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ABSTRACT

Current state-of-the-art generative models for videos have high computational
requirements that impede high resolution generations beyond a few frames. In this
work we propose a stage-wise strategy to train Generative Adversarial Networks
(GANs) for videos. We decompose the generative process to first produce a
downsampled video that is then spatially upscaled and temporally interpolated by
subsequent stages. Upsampling stages are applied locally on temporal chunks of
previous outputs to manage the computational complexity. Stages are defined as
Generative Adversarial Networks, which are trained sequentially and independently.
We validate our approach on Kinetics-600 and BDD100K, for which we train a
three stage model capable of generating 128x128 videos with 100 frames.

1 INTRODUCTION

The field of generative modeling has seen rapid developments over the past few years. Current
models such as GPT-3 (Brown et al., 2020) or BigGAN (Brock et al., 2018) are capable of generating
coherent long paragraphs and detailed high resolution images. Generative models for videos have
high memory requirements that quickly scale with the output resolution and length. Prior works have
therefore restricted the video dimensions by operating at low spatial resolution or by only considering
a small number of frames to generate (Ranzato et al., 2014; Vondrick et al., 2016a; Tulyakov et al.,
2018; Kalchbrenner et al., 2017).

In this work we investigate an approach to reduce the computational costs needed to generate long
high resolution videos in the context of Generative Adversarial Networks (GANs). Current GAN
approaches require large batch sizes and high capacity models (Clark et al., 2019; Brock et al., 2018).
We propose to break down the generative process into a set of smaller generative problems or stages,
each stage having reduced computational requirements. The first stage produces a downsampled
low-resolution video that is then spatially upscaled and temporally interpolated by subsequent
upscaling stages. Each stage is modeled as a GAN problem and stages are trained sequentially and
independently.

Each stages only considers a lower dimensional view of the video during training. The first stage
is trained to produce full-length videos at a reduced spatiotemporal resolution, while the upscaling
stages are trained to upsample partial temporal windows on the previous generations. At inference
time, the upscaling stages are applied on the full first stage output in a convolutional fashion to
generate full resolution videos.

Learning the upscaling stages on local views of the data reduces their computational requirements.
By keeping a fixed temporal window size, computational requirements scale only in output resolution,
independent of the final video length. However, upsampling stages consider a limited field of view
in time, which could negatively impact the temporal consistency of the full-size generation. To
address this problem, we rely on the first low-resolution generation to capture long-term temporal
information, and use it to condition the upscaling stages. In particular, we introduce a novel matching
discriminator that ensures that outputs are grounded to the low-resolution generation.

Our approach, named SSW-GAN, offers a novel way to decompose the training of large GAN
models, inspired by other coarse-to-fine methods that have been explored in the context of images
and videos (Denton et al., 2015; Karras et al., 2017; Acharya et al., 2018). In contrast to previous
methods, we do not train on full resolution inputs in upscaling stages, and instead impose global
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temporal consistency through conditioning on the complete but low resolution of the the first stage
output. Our model thus provides significant computational savings, which allow for high quality high
resolution generators capable of producing hundred of frames.

Our contributions can be summarized as follows:

• We define a stage-wise approach to train GANs for video in which stages are trained
sequentially and show that solving this multi-stage problem is equivalent to modeling the
joint data probability of samples and their corresponding downsampled views.

• We empirically validate our approach on Kinetics-600 and BDD100K, two large-scale
datasets with complex videos in real-world scenarios. Our approach matches or outperforms
state-of-art approaches while requiring significantly less computational resources.

• We use our approach to generate videos with 100 frames at high resolutions with high
capacity models. To the best of our knowledge, our method is the first one to produce such
generations.

2 RELATED WORK

Since Ranzato et al. (2014) and Srivastava et al. (2015a) proposed the first video generation models
inspired by the language modeling literature, there have been many papers that have proposed
different approaches to represent and generate videos (Luc et al., 2017; 2018; Villegas et al., 2017a;b;
Xue et al., 2016).

We propose a model for class conditional video generation, and therefore our setup is closely related to
stochastic generative video models. Autoregressive models (Larochelle & Murray, 2011; Dinh et al.,
2016; Kalchbrenner et al., 2017; Reed et al., 2017; Weissenborn et al., 2020) approximate the joint
data distribution in pixel space without introducing latent variables. These models capture complex
pixel dependencies without independence assumptions. However, inference in autoregressive models
often requires a full model forward pass for each output pixel, making them slow and not scalable to
long high resolution videos, with state-of-the-art models requiring multiple minutes to generate a
single batch of samples (Weissenborn et al., 2020).

Variational AutoEncoders (VAEs) define latent variable models and use variational inference methods
to optimize a lower bound on the empirical data likelihood (Kingma & Welling, 2013; Rezende et al.,
2014; Babaeizadeh et al., 2017). Models based on VRNNs (Chung et al., 2015; Denton & Fergus,
2018; Castrejon et al., 2019) use per-frame latent variables and have greater modeling capacity.

Normalizing flows (NFs) define bijective functions that map a probability distribution over a latent
variable to a tractable distribution over data (Rezende & Mohamed, 2015; Kingma & Dhariwal, 2018;
Kumar et al., 2019). NFs are trained to directly maximize the data likelihood. The main disadvantage
of NFs is that their latent dimensionality has to match that of the data, often resulting in slow and
memory-intensive models.

Autoregressive models, VAEs and NFs are trained by maximizing the data likelihood (or a bound)
under the generative distribution. It has been empirically observed that such models often produce
blurry results. Generative Adversarial Networks (GANs) on the other hand optimize a min-max game
between a Generator and a Discriminator trained to tell real and generated data apart (Goodfellow
et al., 2014). Empirically, GANs usually produce better samples but might suffer from mode collapse.
GAN models for video were first proposed in Vondrick et al. (2016b;a); Mathieu et al. (2015). In
recent work, SAVP (Lee et al., 2018) proposed to use the VAE-GAN (Larsen et al., 2015) framework
for video. TGANv2 (Saito & Saito, 2018) improves upon TGAN (Saito et al., 2017) and proposes a
video GAN trained on data windows, similar to our approach. However, unlike TGANv2, our model
is composed of multiple stages which are not trained jointly. MoCoGAN (Tulyakov et al., 2018) first
introduced a dual discriminator architecture for video, with DVD-GAN (Clark et al., 2019) scaling
up this approach to high resolution videos in the wild. DVD-GAN outperforms MoCoGAN and
TGANv2, and is arguably the current state-of-the-art in adversarial video generation. We propose a
multi-stage generative model approach with each stage defining an adversarial game and a model
architecture based upon DVD-GAN. Recent work (Xiong et al., 2018; Zhao et al., 2020) also proposes
multi-stage models, but differently from our approach their stages model different semantic aspects
of the generation, such as producing a motion outline.
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3 METHOD

We consider a dataset of videos (x1, ...,xn) where each xi = (xi;0, .., ,xi;T ) is a sequence of T
frames xi;t ∈ RH×W×3. Each xi comes from a data distribution pd. Our goal is to learn a generative
distribution pg such that pg = pd.

3.1 STAGE-WISE GENERATIVE PROCESS

While our approach can be generalized to multiple stages, for clarity of exposition, we describe here
a two-stage version of the model. We begin by introducing a new variable xl = f(x) representing a
view on the data. Generally, f denotes an operation that produces a view of x which decreases its
dimensionality, and in this work f is a nearest neighbor downsampling operation that reduces the
spatiotemporal resolution of x. Our goal is to model the joint probability distribution pd(x,xl).

We define a generative model that approximates the joint data-view distribution according to the
following factorization:

pg(x̂, x̂
l) = pg2(x̂|x̂l)pg1(x̂

l). (1)

Each pgi defines a stage in our model. This formulation allows us to decompose the training of the
stages into a sequential process.

Training Stage 1 We consider the distribution pg1 in eq. 1 and solve a min-max game with the
following value function:

V1(G1, D1) = Exl∼pd
[log(D1(x

l))] + Ez1∼pz1
[log(1−D1(G1(z1)))], (2)

where G1 and D1 are the generator/discriminator associated with the first stage and pz1 is a noise
distribution. This is the standard GAN objective. As shown in Goodfellow et al. (2014), the min-max
game minG1

maxD1
V1(G1, D1) has a global minimum when pg1(x

l) = pd(x
l).

Training Stage 2 We formulate a min-max game with the following value function:

V2(G2, D2) = Exl∼pd
Ex∼pd(.|xl)[log(D2(x,x

l))] + Ex̂l∼pg1
Ez2∼pz2

[log(1−D2(G2(z2, x̂
l), x̂l))], (3)

where G2 and D2 are the generator and discriminator of the second stage. The min-max game
minG2

maxD2
V2(G2, D2) has a global minimum when the two joint distributions are equal,

pd(x,x
l) = pg2(x|xl)pg1(x

l) (Dumoulin et al., 2016; Donahue et al., 2016). It follows that
pd(x|xl) = pg2(x|xl) when pg1(x

l) = pd(x
l). This stage only learns the parameters associated with

the distribution pg2 , as pg1 is trained in the previous stage. However, even if the distribution pg1 does
not match exactly the marginal data distribution, our model still aims at learning a distribution pg2
such that pg2(x|xl)pg1(x

l) approximates the joint data distribution. Therefore, our approach finds a
generative distribution pg such that pg(x,xl) = pd(x,x

l).

3.2 TRAINING ON LOCAL VIEWS OF THE DATA

We have shown that we can learn the joint data distribution with a stage-wise strategy. However, this
approach does not yet have any significant computational benefits. In its current form, the second
stage which upscales the low-resolution view xl parametrizes a generative distribution over the full
resolution video x. We now proceed to describe a locality assumption that allows us to reduce the
output dimensionality of the upscaling stage and therefore also reduce its computational complexity.

We decompose a video x and its view xl into a set of corresponding overlapping temporal windows
x = (xw1

, . . . ,xwn
) and xl = (xl

w1
, . . . ,xl

wn
). We now assume:

p(xwi
) ⊥ p(xwj

)|xl
wi
,∀i, j i 6= j and p(xwi

) ⊥ p(xl
wj

)|xl
wi
,∀i, j i 6= j (4)

We therefore assume that an output window xwi is independent of all other data views conditioned
on the corresponding low-resolution window xl

wi
. Given this locality assumption, we can rewrite the

conditional data and generative distribution as:

pd(x|xl) =

n∏
i=1

pd(xwi
|xl

wi
) and pg2(x̂|x̂l) =

n∏
i=1

pg2(x̂wi
|x̂l

wi
), (5)
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This allows us to rewrite the value function of eq. 3 as:

Exl∼pd
Exw∼pd(.|xl

w)[log(D2(xw,x
l
w))] + Ex̂l∼pg1

Ez2∼pz2
[ρ(1−D2(G2(z2, x̂

l
w)), x̂

l
w))]. (6)

Eq. 6 describes the second stage value function in which we now match distributions of uniformly
sampled data windows. Because these window sizes are fixed length and smaller than the full video
length, the second stage now models a lower dimensional generative distribution.

This assumption introduces a trade-off between the modeling capacity of the second stage and the
dimensionality of its outputs. Local upsampling stages might have trouble maintaining temporal
consistency, especially for high resolution details and textures that are not fully defined by the low
resolution inputs. In practice we define data windows with overlapping frames to aid maintain
consistency. This is equivalent to defining a fully convolutional upscaling model with a temporal field
of view smaller than the full input sequence. At inference time, we run the model convolutionally
over the entire input.

4 MODEL ARCHITECTURE

In this section, we describe how we parametrize the different stages of our generative model. A full
description is provided in the Appendix.

Stage 1 We follow the DVD-GAN architecture (Clark et al., 2019) for the first stage of our model.
The DVD-GAN generator stacks units composed by a ConvGRU layer (Ballas et al., 2015), modeling
the temporal information, and 2D-ResNet blocks that upsample the spatial resolution. DVD-GAN
builds upon the dual discriminator of MoCoGAN (Tulyakov et al., 2018) and defines both a spatial
discriminator that randomly samples k full-resolution frames and discriminates them individually,
and a temporal discriminator that processes spatially downsampled but full-length videos.

Upsampling Stage The upsampling stage is composed by a conditional generator and three discrim-
inators (spatial, temporal and matching). The conditional generator produces an upscaled version x̂w

of a low resolution video x̂l
w. To discriminate samples from real videos, this stage uses a spatial and

temporal discriminator, following DVD-GAN. Additionally, we introduce a matching discriminator
(MD). The goal of MD is to ensure that the generation x̂l

w is a valid upsampling of x̂w. Conditioning
on x̂l

w allows to impose global temporal consistency on the generation x̂ at inference time. Without
this discriminator, the upsampling generator could learn to ignore the low resolution input video. The
conditional generator is trained jointly with the spatial, temporal and matching discriminators. We
now describe our conditional generator and matching discriminator.

Conditional Generator The conditional generator takes as input a lower resolution video x̂l
w, a

noise vector z and optionally a class label y, and generates x̂w, an upsampled version of x̂l
w. Before

feeding it to the generator, we increase the duration of the low resolution video x̂l
w to the same

temporal duration as the generator output by repeating its frames. Our conditional generator (see
Figure 1) stacks units composed by one 3D-ResNet block and two 2D-ResNet blocks. We observe that
given enough capacity, the conditional generator with 3D convolutions matches the performance of a
similar model trained with ConvGRUs, while 3D convolutions allow for parallel computation over the
time axis (see appendix C). Spatial upsampling is performed gradually by progressively increasing
the resolution of the generator blocks. To condition the generator we add residual connections (He
et al., 2016; Srivastava et al., 2015b) from the low-resolution video to the output of each generator
unit. In particular, we sum nearest-neighbor interpolations of the lower resolution input to each unit
output. We do not use skip connections for units whose outputs have higher spatial resolution than
the lower dimensional video input, i.e. we do not upscale the low resolution video.

Matching Discriminator (MD) MD uses an architecture similar to that of the DVD-GAN temporal
discriminator. It discriminates real or generated (xw, xl

w) pairs. xw is downsampled to the same
dimensionality as xl

w, and both inputs are concatenated on the channel dimension. The matching
discriminator ensures that the model generates valid upsampled versions of its inputs, and therefore
grounds upscaling stages to the low resolution input.
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Figure 1: Stage 2 parametrization For upsampling stages, we adopt the DVD-GAN (Clark et al.,
2019) base architecture and re-purpose it to be conditional on the low-resolution samples. This
includes replacing ConvGRUs with 3D convolutions, adding skip connections to xl

wi
and adding a

matching discriminator that discriminates real or generated (xl
wi
,xwi

) pairs.

5 EXPERIMENTS

We consider the Kinetics-600 dataset (Kay et al., 2017; Carreira et al., 2018) to compare our approach
with prior art (Clark et al., 2019) in class conditional video generation. Kinetics-600 is a large scale
dataset of around 500k Youtube videos depicting 600 action classes. The videos are captured in the
wild and exhibit lots of variability. We follow the same data preprocessing of Clark et al. (2019)
and use a version of the dataset collected on June 2018. For unconditional video generation, we use
the BDD100K dataset (Yu et al., 2018). BDD100K contains 100k videos recorded from inside cars
representing more than 1000 hours of driving under different conditions. We use the training set split
of 70K videos to train our models.

Defining proper evaluation metrics for video generation is an open research question. We use metrics
inspired by the image generation literature and adapted to video. On Kinetics, we report three metrics
for comparison to previous works (Clark et al., 2019; Unterthiner et al., 2018): i) Inception Score
(IS) given by an Inflated 3D Convnet (Carreira & Zisserman, 2017) network trained on Kinetics-400,
ii) Frechet Inception Distance on logits from the same I3D network, also known as Frechet Video
Distance (FVD) (Unterthiner et al., 2018), and iii) Frechet Inception Distance on the last layer
activations of a I3D network trained on Kinetics-600 (FID). On BDD100K we report the FVD and
FID metrics as described before. We do not report IS since there are no well-defined classes in BDD.

Each stage of our model follows the DVD-GAN (Clark et al., 2019) architecture at a given frame
resolution with the modifications described in Section 4 for the upsampling stages. We also use
the same hyperparameters unless otherwise specified. For the rest of the section we denote video
dimensions by their output resolution DxD and number of frames F in the format DxD/F. We use up
to 128 nVidia GPUs to train our models. All models are trained with a batch size of 512. Further
details can be found in the Appendix.

5.1 TWO-STAGE SSW-GAN

In this section we evaluate a two-stage SSW-GAN to empirically validate the proposed training
approach. For all experiments we train the first SSW-GAN stage to generate 32x32/25 videos, with
a temporal subsampling of 8 frames. The second stage upsamples by a factor of 2 the temporal
resolution and by a factor of 4 the spatial resolution, resulting in 128x128/50 videos. During training
the second stage operates locally on input windows of 3 or 6 frames and is therefore trained to generate
128x128/6 or 128x128/12 videos, respectively. At inference time we run the model convolutionally
over the first stage 25 frames output to generate 128x128 videos of up to 50 frames.

We compare SSW-GAN with DVD-GAN as a baseline on Kinetics-600. We perform this comparison
for two DVD-GAN models trained on 128x128/12 and 128x128/48 in Table 1. Additionally, we
also ablate our model to evaluate its performance without the matching discriminator in Table 2. All
models are trained for 300K iterations on Kinetics (100K for model used in the ablation experiments)
and 35k iterations on BDD100K, unless otherwise specified. Samples for our model are shown in
Fig. 2 and in the Appendix.
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t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 40 t = 45

Figure 2: Randomly selected SSW-GAN 128x128/50 frame samples for Kinetics-600: We show random
samples from our Kinetics-600 128x128/12 model unrolled to generate 50 frames. Each row shows frames from
the same sample at different timesteps. We observe that the generations remain fairly consistent through time
while the frame quality does not degrade.

t = 0 t = 2 t = 4 t = 6 t = 8 t = 16 t = 24 t = 32 t = 40 t = 48

Figure 3: Unrolling DVD-GAN We show samples from a 128x128/6 DVD-GAN baseline (our re-
implementation) trained on Kinetics-600 and unrolled to generate 128x128/50 videos. While samples are
valid for the first 6 frames, they become motionless and degrade thereafter.

Comparison with prior work We compare our model trained to generate 128x128/12 videos 1 to
the reported metrics for DVD-GAN in Clark et al. (2019) for Kinetics-600 128x128 models. Table 1
shows that our model has better IS score than its DVD-GAN equivalent on 12 frame generations.
On 48 frames outputs, SSW-GAN outperforms a 128x128/48 DVD-GAN model in FID score and
reaches similar IS score. However, our second stage model is only trained on 128x128/12 outputs, as
it is unrolled and applied convolutionally over the first stage output to generate 48 frames. In contrast,
DVD-GAN models do not unroll well and tend to produce samples that become motionless past its
training horizon (see Fig. 3). SSW-GAN therefore matches DVD-GAN on 48-frame generations
in IS on Kinetics-600 and outperforms it in FID, while requiring significantly less computational
resources.

Impact of the temporal window size for the second stage One of the modelling choices in SSW-
GAN is the temporal window length used in the upsampling stages. We compare the 128x128/12
model used in the previous section to a 128x128/6 version of our model. The 128x128/12 model
requires approximately twice the amount of GPU memory needed by the 6 frames model, but we
expect it to perform better due to the larger input window. As can be seen in Table 1, the 12 frames

1Stage 1 is trained on 32x32/25 videos. Stage 2 is trained on randomly selected 32x32/6 windows of stage
1 to generate 128x128/12 outputs. During evaluation, the scores obtained for 128x128/12 are obtained by
upsampling 6 randomly selected frames from the stage 1. Stage 2 can be unrolled on stage 1 frames to generate
128x128/48 outputs.
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Table 1: Results on Kinetics-600 We compare different versions of our two-stage model against the reported
metrics for DVD-GAN models (Clark et al., 2019). Our model when unrolled is able to generate 48 frames
of similar quality as a 128x128 DVD-GAN model trained to generate 48 frames while having computational
requirements close to the 128x128/12 version. Furthermore, we compare two versions of our model with the
second stage trained on different window sizes. We verify that the model with the bigger window size performs
better at the cost of being more computationally expensive.

12 frames 48 frames

Model IS (↑) FID (↓) FVD (↓) IS (↑) FID (↓) FVD (↓)
DVD-GAN 12 frames 77.45 1.16 - - - -
DVD-GAN 48 frames - - - 81.41 28.44 -

Ours - Stage 2 trained on 6 frames - - - 58.21 31.59 714.74
Ours - Stage 2 trained on 12 frames 104.00 2.09 591.90 77.36 14.00 517.21

t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 40 t = 45

No MD - Stage 1

No MD - Stage 2

MD - Stage 1

MD - Stage 2

Figure 4: Matching discriminator We show here a random sample from our two-stage model on Kinetics with
(MD) and without the matching discriminator (no MD). For each sample we show the output of the first stage
and the corresponding second stage output. We observe that, while the no MD model generates plausible local
snippets at stage 2, it does not remain coherent. Our model generates a coherent sample because it is grounded
in the low resolution input.

model obtains significantly higher scores when unrolled to generate 48 frames. We conclude that
the window size defines a trade-off between computational resources, since shorter temporal outputs
require less computation, and sample quality, as using a short length reduces the temporal field of
view of stage 2 and the local independence assumption becomes less accurate.

Matching discriminator ablation We now investigate the importance of the matching discrimina-
tor in Table 2. On 6 frame generations, SSW-GAN and SSW-GAN (No MD) obtain similar scores.
We then unroll both models to generate 50 frames, and observe that SSW-GAN (No MD) generates
valid local snippets but is inconsistent through time. Fig. 4 shows an example of the unrolled no
MD generations in which this effect is clearly observable. In contrast, our model with a matching
discriminator stays consistent through time. This is reflected in the metrics as well. Both models
perform similarly at 6 frames, as the model without the matching discriminator is able to generate
valid 128x128/6 videos. However, when unrolled this model performs significantly worse than our
regular model, as the metrics are capturing the temporal inconsistencies. This justifies the use of a
matching discriminator, as it ensures that upsampling stage outputs are grounded to its inputs.

5.2 THREE-STAGE SSW-GAN

To show that our model scales with the video dimensionality, we train a three-stage model on the
BDD dataset to generate 128x128/100 videos. We train the first stage to output 25 frames at 32x32
resolution with a temporal subsampling of 8 frames. The second stage upscales windows of 12 frames
at 64x64 resolution with temporal subsampling of 4 frames (since we are doubling the framerate
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Table 2: Stage 2 128x128/6 comparison We report metrics on Kinetics and BDD for our model with/out the
matching discriminator (MD). Both models perform similarly for 6 frames, corresponding to the training video
length. However, adding the MD improves the 50-frame generations, as they remain grounded to the first stage
output allowing for consistent videos beyond the training length.

6 Frames 50 Frames

Dataset Model IS (↑) FID (↓) FVD (↓) IS (↑) FID (↓) FVD (↓)

Kinetics-600
DVD-GAN (our reimpl.) 41.2 1.60 841.5 N/A N/A N/A

SSW-GAN (No MD) 50.31 1.62 594.99 37.81 42.29 1037.79
SSW-GAN 48.44 1.06 565.95 49.44 31.87 790.97

BDD100K SSW-GAN (No MD) - 1.36 211.69 - 26.52 575.51
SSW-GAN - 1.07 144.96 - 18.73 326.78

Table 3: Computational costs: We compare the required memory and training time for a a DVD-GAN model
and its SSW-GAN equivalent. Our model takes roughly half of the training time and requires 4x less GPU
memory. Data for DVD-GAN is based in our reimplementation of the model.

Samples/GPU Memory (MB) Iteration time (s) Training time

Stage 1 32x32/25 4 27897 3.45 12 days
Stage 2 128x128/12 4 29073 3.2 11 days
DVD-GAN 128x128/50 1 32203 2.975*4 41 days

of the first stage). The third stage is trained to upscale 12 frame windows at 128x128 resolution
for a final temporal subsampling of 2 frames. A full pass for a single example in a DVD-GAN
128x128/100 model would require more than 32GB of memory, beyond the limits of most commercial
GPUs. In contrast, we are able to train our model using batch size 512 with 128 GPUs. Samples from
this model can be seen in Figure 5.

6 CONCLUSIONS

We propose SSW-GAN, a multi-stage video generator that outputs long high-resolution videos, while
being more computationally efficient than equivalent single-stage GAN approaches. High capacity
models trained with big amounts of data are key aspects for video generation. SSW-GAN is a step
towards scalable models and allows training SOTA video GANs with fewer resources.

t = 5 t = 15 t = 25 t = 35 t = 45 t = 55 t = 65 t = 75 t = 85 t = 95

Figure 5: Random 128x128/100 BDD100K samples: We show samples from our three-stage BDD100K
model. Each row shows a different sample over time. Despite the two stages of local upsampling, the frame
quality does not degrade noticeably through time.
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A ADDITIONAL IMPLEMENTATION DETAILS

We use the Adam optimizer Kingma & Ba (2014) with learning rate λG = 1e10−4 and λD = 5e10−4

for the generator and the discriminator, respectively. The discriminator is updated twice for each
generator update.

We use orthogonal initialization for all the weights in our model and use spectral normalization both
in the generator and the discriminator. We only use the first singular value to normalize the weights.
Different from DVD-GAN, we do not use weight moving averages nor orthogonal penalities.

Conditional batch normalization layers use the input noise as the condition, concatenated with the
class label when applicable. Features are normalized with a per-frame mean and standard deviation.

To unroll a generator beyond its training temporal horizon, we apply it convolutionally over longer
input sequences. We perform 200 “dummy” forward passes to recompute the per-timestep batch
normalization statistics at test time.

All convolutions in our models use 3x3 or 3x3x3 filters with padding=1 and stride=1, for 2D or 3D
convolutions respectively. All models were implemented in PyTorch.

B MODEL ARCHITECTURE DETAILS

For the rest of the section, we use B to denote the batch size, T for the number of frames or timesteps,
C for the number of channels, H for the height of the frame and W is the width of the frame.

B.1 STAGE 1 ARCHITECTURE

Our first stage model is based on a re-implementation of DVD-GAN Clark et al. (2019). In all our
experiments, the first stage produces 32x32/25 outputs.

Generator The generator is composed by a stack of units where each unit is comprised of a
ConvGRU layer and two 2D-ResNet upsampling blocks. We follow the nomenclature of Brock
et al. (2018); Clark et al. (2019) and describe our network using a base number of channels ch and
the channel multipliers associated with each unit. Our stage-1 generators is formed by 4 units with
channel multipliers [8, 8, 4, 2]. The base number of channel is 128.

The first input of this network is of size BxTx(8xch)x4x4. This input is obtained by first embedding
the class label onto a 128 dimensional space, then concatenating the embedding to a 128 dimensional
noise vector. This concatenation is mapped to a Bx(8xch)x4x4 tensor with a linear layer and a
reshape, and then the final tensor is obtained by replicating the output of the linear layer T times.

The ConvGRU layer Ballas et al. (2015) follows the ConvGRU implementation of Clark et al. (2019)
and uses a ReLU non-linearity to compute the ConvGRU update.

The 2D ResNet blocks are of the norm-act-conv-norm-act-conv style. We use conditional batch
normalization layers, ReLU activations and standard 2D convolutions. Before the first convolution
operation and after the first normalization and activation, there is an optional upsampling operation
when increasing the resolution of the tensor. We use standard nearest neighbor upsampling. Except
for the last unit, all units perform this upsampling operation. The conditional batch normalization
layers receive the embedded class label (if applicable) and the input noise as a condition and map it to
the corresponding gain and bias term of the normalization layer using a learned linear transformation.
The 2D ResNet blocks process all frames independently by reshaping their input to be (B*T)xCxHxW.

The output of the last stack goes through a final norm-relu-conv-tanh block that maps the output
tensor to RGB space with values in the [-1, 1] range.

Discriminator There are two discriminators, a 2D discriminator and a 3D discriminator. The 2D
discriminator is composed of 2D ResNet blocks. Each ResNet block is formed by a sequence of
relu-conv-relu-conv layers. There are no normalization layers in the discriminator. After the last
conv in each block there is an optional downsampling operation, which is implemented with average
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pooling layers. The 2D discriminator receives as input 8 randomly sampled frames from real or
generated samples.

The 3D discriminator is equal to the 2D discriminator except that its first two layers are 3D ResNet
blocks, implemented by replacing 2D convolutions with regular 3D convolutions. The 3D discrimina-
tor receives as input a spatially downsampled (by a factor of two) real or generated sample. The 2D
blocks process different timesteps independently.

We concatenate the output of both discriminators and use a geometric hinge loss. The loss is averaged
over samples and outputs.

We use 128 as base number of channel for both discriminators, with the following channel multipliers
for each ResNet block: [16, 16, 8, 4, 2]

B.2 UPSAMPLING STAGE ARCHITECTURE

The upsampling stage models follow the same architecture as the first stage with the following
modifications.

Generator The generator units replace the ConvGRU layers with a Separable 3D convolution. We
first convolve over the temporal dimension with a 1D temporal kernel of size 3 and then convolve
over the spatial dimension with 2D 3x3 kernel. We empirically compare generators with ConvGRU
and separable convolutions in section C.

We add residual connections at the end of each 3D and 2D ResNet block to an appropriately resized
version of xl

wi
. We use nearest neighbor spatial downsampling for this operation, and we use nearest

neighbor temporal interpolation to increase the number of frames of xl
wi

. We then map the residual
to the appropriate number of channels using a linear 1x1 convolution. We do not add xl

wi
residual

connections to feature maps with spatial resolutions (HxW) greater than the resolution of xl
wi

.

Discriminator We reuse the same 2D and 3D discriminators as for the first stage. Additionally,
we add a matching discriminator that discriminates (xl

wi
,xwi

) pairs. The matching discriminator
utilizes the same architecture as the 3D discriminator. It receives as input a concatenation of xl

wi
and

a downsampled version of xwi to match the resolution of xl
wi

. We concatenate the outputs of all
three networks and use a geometric hinge loss as for the first stage discriminator. The overall loss is
averaged over samples and output locations.

For 128x128 generations on Kinetics, the generator uses 128 as base number of filters with the fol-
lowing channel multipliers [8, 8, 4, 2, 1]. All discriminators have 96 base channels and the following
channel multipliers [1, 2, 4, 8, 16, 16]. All our models at 128x128 are two-stage models. We train
models to upsample xl

wi
of sizes 32x32/3 or 32x32/6 to 128x128/6 or 128x128/12, respectively.

Since we train our first stage for 32x32/25 outputs, our two-stage models can generate 128x128/50
outputs when unrolled.

For 128x128 generations on BDD100K, the generator uses 96 as the base number of channels with
channel multipliers [8, 4, 4, 2, 2]. All discriminators have 64 base channels and channel multipliers
[1, 2, 4, 8, 8, 16]. Our 128x128 models upsample 64x64/6 xl

wi
inputs to 128x128/12, and can generate

outputs of up to 128x128/100.
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Figure 6: Comparison of recurrent layers We compare two variants of the same generator, one with
a single ConvGRU layer per generator block and one with a separable 3D convolution per generator
block. On the left we show the evolution of the FVD score during training, and on the right we show
the Inception Score. Both scores are normalized to the [0, 1] range where 1 is the highest score
obtained by these models and 0 the lowest. Both models have similar behaviour and computational
costs, but the 3D convolution processes inputs in parallel.

C COMPARISON OF RECURRENT LAYERS

In this section we justify the change of the ConvGRU for Separable 3D convolutions in upsampling
stages. In Figure 6 we compare the evolution of two metrics (IS and FVD) during training for two
variants of the same two-stage model, one using ConvGRUs and one using separable 3D convolutions.
Both models show similar behavior during training and achieve similar final metrics. However,
ConvGRUs perform sequential operations over time whereas 3D convolutions can be parallelized.

D ADDITIONAL SAMPLES

Additional samples can be found in .mp4 format along with this appendix in the supplementary
materials file. These videos show multiple samples from our two-stage model for Kinetics and our
three-stage model for BDD. For each sample, we show the output of each stage in a row.

We have included 3 videos. One video shows samples from our 128x128/12 model unrolled to
generate 128x128/100 samples on BDD. Another video shows samples from our 128x128/12 model
unrolled to generate 128x128/50 samples on Kinetics. Finally, we include a video with samples from
the same model but without the matching discriminator (baseline no matching disc suffix filename).

We include some additional samples for our Kinetics 128x128/12 model and BDD 128x128/12 model
below.

For all evaluations, we sample from an isotropic Gaussian with unit variance for ease of comparison
and reproducibility. Samples for figures and the provided video files were produced by sampling with
standard deviation σ = 0.5. We observed that noise samples with reduced variance produce higher
quality samples but are slightly less diverse.
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t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 40 t = 45

Figure 7: Additional samples for Kinetics 128x128/12 We show additional samples from our two-
stage Kinetics 128x128/12 model unrolled to generate 128x128/50 videos. More samples can be
found in the supplementary videos.
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t = 5 t = 15 t = 25 t = 35 t = 45 t = 55 t = 65 t = 75 t = 85 t = 95

Figure 8: Additional samples for BDD 128x128/100 We show additional samples from our three-
stage BDD 128x128/12 model unrolled to generate 128x128/100 videos.
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E POWER SPECTRUM DENSITY

Some video generation models tend to produce blurry results over time. In this section we generate
Power Spectrum Density (PSD) plots, following (Ayzel et al., 2020) to assess whether our generations
become blurrier over time.

We conduct this experiment on Kinetics for videos of 50 frames at 128x128 pixels resolution. We use
our model with the first stage trained on 32x32/25 sequences and the second stage trained to generate
128x128/12 video snippets from 32x32/6 windows, and unrolled after training to produce 128x128/50
videos. We took 1800 random videos from the ground truth data (GT) and 1800 generations from
our model. We compute the PSD at frames 1, 10, 25, and 50 of each video. For each set of 600
videos, we compute the average PSD across videos, on a per frame basis. Finally, we use the three
sets of 600 videos to compute the standard deviation and mean for the average PSD of the original
data and our generations. Figure 9 shows the plots for different frame indices. We observe that
our generations have a very similar PSD to that of the ground-truth data in all video frames. This
indicates that our generations, while they might not be accurate, have very similar frequency statistics
as the ground-truth data. We do not observe any significant blurring over time, and this is reflected in
the plots, showing that even for frame 50 the high frequency part of the PSD is very similar between
the original data and our generations.

Figure 9: Power Spectrum Density (PSD) plots for different time steps We show a comparison
of the PSD between the original data and our generations at different steps in the predictions. We
observe that our generations have a similar PSD to that of the original data, even at the end of the
generation, indicating that the generations do not blur over time significantly.
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F UPSAMPLING VISUALIZATIONS

Here we show some examples of stage 1 generations on Kinetics-600 for a 32x32/25 model, as well
as the corresponding 128x128/50 generations from a stage 2 trained to upscale 32x32/6 windows to
128x128/12 and unrolled over the whole first stage generation. Examples are shown in Figure 10,
in which, for each example, we show the stage 1 generation on the top row and the corresponding
stage 2 generation in the lower row. We observe that the second stage adds details and refines the low
resolution generation, but at the same time keeps the overall structure of the low resolution generation
and is properly grounded.

t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 40 t = 45

Figure 10: Pairs of samples from stage 1 and their corresponding stage 2 output We show a few
examples from our 128x128/12 two-stage model trained on Kinetics-600 and unrolled to generate
128x128/50 videos. For each example, we show the first stage low resolution generation and the
corresponding stage 2 upsampling. Stage 2 outputs refine the details of the first stage generations but
retain the overall scene structure.

18



Under review as a conference paper at ICLR 2021

G INFLUENCE OF MOTION ON THE RESULTS

In this section we analyze whether our model has different performance for categories with different
motion characteristics.

We conduct this experiment for the our Kinetics-600 model trained to generate 32x32/25 videos in
the first stage to upscale 32x32/6 videos to 128x128/12 videos for the second stage, which we then
subsequently unroll over the full first stage generation to obtain 128x128/50 videos.

We randomly selected five categories of videos with high motion content (bungee jumping, capoeira,
cheerleading, kitesurfing and skydiving) and five categories with less dynamic videos (doing nails,
cooking egg, crying, reading book and yawning). We then generated 1000 samples from our model
for each category, and used all the available samples in the dataset to compute IS and FID scores per
category.

Table 4 shows the IS and FID scores of each class, while Figure 11 and Figure 12 show samples
from high motion and low motion categories, respectively. We do not observe a significant trend
that indicates that the model produces worse generations for high motion classes. Some low motion
categories have high FID scores similar to the highest scores for the high motion categories, while
on average the IS scores for the high motion categories are slightly better. We also do not notice a
qualitative difference in the samples. Instead, there might be other factors (such as the amount of
structure present in a scene) that have a greater impact on the quality of the generations.

Table 4: Per category scores for classes with different amounts of motion (Kinetics-600) We report per-
class IS and FID scores for 5 randomly selected categories with high motion and 5 categories with low motion.
We observe that there is a high variability in FID scores, with some classes with low motion having high scores
as well as some high motion classes. In IS scores there are few differences between the two groups, with the
high motion group having a slightly higher mean score.

50 frames

class is (↑) fid (↓) # Videos

H
ig

h
M

ot
io

n Bungee Jumping 11.66 82.21 799
Capoeira 9.48 84.57 816
Cheerleading 12.10 116.84 982
Kitesurfing 11.36 108.81 648
Skydiving 5.99 90.25 983

L
ow

M
ot

io
n Doing Nails 13.32 91.67 537

Cooking Egg 7.60 111.63 441
Crying 8.92 70.74 627
Reading Book 11.13 64.97 793
Yawning 9.71. 79.08 530
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t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 40 t = 45

Figure 11: Samples from Kinetics-600 classes with high motion content

t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 40 t = 45

Figure 12: Samples from Kinetics-600 classes with low motion content
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H JOINT TRAINING OF MULTIPLE STAGES

Our proposed method consists of multiple stages trained independently and sequentially. This allows
us to reduce the memory requirements, as we do not have to keep the intermediate activations to
backpropagate through the full model, and allows us to define stages with larger memory requirements
than feasible if the model was trained end-to-end. However, our approach does not require each stage
to be trained independently. Furthermore, with end-to-end training we could fit an equivalent full
model in a single optimization round, thus reducing the training time, and potentially finding a better
solution. Additionally, we might not need to discriminate the output of intermediate stages nor use
matching discriminators. In this section we report some initial results investigating the joint training
of the different stages.

We use a two-stage model trained on Kinetics-600. The first stage is trained to generate 32x32/6
videos, and the second stage is trained to upscale 32x32/3 snippets to 64x64/6 videos. When unrolled
over the full first stage generation, this model is capable of producing 64x64/12 videos. We only
discriminate on the output of the second stage, with a spatial and temporal discriminator. We don’t
use any matching discriminator in this experiment.

Figure 13 shows some generations from this model. We observe that the output of the first stage is no
longer a valid low resolution video. However, the second stage learns to generate valid video snippets.
In general we observe that the generations from this model do not exhibit lot of motion. This could
be due to the window size used in the experiment or to the joint training setup.

A potential avenue to improve joint training would be to use discriminators on the first stage output
and/or use a matching discriminator to discriminate pairs of first and second stage outputs.

t = 1 t = 3 t = 5 t = 7 t = 9 t = 11

Stage 1

Stage 2

Stage 1

Stage 2

Stage 1

Stage 2

Stage 1

Stage 2

Stage 1

Stage 2

Figure 13: 64x64/12 samples from the jointly trained model on Kinetics-600 We show unrolled
samples from a variant of our model with all stages trained jointly. The output of the first stage is not
a valid generation anymore, but the second stage learns to generate valid video snippets. Samples do
not exhibit lot of motion.
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I BROADER IMPACT

Here we discuss the broader ethical impacts of this work. SSW-GAN is a generative model for video.
As with other generative models, there is a chance that similar methods as the one we propose might
be used to create "deepfakes". Note however that it would require extensive follow-up work and
that it would not be a direct application of our methods. Furthermore, it is not possible to know in
advance what a generation is going to look like, and therefore our model could produce results that
could be nonsensical or in bad taste.

At the same time, generative models for video have multiple positive applications. First, their
generations can be used to train better classifiers. They can also be used to facilitate content creation
for visual artists. Furthermore, variants of our model could be used to better compress videos, which
has advantages such as reduced bandwidth requirements to transmit video data.

Overall our model would require follow-up work to enable some of the positive and negative
applications described, as in its current form it is a class-conditional generative model with its main
ability being that of generating samples similar to those used for its training.
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