hash function [23, 24]. Matrix A simulates multiple hash113

functions, yielding robust frequency decoding and the rationality of the learning optimization. Note114

that each 2D slice A∗ of A is stacked from d2-unit vectors bi ∈ Rlr by normalizing the parameters115

of A at each gradient update of the training process. Normalized A can avoid overflowing when116

compressing its size by reducing data precisions and enhance the interpretability (see Section 5).117

In addition, we utilize sparse SoftMax [29, 30] instead of SoftMax to normalize the address ai.118

It brings the following benefits by constraining some bits of ai to zero, which 1) promotes quick119

derivation during the back-propagation; 2) reduces the overhead of storage matrix accessing by120

skipping the slots of M corresponding to the “0” bits of ai; 3) leads to de-noising with the vector121

compression.122

Compressed storage matrix. We use a matrix M ∈ Rd1×lz×d2 1 to store an embedding vector123

zi ∈ Rlz in accordance to its address ai ∈ Rd1×1×d2 . The functionality of M is similar to the 2D124

array of counters in traditional sketches, yet yielding better capabilities in the storage compression.125

Traditional sketches store item counts. Differently, M stores embedding vectors, which have richer126

information compression capabilities, due to the diversity of value changes on different bits.127

Decoding. Given a query item xi, the module Fdec, consisting of one NN component gdec, decodes128

the information corresponding to xi, in order to obtain the estimated frequency f̂i. The vector fed129

into gdec is the concatenation of vector {M 	 ai}, vector zi, and the current number of items (i.e., N )130

recorded in a counter, f̂i ← gdec({M 	 ai}, zi, N). The operator 	 refers to the reading operation131

for the storage matrix. The basic form of 	 gives the operation as M 	 ai = MaTi
2 [27, 28]. For132

optimization, we consider two optimized forms of 	, inspired by the “count-min” mechanism of the133

CM-sketch. The first one gives the minimum value of each row in MaTi , aiming to remove the noise134

of other items. The second one gives the minimum value of each row in MaTi ◦ 1
zi

, a normalized135

1In this paper, we control lr : lz ≈ 1 : 5 to compress A.
2aT

i means transpose operation for dim 1 and d2
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form of MaTi . Here, ◦ denotes the Hadamard product, and zi requires broadcast operations to comply136

with its requirements. So, {M 	 ai} refers to the concatenation of vectors generated by the basic137

form and the two optimized forms. Please refer to supplement materials for more details.138

2.3 Operations139

Operation Store is performed by feeding an incoming item ei to FE and FSa to obtain embedding140

vector zi and address ai, and then additively writing zi to M , weighted by ai: M ←M + ziai. Here,141

other writing types [23, 26–28] can also be employed, but simple additive writing is more efficient142

and allows to compute gradients in parallel [23]. In addition, additive writing also allows to define an143

optional Delete operation for the meta-sketch (see the supplement materials).144

Operation Query estimates the frequency of a given query item xi. First, zi and ai are obtained,145

similar to that of operation Store. Then, the vectors {M 	 ai} are retrieved from M and N can be146

easily obtained by a small counter. Finally, {M 	 ai}, zi and N are jointly fed into gdec to get the147

estimated frequency f̂i of xi as the returned value. The two operations are shown in Algorithm 1.148

Algorithm 1: Operations
1 Operation Store(ei,M):
2 zi, ri ← FE(ei) ;
3 ai ← FSa(ri);
4 M ←M + ziai;
5 Operation Query(xi,M ,N):
6 zi, ri ← FE(xi);
7 ai ← FSa(ri);
8 f̂i ← Fdec({M	ai}, zi, N);
9 return f̂i;

Algorithm 2: Training Framework
Data: Meta-sketch with all learnable parameters θ, Meta-task samplerR;

1 while i not reach max training steps do
2 Sample a meta-task ti : {si, qi} ∼ R and countN ;

3 for e(i)j ∈ si do Store(e(i)j ,M); end

4 for x(i)
j , f

(i)
j ∈ qi do f̂(i)

j ← Query(x(i)
j ,M ,N); L+=LossFun(f(i)

j , f̂
(i)
j );

5 Backprop through: dL/dθ and update parameters: θ ← Optimizer(θ, dL/dθ);
6 Normalize A;
7 ClearM ;
8 end

149

3 Meta-sketch training150

3.1 Training Framework151

The meta-sketch employs an efficient one-shot meta-training method [31]. The training process thus152

contains two phases, pre-training and adaption phases. In the pre-training phase, the meta-sketch153

learns an initial set of module parameters, including gemb, gadd, A, and gdec. The pre-training154

goes offline across training units, i.e., basic meta-tasks, to acquire the ability of stream frequency155

estimation. Then, in the adaption phase, the pre-trained meta-sketch goes fast across a set of light-156

weighted training units, i.e., adaptive meta-tasks, to quickly acquire the task-specific knowledge, i.e.,157

parameters for sketching real data streams at runtime.158

The training units, i.e., meta-tasks, are crucial for both phases. The training process of the meta-sketch159

on a single meta-task is equivalent to simulating storing and querying an instance of data streams160

while computing the estimation error to optimize the learnable parameters. Thus, a meta-task ti161

consists of a store set si (also called a support set) and a query set qi. The store set si can be viewed162

as an instance of data streams, si : {e(i)1 , ..., e
(i)
Ni
}, where Ni is the number of stream items in si. The163

query set qi can be represented by a set of items from the stream instance with paired frequencies in164

the store set si, formally, qi : {(x(i)1 : f
(i)
1 ), ..., (x

(i)
ni : f

(i)
ni )}, where ni is the number of distinct items165

in si. In this work, we define two types of meta-tasks, basic (Section 3.2) and adaptive (Section 3.3)166

meta-tasks, corresponding to the pre-training and adaption phases, respectively.167

The two training phases, that are based on different types of meta-tasks, follow the same training168

framework, as shown in Algorithm 2, except for the sampler and initial parameters. To optimize on169

reducing both absolute and relative frequency estimation errors3, we devise an adaptive hybrid loss170

function [32] for the meta-sketch: 1
2σ2

1
(fi − f̂i)2 + 1

2σ2
2
|fi − f̂i|/fi + logσ1σ2, where σ1 and σ2 are171

learned parameters, and fi and f̂i are the true and estimated frequencies of item xi, respectively.172

3Average Absolute Error: AAE = 1
n

∑n
i=1 |fi − f̂i|; Average Relative Error: ARE = 1

n

∑n
i=1

|fi−f̂i|
fi

.
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3.2 Basic Meta-task Generation173

In the pre-training phase, basic meta-tasks should make the meta-sketch to simulate traditional174

sketches and preserve certain generality without relying too much on the patterns of specific distribu-175

tions (Section 5). Therefore, we generate meta-tasks based on the Zipf distribution, which is found to176

be prevalent in real scenes of data streams [16–20].177

A meta-task is essentially a data stream instance with item size n, which can be determined by the178

total number of items N and the relative frequency distribution p. Alternatively, we can generate179

meta-tasks by presupposing different n, f̄ and p, where f̄ is the frequency mean, since N=f̄×n.180

Thus, basic meta-task generation is based on a sampler R : {I, L, P}, as follows.181

An item pool I is a subset of the item domain X. The cardinality of I is in relevance to the182

identification capability of the meta-sketch. If the item domain is known a-priori, it can be directly183

taken as the item pool. Otherwise, in applications where the item domain is only partially known or184

even unknown, the item pool can be constructed by sampling from the historical records. Even in the185

case that the item pool does not completely cover the item domain, the “missing” item can still be186

identified, due to the homogeneity of the domain-specific embedding space, given that the number of187

distinct items does not meet the item pool capacity |I|.188

A frequency mean range L is the range for the frequency mean f̄ . One can get the value of f̄ by189

statistics of each sampled stream instance and extract the minimum and maximum f̄s to build L.190

A distribution pool P consists of many instances generated according to different parameters of191

relative frequency distributions. In this paper, we consider a family of Zipf distributions [33] with192

varied parameter α, as the base for constructing P . α can be selected from a wide range to have a193

good coverage of different distributions.194

Notice that the meta-tasks are for the meta-sketch to learn the sketching ability, instead of spoon-195

feeding the meta-sketch to mechanically memorize the parameters of R. It means that the trained196

meta-sketch has the generalization ability to handle the case not covered in R (see Section 4.2).197

The generation of a meta-task ti can be done based on sampler R, as follows. We first randomly198

sample a subset of ni items from I , and a frequency mean f̄i ∈ L. Then, we sample a distribution199

instance pi ∈ P and make the ni items’ frequencies conform to pi and f̄i. For example, the200

frequencies of ni items can be set as ni × f̄i × pi, where pi ∼ Zipf(α) is a random variable. The201

above steps are repeated until the store set si and query set qi are built.202

3.3 Adaptive Meta-task Generation203

While processing real data streams, we can get the item set Ir and its distribution pr by online204

sampling. Ir and pr are then used for generating the set of adaptive meta-tasks. For each adaptive205

meta-task, an item subset is sampled from Ir, and the relative frequency corresponding to each item206

is sampled from pr. The process is similar to the generation of basic meta-tasks. The only difference207

from basic meta-task generation is that, there is no distribution pool anymore, because the real data208

stream is unique. Also, we intentionally randomize the correspondence between an item and its real209

relative frequency on the original data records. It is equivalent to constructing meta-tasks where210

the item frequencies dynamically change. For example, the frequency of an item may first increase,211

then suddenly drop [21]. With adaptive meta-tasks, the meta-sketch learns to quickly adapt to the212

distribution pr, while being flexible against the item frequency change. The detailed algorithms of213

generating basic/adaptive meta-tasks are shown in supplement materials.214

4 Experiments215

4.1 Basic Setup216

Dataset. We use two real datasets. Word-query is a streaming record of search queries, where each217

query contains multiple words (e.g., “News today”) [15]. IP-trace consists of IP packets, where each218

packet is identified by a unique source/destination address pair (e.g., 192.168.1.1/12.13.41.4) [21].219

We assume that query phrases and IP addresses are numerically encoded, similar to [15].220
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Table 1: Results of Basic Meta-sketch (Tr)
Word-query IP-trace

Method Metrics n=5K,
B=9KB

n=10K,
B=11KB

n=20K,
B=13KB

n=40K,
B=15KB

n=5K,
B=9KB

n=10K,
B=11KB

n=20K,
B=13KB

n=40K,
B=15KB

Basic MS ARE 12.3 14.74 10.98 13.79 3.00 1.51 2.97 1.13
AAE 31.54 38.54 40.63 53.67 5.57 5.01 6.94 5.56

CS ARE 32.94 57.97 98.01 162.43 6.08 9.94 15.57 24.49
AAE 57.54 101.44 172.44 282.59 10.42 16.82 26.46 41.91

CMS ARE 21.34 48.33 111.82 239.11 8.12 16.07 32.77 65.19
AAE 38.04 84.62 195.61 416.01 13.67 27.39 55.29 110.65

Table 2: Results of Basic Meta-sketch (Ts)
Method Metrics n=5K,B=9KB n=10K,B=11KB n=20K,B=13KB n=40K,B=15KB

0.5 1.1 1.5 0.5 1.1 1.5 0.5 1.1 1.5 0.5 1.1 1.5
Basic MS

(Word-query)
ARE 0.43 1.05 2.63 0.73 3.25 3.14 0.47 1.67 1.35 0.43 2.58 9.65
AAE 24.7 17.72 8.93 31.24 27.02 9.41 27.29 22.19 9.2 25.04 26.95 19.87

Basic MS
(IP-trace)

ARE 0.59 2.27 9.38 0.73 0.86 1.02 0.72 1.73 7.52 0.73 0.79 2.33
AAE 26.45 21.49 14.73 38.33 19.32 7.95 35.48 22.28 15.74 39.57 21.75 14.06

CS ARE 1.98 6.72 10.99 2.7 12.12 16.9 3.73 20.8 27.46 5.17 37.96 43.76
AAE 74.96 47.98 15.89 102.05 75.83 23.8 140.65 118.29 38.7 194.32 198.4 59.96

CMS ARE 4.96 7.52 5.47 9.27 15.85 9.44 17.29 32.7 16.38 32.24 66.35 27.89
AAE 187.52 53.81 8.17 350.08 99.82 13.58 651.63 185.54 22.88 1213.38 347.32 38.18

Baseline. We hereby evaluate the basic and advanced meta-sketches. From now on, we use MS to221

represent the term meta-sketch for brevity. We compare basic MS (after the pre-training phase) with222

CM-sketch (CMS) and C-sketch (CS). We compare the advanced MS (after the adaptation phase)223

with learned augmented sketch (LS) and cold filter (CF), which are two variants of CM/C sketches224

with auxiliary structures. According to the default setting [10, 11], the number of hash functions for225

all sketches is 3. We adopt two commonly accepted metrics for evaluating the accuracies of stream226

frequency estimation, AAE and ARE3.227

Parameters. We implement gemb or gadd in MLP with 2-layers of sizes 128 and 48, followed by228

batch normalization, and gdec in an MLP with 3-layers of 256 with residual connections. We use229

the relu function for layer connections. The space budget B is spent on storing M , the same as the230

setting in neural data structures [23]. Other modules, like hashing libraries, are commonly accepted231

as reusable and amortizable resources for multi-deployment of sketches [21, 23]. Note that due to232

space limitations, the details and methods of parameter settings of M (A), the ablation experiments233

and some parameter discussions are shown in the supporting material.234

4.2 Basic Meta-sketch235

Settings. For each dataset, we train the basic MSs under 4 item pools with {5K, 10K, 20K, 40K}236

different items, respectively. The meta-task sampler are with Zipf distributions. We build the237

distribution pools set with α ∈ [0.8, 1.3] and set frequency mean range L = [50, 500]. For basic238

meta-sketch training, the default maximum number of training steps φ is 5 million, the learning rate239

is 0.0001, and the Adam optimizer is used. For evaluation, we consider two types of tasks, Tr and240

Ts. Tr are directly obtained by random sampling on two real data streams with different values of n,241

i.e., the number of distinct items. Note that the frequency distributions of Tr are not necessarily obey242

Zipf distributions. Ts are the synthetic tasks, where the item frequency follows the Zipf distribution243

with α ∈ {0.5, 1.1, 1.5}. To evaluate the generability and stability of basic MS, both Ts(0.5) and244

Ts(1.5)’s distributions are not covered by the distribution pool of the meta-task samplers.245

Performance. Table 1 shows the performance of all competitors based on real dataset Tr. It shows246

that the basic MS outperforms traditional basic sketches, i.e., CMS and CS, on all testing cases. For247

example,the results on IP-trace show that, when n=40K and B=15KB, the ARE of basic MS is248

1.13, while AREs of CMS and CS are 65.19 and 24.49, respectively. The advantage of meta-sketch249

is significant when testing on Ts with different αs, as shown in Table 2. Note that we use random250

choices to simulate the ideal hash functions for traditional sketches like [15], so that CS and CMS251

have the same result on test tasks with the same α in both datasets.252

We show the trend of ARE w.r.t. the space budget, in Figure 2 (Tr, n=5K, Word-query). Compared to253

the dramatic performance degrading of traditional sketches, basic MS holds stable performance. We254

show that the trend of ARE w.r.t. the number of distinct items in Figure 3 (Tr, B=9KB, Word-query).255

Compared to traditional sketches, the ARE of basic MS increases sub-linearly w.r.t. the value of n.256

Note that AAE has similar results for the above experiments, see the supplement materials.257

Generalization. We test the generality of basic MS to new items that are not in the item pool of258

the meta-task sampler in Figure 4(a). We make the experiments (n=5K, B=9KB, Word-query)259

by replacing some items in Tr with new items, and vary the fraction of new items to observe260

the trend of the performance. It shows that the ARE/AAE moderately increases w.r.t. the ratio261
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Figure 4: Generality of Meta-sketch
Table 3: Results of Advanced Meta-sketch

Method Metrics Word-query IP-trace
n=5K

B=9KB
n=10K,

B=11KB
n=20K

B=13KB
n=40K

B=15KB
n=5K

B=9KB
n=10K

B=11KB
n=20K

B=13KB
n=40K

B=15KB
Advanced

MS
ARE 3.05 2.83 4.06 5.20 0.87 0.89 1.38 2.29
AAE 21.42 26.11 35.00 43.81 3.77 4.46 5.13 6.55

CF90 ARE 3.58 14.53 141.70 1127.11 0.85 2.74 4.20 16.71
AAE 21.13 59.18 381.63 2217.28 1.32 3.01 7.71 31.20

CF70 ARE 7.95 29.02 139.87 541.37 1.51 3.10 8.95 46.79
AAE 29.02 76.58 295.63 970.94 2.57 5.51 16.83 82.84

CF40 ARE 91.16 138.64 244.24 407.83 12.62 33.50 103.76 155.61
AAE 174.86 252.22 421.85 693.47 24.16 60.79 175.14 279.72

LCMS(1%) ARE 20.52 48.69 111.85 266.50 8.34 17.09 35.22 77.79
AAE 37.80 81.93 194.15 451.28 13.72 28.39 59.10 129.86

LCS(1%) ARE 25.53 40.84 67.21 104.54 5.20 7.80 11.33 17.12
AAE 44.53 78.17 122.57 180.56 8.78 13.10 18.97 28.38

of new items. The performance is acceptable considering the fact that the item domain is often262

stable in practical applications. We then test the generality of meta-sketches to varied frequency263

means that are not in range L of the meta-task sampler, as shown in Figure 4(b). The experiment264

(n=5K, B=9KB, Word-query) is done by sampling a series of Ts tasks with frequency means in265

{500, 5K, 50K, 500K, 5000K}. It shows that as the mean of the true frequencies increases, the266

estimated frequencies of the meta-sketch increase linearly, so that the ARE keeps stable.267

4.3 Advanced Meta-sketch268

Settings. The generation of adaptive meta-tasks is similar to that of basic meta-tasks (Section 3.2), ex-269

cept that each item pool reads real frequency distributions for the adaption as described in Section 3.3.270

In the adaption phase, the maximum number of training steps is 0.002 ∗ φ.271

Performance. Table 3 compares the performance of advanced MS with traditional sketches and their272

variants, LS and CF, on real dataset Tr. We implement two LSs according to [15], learned CM-sketch273

(LCMS) and learned C-sketch (LCS), following the default setting that (top 1%) high-frequency274

items are separately stored. For CF, we follow the parameter setting in [14], and use CF40, CF70, and275

CF90 for setting the filter percentages to 40%, 70%, and 90% of the total size, respectively. It shows276

that the advanced MS achieves a better performance than LSs and CFs. Also, AAE/ARE of advanced277

MS increases more moderately w.r.t. the number of distinct items n, compared to its competitors.278

Furthermore, we compare the performance of the advanced MS and the LS under dynamic streaming279

scenarios, as shown in Figure 5. We select a set of Tr (n=5K,B=9KB,Word-query), and gradually280

shuffle the correspondence between items and frequencies. Here, the shuffle ratio is increased from 0281

to 100%. It shows that the average ARE of advanced MS only slightly fluctuates between 3.26 and282

4.0, and the average AAE is in the range of 21.28 and 21.68. In contrast, AAE of LCS or LCMS starts283

above 37, and increase significantly w.r.t. the increase of the shuffle ratio. Actually, the classifier of284

LS tends to incur more errors due to the gradual shift of high- and low-frequency items, resulting in285

an increased number of hash collisions, thus deteriorating the estimation accuracy.286

5 Analysis287

The meta-sketch is trained based on meta-tasks, consisting of various stream distributions. We288

expected that the meta-sketch can learn the ability to sketch item frequencies. Somehow, it is289

unavoidable that the meta-sketch’s ability is limited by patterns of given meta-tasks. Thus, setting290

up the two training phases benefits the balance of the trade-offs. In the pre-training phase, we select291

the most representative Zipf distribution to form basic meta-tasks, making the basic meta-sketch292

adaptable to a wide range of data streams. In the adaptation phase, we sample adaptive meta-tasks293

from raw data streams to make the advanced meta-sketch more specialized. Next, we analyze the294
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Figure 8: The sparsity of embedding vectors

working mechanism of the three modules of the meta-sketch as well as their roles in acquiring the295

two abilities.296

Sparse Addressing Module. We take a 2D slice A∗ (size is lr × d2) of the A matrix to analyze297

the process of a refined vector r getting addressing a through this module. First, we have a ←298

SparseMax(rTA∗)⇒ a← SparseMax(〈r · b1, r · b2, ..., r · bd2〉). Since bi are unit vectors, we299

can get a← SparseMax(|r|c), c=〈cosθ1, cosθ2, ..., cosθd2〉, where θi is the angle between r and300

bi. We continue to transform the form to get addressing a← Sparsegen(c;u; |r|−1|r| ) [30], where u301

is a component-wise transformation function applied on c. in this paper, we set u(c)=c.302

Based on the principle of Sparsegen [30], |r| mainly affects the sparsity (i.e., the proportion of303

non-zero bits in the vector) of a during training process, while c determines the positions and values304

of non-sparse bits. The Figure 6 shows a strong correlation between the average |r| and the sparsity305

of a during training from scratch (n=5K, B=9KB, Word-query, Basic MS). Since the embedding306

vector z does not directly participate in the addressing process, the average |z| remains stable. Further,307

we observe that the sparsity of a will eventually converge to around 1, which means that each item308

is generally stored in a slot corresponding to the refined vector r and the unit vector in A∗ with the309

maximum cosine similarity.310

Therefore, the role of A∗ is to map refined vectors to the addressing vectors. The d2 unit vectors in311

A∗ are the reference standard for mapping, which is equivalent to the mutually exclusive d2 -divisions312

of the refined vector space. Follow this point, we construct two matrices K∗ and R∗ of the same size313

as A∗. Among them, the d2 unit vectors in K∗ come from the cluster centers of the sampled refined314

vectors. To achieve mutually exclusive division, we perform Kmeans clustering with K = d2 and315

Cosine similarity criterion. Then, we normalize the resulting d2 cluster centers and stack them as K∗.316

In contrast, the unit vectors in R∗ are entirely randomly generated.317

Figure 7 (a) shows the results of replacing A∗ on the trained meta-sketch with K∗ and R∗. The318

meta-sketch with R∗ shows the worst performance, but the performance of the meta-sketch with K∗319

is close to the original A∗. Furthermore, We count the number of items mapped in every slot of A∗,320

K∗, R∗ and show their standard deviation in Figure 7 (b). The standard deviation of R∗ is much321

higher than A∗ and K∗, and a better meta-sketch tends to store items more evenly in each slot. Thus,322

The addressing module simulates the traditional sketch mechanism. Its principal function is to store323

the embedding vectors of items as evenly as possible in multiple memory slots, and an item is written324

to only one slot.325

Embedding Module. The major source of conflicts in the meta-sketch is the stacking of different326

embedding vectors in a single slot. Thus, the sparsity of the embedding vector becomes an important327

indicator to determine the degree of conflicts. Figure 8 shows the relation between the sparsity of328

embedding vectors and the stream distributions (n=5K, B=9KB, Word-query, advanced MS). We329

select the meta-tasks under Zipf, Triangular, and Uniform distributions with different skewness levels330

(the definition of skewness and corresponding distribution parameters are shown in the supplement331

materials). The results show that the sparsity of the embedding vector is positively proportional to332
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Figure 10: Unstable case vs. Stable case

the skewness of a distribution. Therefore, we speculate that the meta-sketch memorizes the pattern333

information of the distribution being adapted by self-tuning the sparsity of embedding vectors.334

Decoding Module. The decoding module, as the deepest NNs in the meta-sketch, integrates various335

information to predict the item frequency and achieves generalization ability. To verify this, we adapt336

the advanced MS (n=5K, B=9KB, Word-query) to a special adaptive meta-task. The meta-task337

was sampled from the real data stream but with a fixed item size (5000) and frequency mean (250).338

Meanwhile, we do not change the correspondence between items and frequencies. Such meta-task339

forces the meta-sketch to pay more attention to the fixed patterns and thus limit its generalization.340

Thus, we train the advanced MS with (or without) freezing the decoding module parameters based341

on the above meta-task. Figure 9 (a) shows the performance changes of the three models (advanced342

MS as baseline) on the evaluation tasks (Tr) of different item sizes. Without the frozen decoding343

module, the meta-sketch loses generalization ability at extended item sizes other than 5000. On the344

contrary, the meta-sketch with the frozen decoding module still retains the generalization ability and345

further utilizes the data stream pattern compared to the advanced MS, achieving the best performance.346

Similarly, as shown in Figure 9 (b), the meta-sketch without the frozen decoding module also loses a347

certain generalization ability in terms of frequency mean.348

Actually, the above meta-task (termed as the stable case) can be viewed as a special case of an ordinary349

adaptive meta-task (termed as the unstable case). As a matter of fact, augmented sketches utilize350

frequency patterns similar to the stable case. For example, the learned augmented sketch memorizes351

(relatively) stable correspondence between items and frequencies, for filtering high-frequency items.352

To understand the meta-sketch’s self-optimizing mechanism from the unstable case to the stable case,353

we analyze the storage of high/low-frequency items between multiple slots and a single slot in the354

memory. In Figure 10 (a), we show density heat-maps of low-frequency (below the top 20% high355

frequencies) items, stored by meta-sketches of stable and unstable cases on a 2D slice (d1=2) of the356

storage matrixM , where the x-axis is the index of slots. The two heat-maps show that the meta-sketch357

under the stable case can store the low-frequency items concentratedly in some slots to avoid the358

conflicts with high-frequency items. Interestingly, the meta-sketch does not intentionally do this like359

augmented sketches. Instead, it is achieved by self-optimization during the training. Furthermore,360

Figure 10 (b) shows the relation between the sparsity of the embedding vector of items stored in a361

single slot and the frequency order, where the x-axis represents the frequencies in the ascending order.362

We speculate that the meta-sketch autonomously adjusts the sparsity of the embedding vector within363

a single slot in the stable case, so that the high/low-frequency items are automatically separated.364

6 Conclusion365

In this paper, we propose a neural data structure, called the meta-sketch, for estimating item fre-366

quencies in data streams. Unlike traditional sketches, the meta-sketch utilizes meta-learning and367

memory-augmented neural networks. The meta-sketch is pre-trained with Zipf distributions and can368

be fast adapted to specific runtime streams. We study a series of techniques for constructing the369

meta-sketch. We also devise the generation of basic and adaptive meta-tasks corresponding to the370

pre-training and adaption phases, respectively. Extensive empirical studies on real datasets are done371

to evaluate our proposals. In the future, it is interesting to extend our proposal to other sketching372

tasks that are supported by traditional sketches.373
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Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,437

et al. Hybrid computing using a neural network with dynamic external memory. Nature,438

538(7626):471–476, 2016.439

[29] Andre Martins and Ramon Astudillo. From softmax to sparsemax: A sparse model of attention440

and multi-label classification. In ICML, pages 1614–1623. PMLR, 2016.441

[30] Anirban Laha, Saneem Ahmed Chemmengath, Priyanka Agrawal, Mitesh Khapra, Karthik442

Sankaranarayanan, and Harish G Ramaswamy. On controllable sparse alternatives to softmax.443

NIPS, 31, 2018.444

[31] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-445

ing networks for one shot learning. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg,446

Isabelle Guyon, and Roman Garnett, editors, NIPS, pages 3630–3638, 2016.447

[32] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh448

losses for scene geometry and semantics. In CVPR, pages 7482–7491, 2018.449

[33] Lada A. Adamic. Zipf, power-laws, and pareto- a ranking tutorial.450

7 Checklist451

1. For all authors...452

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s453

contributions and scope? [Yes]454

(b) Did you describe the limitations of your work? [Yes] Compared with traditional data455

structures,neural data structures are usually relative weak in term of time latency. In456

future research, We need to study and reduce time cost of meta-sketches’ operation or457

disign a framework to get a huge throughput utilizing parallel algebraic operations as a458

remedy.459

(c) Did you discuss any potential negative societal impacts of your work? [N/A] There is460

no negative societal impacts of my work, since it is foundational research.461

(d) Have you read the ethics review guidelines and ensured that your paper conforms to462

them? [Yes]463

2. If you are including theoretical results...464

(a) Did you state the full set of assumptions of all theoretical results? [N/A]465

(b) Did you include complete proofs of all theoretical results? [N/A]466

3. If you ran experiments...467

(a) Did you include the code, data, and instructions needed to reproduce the main experi-468

mental results (either in the supplemental material or as a URL)? [Yes]469

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they470

were chosen)? [Yes] We give the details of the implementation as much as possible,but471

some of them will put into appendix.472

(c) Did you report error bars (e.g., with respect to the random seed after running exper-473

iments multiple times)? [Yes] We visualize the difference in line graphs by drawing474

shadows, which includes various of comparative experiments with all type of meta-475

sketches. But due to the huge amount of data ,error bars of table are not included. See476

section 4 and 5.477

11



(d) Did you include the total amount of compute and the type of resources used (e.g.,478

type of GPUs, internal cluster, or cloud provider)? [Yes] All of our experiments are479

implemented in python and run at a NVIDIA DGX workstation with CPU E5-2698480

(2.20GHz, 20 cores), and 4 NVIDIA V100 GPUs (5120 CUDA cores and 16GB GPU481

memory on each GPU).482

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...483

(a) If your work uses existing assets, did you cite the creators? [Yes]484

(b) Did you mention the license of the assets? [N/A]485

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]486

487

(d) Did you discuss whether and how consent was obtained from people whose data you’re488

using/curating? [N/A]489

(e) Did you discuss whether the data you are using/curating contains personally identifiable490

information or offensive content? [N/A]491

5. If you used crowdsourcing or conducted research with human subjects...492

(a) Did you include the full text of instructions given to participants and screenshots, if493

applicable? [N/A]494

(b) Did you describe any potential participant risks, with links to Institutional Review495

Board (IRB) approvals, if applicable? [N/A]496

(c) Did you include the estimated hourly wage paid to participants and the total amount497

spent on participant compensation? [N/A]498

12


	Introduction
	Meta-sketch Structure
	Preliminaries
	Modules
	Operations

	Meta-sketch training
	Training Framework
	Basic Meta-task Generation
	Adaptive Meta-task Generation

	Experiments
	Basic Setup
	Basic Meta-sketch
	Advanced Meta-sketch

	Analysis
	Conclusion
	Checklist

