
HDSuper: Algorithm-Hardware Co-design for
Light-weight High-quality Super-Resolution

Accelerator
Liang Chang, Xin Zhao, Dongqi Fan, Zhicheng Hu and Jun Zhou

University of Electronic Science and Technology of China, Chengdu, China, 611731.

Abstract—Super-resolution (SR) networks have been grad-
ually applied to embedded devices with good-quality image
reconstruction. However, the hardware performance and power
efficiency are limited by a large number of algorithm parameters,
computation complexity, and hardware resources, obstructing the
development of a high-quality SR accelerator. This paper pro-
poses an end-to-end platform with a lightweight super-resolution
network (LSR) and an efficient, high-quality super-resolution
architecture HDSuper, to perform algorithm-hardware co-design
for the SR accelerator. For algorithm design, we employ depth-
wise separable convolution and pixelshuffle to reduce network
size and computation complexity by considering the hardware
constraints. For hardware design, we provide a unified computing
core (UCC) combined with an efficient flattening-and-allocation
(F-A) mapping strategy to support various operators with high
computational utilization. We adopt the patch training method to
reduce the external memory access of the hardware architecture.
Based on the evaluation, the proposed algorithm achieves high-
quality image reconstruction with 37.44dB PSNR. Finally, we
implement the image reconstruction in FPGA demonstration,
achieving high-quality image reconstruction with 2.08W power
consumption under the lowest hardware resources compared to
the state-of-the-art works.

Index Terms—Super-Resolution, Co-design, Efficient Mapping,
High-quality Image, FPGA

I. INTRODUCTION

The intelligent embedded devices, including smartphones,
autonomous robotics, and drones, are supposed to be small in
size and low power consumption due to tightly limited battery
life [1] [2]. Typically, the deployment of deep neural networks
(DNNs) on hardware is constrained by massive parameters and
computations. Consequently, boosting hardware efficiency is
desirable in resource- and power-efficiency usage scenarios.

Super-resolution (SR) networks based on deep learning
have obtained good reconstruction performance [3]. Various
hardware accelerators have demonstrated a good image recon-
struction quality and resource utilization for DNN-based SR
[4]–[6]. [7] and [5] proposed SR accelerators based on the fast
Winograd algorithm to reduce the number of multiplication.
For the external memory access (EMA) problem, [8] and
[9] designed layer fusion strategies to reduce the EMA by
95% and 94%, respectively. To improve the image reconstruc-
tion quality, the BSRA accelerator adopts the pixel attention
mechanism, which makes peak signal-to-noise ratio (PSNR)
reach 37.18dB [10]. However, DNN-based SR networks are
large, and sufficient computational resources are required to

accelerate the end-to-end network. The limitations of hard-
ware efficiency and resource utilization motivate us to seek
innovations on both algorithms and hardware architecture.

In this work, we propose an end-to-end solution to deploy
the entire SR algorithm onto a hardware accelerator with
both algorithm and hardware innovations. The lightweight
hardware-oriented SR algorithm, called LSR, is provided to
optimize the deep learning-based network by considering
the constraints of embedded devices. We develop a high-
quality SR accelerator, namely HDSuper, to improve hardware
efficiency and utilization. The contributions of this work are
listed as follows:

• We provide an end-to-end platform to perform
lightweight SR networks and develop a hardware
accelerator. In the lightweight SR network, the depthwise
separable convolution and pixelshuffle are adopted to
reduce the network size and computation greatly. In
addition, we design a lightweight depthwise separable
convolution and channel attention block (LDSCA) to
achieve a great image reconstruction quality.

• We propose a HDSuper accelerator to meet the ap-
plication requirement on embedded devices. A unified
computing core (UCC) and an efficient flattening-and-
allocation (F-A) mapping strategy is developed, sup-
porting the computation of multiple operators with high
computational utilization (100% for LSR).

• We demonstrate the end-to-end FPGA platform with
optimized LSR algorithm. Based on our patch training
mechanism, we can implement the patch inference in
hardware to reduce 99.3% external memory accesses.
Compared to several state-of-the-art works, HDSuper
costs the lowest resources and obtains 37.44dB PSNR,
which is a light-weight and high-quality SR accelerator.

II. PRELIMINARY AND MOTIVATION

Super-resolution (SR) refers to reconstructing low-
resolution images into high-resolution ones without losing
image quality as much as possible. With the development
of deep learning, the application of DNNs to SR has
significantly improved. For example, typical networks,
including SRCNN and FSRCNN, use the deconvolution and
interpolation upsampling step to get high-resolution images
[3], [11]. However, deconvolution brings massive computation
with large memory accesses. To mitigate overhead of the



deconvolution layer, ESPCN [12] developed a sub-pixel
convolution, i.e. pixelshuffle, to alternate the deconvolution,
avoiding large computation. Recently, the attention mechanism
was employed in the SR network. CSNL proposed a cross-
scale attention mechanism and pushed SR to a new stage
[13]. Although the image reconstruction quality is improving,
the number of parameters and required computation of the
SR network is also increasing exponentially. For optimizing
computation, refer [14] proposed a method to transform
a deconvolutional layer into a convolutional layer, which
reduces the size of the convolution kernel by compressing
invalid computation. Refer [5] proposed deconvolution
implementation based on a fast Winograd algorithm to reduce
the number of multiplication. External memory access is
another severe challenge. Refer [5] cut the input images into
multiple blocks and measured their total deviation value,
reducing the required on-chip memory capacity. Refer [9]
proposed a bandwidth-efficient architecture based on a layer
fusion mechanism, which reduces the bandwidth by 98.4%.

Based on the above analyses, the SR accelerator can be
further optimized from algorithm and hardware co-design.
In this work, we develop an end-to-end SR solution, which
includes a high-efficient accelerator with high computational
utilization and a hardware-friendly lightweight network to
break the computational bottleneck.

III. HARDWARE-ORIENTED SR-ALGORITHM
OPTIMIZATION

A. LSR Algorithm Structure and Flow

Feature Pre-extraction

3 x 3

Conv

1 x 1

Conv

3 x 3

DW

1 x 1

PW

Lighweight depthwise separable 

convolution block-A (LDS-A)

LDSCA

Upsampling

Pixelshuffle
1 x 1

Conv

X 4

3 x 3

DW

1 x 1

PW

1 x 1

Conv
Add

1 x 1

Conv

Mul
1 x 1

Conv
Add

Lightweight depthwise separable 

convolution block-B (LDS-B)
Channel Attention

Relu

Softmax

Prelu

Mixed Feature Extraction

Fig. 1. LSR structure. It contains three parts, i.e., feature pre-extraction,
mixed feature extraction, and upsampling.

To improve the reconstructed image quality with a
lightweight SR network, we propose the LSR, as shown
in Figure 1. We design a lightweight depthwise separable
convolution block A (LDS-A) by removing the shortcut in
original ones, hence obtain the ability to map high-dimensional
feature maps to low-dimensional ones. A Lightweight depth-
wise separable convolution block B (LDS-B) is proposed by
removing the original 1×1 convolution layer and fine-tuning
the parameters. In addition, we modify the channel attention
(CA) module by removing the 1×1 convolution layer and

an element-wise multiplication in non-local blocks. The CA
module can be expressed as:

z = gzy + x = gz(softmax (gv (x)) gu (x)) + x (1)

Where gz , gv and gu represent 1×1 convolution in CA, x
represents input and z represents output. In LSR, the LDSCA
contains LDS-B and CA. LDS-B extracts low-frequency and
high-frequency information of the image, while CA assigns
weight to each channel and captures long-distance dependen-
cies between channels.

B. Optimization for Computation Reduction
Depthwise separable convolution (DS) and pixelshuffle are

used in LSR to reduce the computation and parameters. DS
reduces the computation and parameters by decomposing
standard convolution into depthwise convolution (DW) and
pointwise convolution (PW). The pixelshuffle is used to re-
place compute-intensive deconvolution for upsampling.

C. Patch Training for Hardware EMA Optimization
In the training stage, all images in the training set are first

divided into multiple small patches, and then all patches are
formed into new datasets for LSR training. In backpropagation,
we compute the loss between the high-resolution output patch
and ground truth patch, and continue to iterate until sound
results are obtained. In the evaluation stage, the input low-
resolution images are divided into small patches before being
put into the network for forward propagation. Finally, we
concatenate the output patches into complete images after
completing the computation. During the computation, only
small capacity memory are needed for one patch. The on-
chip inference of hardware is feasible, significantly reducing
the EMA and improving the hardware performance.

IV. HDSUPER HARDWARE ARCHITECTURE

A. Overview of HDSuper Architecture and Computing Flow
Figure 2(a) indicates the HDSuper architecture, containing

the unified computing core (UCC), data buffers, and global
controller. The UCC consists of a computing unit (CU) array,
addition-and-accumulation unit (AAU), and special-processing
unit (SPU) arrays. The UCC supports multiple operators
with high computational utilization, including convolution,
element-wise operation, and activation functions. Data buffers
include an input buffer, weight buffer, and on-chip buffer,
which can realize the data storage of the feature map and
weight. The global controller manages the hardware comput-
ing, such as inter-layer switching and data mapping.

The computing of the LSR can be divided into three cases
according to data access. ❶ For the first layer of computing,
it needs to transmit the patch from off-chip memory. ❷
When computing in middle layers, the output feature map is
temporarily saved to the on-chip buffer, which avoids EMA.
By controlling the (D)MUXs, the UCC can obtain input from
the different buffers, which is flexible. ❸ The last layer is to
realize upsampling using pixelshuffle, which does not involve
computing. The implementation is integrated into the on-chip
buffer by controlling the output fashion of the on-chip buffer.



Fig. 2. HDSuper architecture design. (a) Overall HDSuper architecture. (b) CU (computing unit), including a multiplier (MUL) array, a sub-adder tree, and
multiple MUXs. (c) AAU and SPU. AAU (addition and accumulation unit) includes an inter-channel adder tree, an accumulator, and multiple MUXs. SPU
(special processing unit) includes the modules of softmax, PReLU, and ReLU.

B. Unified Computing Core Design

The LSR network contains different operators and multiple
branches. The UCC can support various operators flexibly. As
shown in Figure 2(a), it consists of three groups of CU blocks,
each of which has 18 CUs. Therefore, in order to improve the
computing efficiency, we can simultaneously compute three
feature maps, that is, the batch size is 3. Figure 2(b) and (c)
shows the components of the UCC, mainly including CU,
AAU, and SPU. The main logic modules in CU are the
multiplier (MUL) array and sub-adder tree. The MUL array
can achieve multiplications with size 3×3. The sub-adder tree
can support the accumulation of 9 data or the element-wise
addition of 9 pairs. The specific working state of the sub-
adder tree is selected according to the MUX condition. In
addition, by controlling (D)MUXs in CU, different computing
modes can be achieved, including 3×3 convolution, 3×3
element-wise multiplication, and 3×3 element-wise addition.
Compared with the traditional convolution unit, CU only
introduces a few MUXs with negligible overhead to efficiently
support various operators.

AAU is mainly composed of an inter-channel adder tree and
accumulator. Among them, the inter-channel adder tree sup-
ports the addition of feature maps among input channels. The
accumulator accumulates the output from the inter-channel
adder tree and temporarily stores it in the accumulation
buffer until all input channels are accumulated. Several layers
without inter-layer addition/accumulation can be skipped via
(D)MUXs. In LSR, some convolution layers are followed
by nonlinear function. The SPU can support the nonlinear
functions such as softmax, PReLU, and ReLU, selected by
MUX. In addition, since the SR network is an upsampling
process, there is no support for pooling operations such as max
pooling because they belong to the downsampling process and
generally do not appear in the SR network.

C. Efficient F-A Mapping

To support more network structures and operator types
with high computational utilization, we propose an efficient
mapping strategy including two steps: flattening and allocation
(F-A mapping).

1) Flattening: Flattening refers to transforming a multi-
branch network structure into a single-branch ones for sub-
sequent allocation. The basic principle is to take the network
layer containing convolution or element-wise operation as a
separate layer. The following nonlinear function belongs to
the current convolution layer. In addition, the intermediate
output of the multi-branch structure is temporarily stored in
the on-chip buffer. Take the LDSCA block as an example,
Figure 3 contains five convolution layers and three element-
wise multiplication or addition layers with three branches,
which are flattened into a single-branch 8-layer network.

Fig. 3. Flattening for LDSCA block. The number represents the intermediate
result of the multi-branch that is temporarily stored in the on-chip buffer.

2) Allocation: For data allocation, it refers to allocating the
flattened single-branch network to the UCC for computing.
According to the different parameter configurations of each
network layer, there are different allocation methods. Algo-
rithm 1 shows the specific allocation strategy. The goal is to
find the mapping method with the maximum computational
utilization for each layer. We set batch size as three. Three
patches are calculated in the UCC. The inputs are operator type



(OP), kernel size (KS), the number of input channels (CNin),
and the number of output channels (CNout), respectively. The
outputs are data flow (DF), input channel parallelism (Pin),
input reload times (Rtimes

in ), output channel parallelism (Pout),
and output reload times (Rtimes

out ), respectively. Reload times
mean loading the input data several times to complete all
computations. The allocation can be classified into three cases
according to the operators.

Algorithm 1 Data allocation. The goal is to obtain the
allocation with maximum computational utilization.

Input: (OP, KS), CNin, CNout

Output: DF, (Pin, Rtimes
in ), (Pout, Rtimes

out )
1: if (OP == convolution)
2: if (KS == 1) ▷ case 1
3: DF = HWC
4: if (CNin >9)
5: Pin = 2, Rtimes

in = ⌈CNin / (9×2)⌉
6: else
7: Pin = 1, Rtimes

in = 1
8: Pout = 18 / Pin, Rtimes

out = ⌈CNout / Pout⌉
9: else ▷ case 2

10: DF = CHW
11: Pnum = ⌊18 / (⌈KS×KS / 9⌉)⌋
12: Pin, Pout = find optim parall(Pnum)
13: Rtimes

in = ⌈CNin / Pin⌉, Rtimes
out = ⌈CNout / Pout⌉

14: else if (OP == element-wise multiplication or add)
15: DF = HWC ▷ case 3
16: Pin = 1, Rtimes

in = 1
17: Pout = 18, Rtimes

out = ⌈CNout / 18⌉
18: return DF, (Pin, Rtimes

in ), (Pout, Rtimes
out )

Case 1: For 1×1 convolution, the data flow is the height-
width-channel (HWC), supporting nine input channels data to
fill a CU with a computational utilization of 100%. Both the
Pin and Rtimes

in are set to 1. Correspondingly, the Pout is 18,
and the Rtimes

out is ⌈CNout / 18⌉. On the other hand, if the
number of input channels CNin is larger than 9, we set the
Pin to two limited by the on-chip buffer bandwidth (18 data
per cycle). The data from 18 input channels are read from the
on-chip buffer simultaneously.

Case 2: When the kernel size is 3×3, 5×5, 7×7 or
9×9, the data flow is channel-height-width (CHW). Firstly,
we compute the maximum parallel computing (Pnum) that
can be supported. The 3×3 convolution can fill a CU, so
the Pnum is 18. The 5×5 convolution requires 3 CU units
to satisfy the computation, and the Pnum is 6. In addition,
the 7×7 and 9×9 convolution require 6 and 9 CU units
to satisfy the computation, respectively, and the Pnum is 3
or 2. Then, find out the optimal input and output channel
parallelism (find optim parall(Pnum)). The basic idea is to
factor the number of input channels and output channels to
find two factors, whose product is exactly equal to the Pnum.
On the contrary, we analyze the corresponding computational
utilization under different factor combinations to select the Pin

and Pout factors with largest utilization.

Case 3: For element-wise addition or multiplication, since
the number of input channels is one, the Pin is one. Cor-
respondingly, Pout and Rtimes

out are 18 and ⌈CNout / 18⌉,
respectively.

3) Case study for LSR: Figure 4 indicates the data alloca-
tion in LSR, the computing of convolution can be summarized
into three cases. ❶ Case for 3×3 convolution: Pin = 1,
Pout=18. ❷ Case for 1×1 convolution and PW: Pin = 2, Pout

= 9. ❸ Case for 3×3 DW: Pin = 18, Pout = 1. In above each
case, the computational utilization is up to 100%.

Fig. 4. LSR data allocation. (a) For 3×3 convolution, the data flow is CHW.
(b) For 1×1 convolution and PW, the data flow is HWC. (c) For 3×3 DW,
the data flow is CHW.

D. EMA and Bandwidth Optimization
To reduce the data access with off-chip memory, we adopt

the patch inference based on the patch training strategy. Only
one patch of the whole image is calculated each time. For
each patch, the size of the output feature map generated by
the middle layer is tiny, which enables on-chip storage. In
this way, only the first and last layers must interact with the
off-chip memory, significantly reducing the EMA.

Fig. 5. Optimal design for input buffer. (a) Three data need to be updated
each cycle. (b) Only one data need to be updated each cycle.

In addition, we can optimize the input buffer to save
bandwidth, and take 3×3 convolution as an example. The 3×3
convolution requires 9 input feature map data with bandwidth
9 data per cycle. Two optimization steps are adopted. Firstly,
we develop the sliding window strategy to update only three
data each cycle, as shown in 5(a). The required bandwidth
can be reduced 66.7%. Secondly, the pre-store mechanism is
developed to store two rows of input feature map in advance,
as shown in Figure 5(b). The required bandwidth can be further
reduced by 88.9%.

V. EXPERIMENT RESULTS AND DISCUSSION

A. Experiment Setup
We train the designed LSR network under patched DIV2k

dataset where each image is segmented. Then, the trained



network is quantized for FPGA deployment. In the hardware
implementation, we use Verilog HDL to implement the HD-
Super based on the Vivado 2021.2 development environment.
In addition, we design the corresponding PC test system to
facilitate the demonstration, as shown in Figure 8.

B. Patch Training Analyses

To evaluate the impact of patch size on image reconstruction
quality, we use Set5 and Set14 datasets for experiments. As
shown in Figure 6, patch sizes with 84×84, 42×42, 36×36,
and 28×28 are adopted, respectively. From the results, there
is little influence on PSNR with different patch sizes, which
proves that patch training method adopted by LSR is effective.

Patch: 1 (without segmentation)

PSNR: 38.74dB

Patch: 84 (38.72dB) Patch: 48 (38.64dB)

Patch: 36 (38.67dB) Patch: 28 (38.66dB)

Fig. 6. Patch training comparison. We segment the image into multiple patch
sizes to compare the PSNR loss.

C. Algorithm Model Comparison

Table I demonstrates the algorithm comparison results,
and all models are tested on the y channel with the same
input image size. The proposed LSR has better PSNR and
SSIM than SRCNN and FSRCNN, slightly lower than VDSR.
Nevertheless, LSR consumes much lower MACs operations
and has less network parameters.

TABLE I
COMPARISON OF THE ALGORITHM.

Method Scale Parameter MAC
(GOPS)

Set5 Urban100
PSNR SSIM PSNR SSIM

SRCNN
[11]

2 66.62 36.66 0.9542 29.50 0.8946
3 8.1k 149.89 32.75 0.9090 26.24 0.7989
4 266.48 30.48 0.8628 24.52 0.7221

FSRCNN
[3]

2 37.05 0.9560 29.88 0.9020
3 12.5k 25.84 33.18 0.9140 26.43 0.8080
4 30.72 0.8660 24.62 0.7280

VDSR
[15]

2 5513 37.53 0.9587 30.76 0.9140
3 665k 12405 33.66 0.9213 27.14 0.8279
4 22053 31.35 0.8838 25.18 0.7524

LSR
(Ours)

2 8.9k 18.90 37.44 0.9592 30.29 0.9088
3 9.0k 19.09 33.43 0.9210 27.78 0.8425
4 9.1k 19.35 31.09 0.8798 24.89 0.7443

* Input image: 1080p. Blue: best result. Green: second best result.

D. Utilization and EMA Analysis

Through LSR case study in Section IV-C3, the computa-
tional utilization is up 100%. In addition, HDSuper can be
adapted to other super-resolution networks. For example, by

flattening and allocating the widely used FSRCNN network,
the actual average computational utilization can reach 95.8%.
Figure 7 shows the comparison on EMA. The EMA of
HDSuper is reduced by 99.3%, 4.2% higher than the state-
of-the-art work, thanks to the patch inference mechanism.

Fig. 7. Comparison of EMA. The above four works, Shi et.al., Lee et.al.,
Chih et.al. and Li et.al. are from references [5], [17], [9] and [8], respectively.

E. Architecture Comparison

The HDSuper is compared to other SR hardware architec-
tures, as shown in Table II. The HDSuper uses a lightweight
network LSR and has a higher PSNR in hardware imple-
mentation. Specifically, HDSuper can achieve 37.44dB PSNR
under a scaling factor of 2 in Set5 datasets, which is much
higher than other architectures. In addition, HDSuper supports
multiple scaling factors, including 2, 3, and 4. HDSuper has
lower power consumption and less resource overhead, with
only 2.08W power consumption and less than half resources
compared to [6]. The memory resources are also less than
in other works, thanks to the patch inference mechanism of
this work. To meet the real-time requirement of the embedded
system, the frame rate of HDSuper inference can reach 81fps
by considering the limited computing resources and strict
power budget. In the HDSuper demonstration, we only use
a small amount of DSP resources, which is only 38% of [6].
Figure 8 shows the implementation of our SR system.

F. Co-design Discussion

The hardware can achieve higher efficiency through the
algorithm and hardware co-design. For calculation optimiza-
tion, the algorithm replaces the standard convolution with the
depthwise separable convolution can reduce the computation
with only slightly precision loss. On the other hand, the patch
training mechanism is employed to significantly reduce EMA,
making the hardware support patch inference.

VI. CONCLUSION

Hardware resources and power budget constrain embedded
devices. The SR algorithm with an large network and com-
plex computation is challenging to implement the efficient
hardware accelerator. In this work, we co-design the hardware
architecture and SR algorithm, which is a hardware-friendly
lightweight network named LSR with smaller network size and
higher image reconstruction quality. In addition, we develop



TABLE II
COMPARISON OF DIFFERENT HARDWARE ARCHITECTURE

Work Kim et.al.
[4]

Chang et.al.
[16]

Shi et.al.
[5]

Sun et.al.
[6]

HDSuper
(Proposed)

SR Method CNN-based FSRCNN-based FSRCNN-s-based RNN-based LSR
Supported Scales 2 2, 3, 4 2 2 2, 3, 4

Technology Xilinx
XCKU040

Xilinx
XC7K410T

Xilinx
ZCU102

Xilinx
XCKU15P

Xilinx
XC7VX485T

Frequency 150 MHz 130 MHz 200 MHz 160 MHz 200 MHz
Power 5.69 W 5.40 W - 5.47 W 2.08 W

Hardware Resources
LUT:151 K,
REG:121 K,
DSP:1,920

LUT:167 K,
REG:158 K,
DSP:1,512

LUT:173 K,
REG: - K,
DSP:746

LUT:98 K,
REG:57 K,
DSP:1,820

LUT:73 K,
REG:53 K,
DSP:704

Memory Size 194 KB 945 KB 1,396 KB 4,842 KB 496 KB
PSNR∗ 36.51 dB 36.40 dB - 36.76 dB 37.44 dB

Frame Rate 60 fps 62.7 fps 120.4 fps 76 fps 81 fps
* All PSNR is measured in dataset Set5 with the scaling factor 2.

Fig. 8. Demonstration of super resolution system.

an efficient hardware architecture HDSuper to support various
operators with high computational utilization. On the FPGA
platform, the HDSuper achieves a real-time image reconstruc-
tion with nearly 100% computational utilization and only
2.08W power consumption. In future work, we can further
improve the universality of the HDSuper architecture.

ACKNOWLEDGMENT

This work was supported by the NSAF under Grant
NO. U2030204, the National Natural Science Foundation of
China under Grant No. 62104025 and State Key Labora-
tory of Computer Architecture (ICT, CAS) under Grant No.
CARCHB202117. Jun Zhou is the corresponding author.

REFERENCES

[1] Y. Yang, Q. Huang, B. Wu, T. Zhang, L. Ma, G. Gambardella, M. Blott,
L. Lavagno, K. Vissers, J. Wawrzynek et al., “Synetgy: Algorithm-
hardware co-design for convnet accelerators on embedded fpgas,” in
Proceedings of the 2019 ACM/SIGDA international symposium on field-
programmable gate arrays, 2019, pp. 23–32.

[2] M. Mettler, M. Rapp, H. Khdr, D. Mueller-Gritschneder, J. Henkel,
and U. Schlichtmann, “An fpga-based approach to evaluate thermal
and resource management strategies of many-core processors,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 19,
no. 3, pp. 1–24, 2022.

[3] C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution
convolutional neural network,” in European conference on computer
vision. Springer, 2016, pp. 391–407.

[4] Y. Kim, J.-S. Choi, and M. Kim, “A real-time convolutional neural
network for super-resolution on fpga with applications to 4k uhd 60 fps
video services,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 29, no. 8, pp. 2521–2534, 2018.

[5] B. Shi, Z. Tang, G. Luo, and M. Jiang, “Winograd-based real-time super-
resolution system on fpga,” in 2019 International Conference on Field-
Programmable Technology (ICFPT). Tianjin: IEEE, 2019, pp. 423–426.

[6] K. Sun, M. Koch, Z. Wang, S. Jovanovic, H. Rabah, and S. Simon,
“An fpga-based residual recurrent neural network for real-time video
super-resolution,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 32, no. 4, pp. 1739–1750, 2022.

[7] P.-W. Yen, Y.-S. Lin, C.-Y. Chang, and S.-Y. Chien, “Real-time super res-
olution cnn accelerator with constant kernel size winograd convolution,”
in 2020 2nd IEEE International Conference on Artificial Intelligence
Circuits and Systems (AICAS). IEEE, 2020, pp. 193–197.

[8] Z. Li, S. Kim, D. Im, D. Han, and H.-J. Yoo, “An 0.92 mj/frame high-
quality fhd super-resolution mobile accelerator soc with hybrid-precision
and energy-efficient cache,” in 2022 IEEE Custom Integrated Circuits
Conference (CICC). IEEE, 2022, pp. 1–2.

[9] C.-Y. Chih, S.-S. Wu, J. P. Klopp, and L.-G. Chen, “Accurate and band-
width efficient architecture for cnn-based full-hd super-resolution,” in
2018 IEEE International Symposium on Circuits and Systems (ISCAS).
Florence: IEEE, 2018, pp. 1–5.

[10] D.-H. Yang and T.-S. Chang, “Bsra: Block-based super resolution ac-
celerator with hardware efficient pixel attention,” in IEEE International
Symposium on Circuits and Systems (ISCAS), 2022.

[11] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolu-
tional network for image super-resolution,” in European conference on
computer vision. Springer, 2014, pp. 184–199.

[12] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, “Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 1874–1883.

[13] Y. Mei, Y. Fan, Y. Zhou, L. Huang, T. S. Huang, and H. Shi, “Image
super-resolution with cross-scale non-local attention and exhaustive self-
exemplars mining,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 5690–5699.

[14] J.-W. Chang and S.-J. Kang, “Optimizing fpga-based convolutional
neural networks accelerator for image super-resolution,” in 2018 23rd
Asia and South Pacific Design Automation Conference (ASP-DAC).
Jeju: IEEE, 2018, pp. 343–348.

[15] J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution
using very deep convolutional networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 1646–
1654.

[16] J.-W. Chang, K.-W. Kang, and S.-J. Kang, “An energy-efficient fpga-
based deconvolutional neural networks accelerator for single image
super-resolution,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 30, no. 1, pp. 281–295, 2018.

[17] J. Lee, J. Lee, and H.-J. Yoo, “Srnpu: An energy-efficient cnn-based
super-resolution processor with tile-based selective super-resolution in
mobile devices,” IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, vol. 10, no. 3, pp. 320–334, 2020.


