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Abstract

Our commonsense knowledge about objects in-001
cludes their typical visual attributes; we know002
that bananas are typically yellow or green, and003
not purple. Text and image corpora, being004
subject to reporting bias, represent this world-005
knowledge to varying degrees of faithfulness.006
In this paper, we investigate to what degree uni-007
modal (language-only) and multimodal (image008
and language) models capture a broad range of009
visually salient attributes. To that end, we auto-010
matically extract a visually-grounded common-011
sense dataset covering 5 property types (color,012
shape, material, size, and visual co-occurrence)013
for over 5000 subjects. We validate this dataset014
by showing that our grounded color data cor-015
relates much better than ungrounded text-only016
data with crowdsourced color judgments pro-017
vided by Paik et al. (2021). We then use our018
dataset to evaluate pretrained unimodal models019
and multimodal models. Our results show that020
multimodal models better reconstruct attribute021
distributions, but are still subject to reporting022
bias. Moreover, increasing model size does not023
enhance performance, suggesting that the key024
to visual commonsense lies in the data.025

1 Introduction026

The observation that human language understand-027

ing happens in a rich multimodal environment has028

led to an increased focus on visual grounding in nat-029

ural language processing (NLP) (Bisk et al., 2020;030

Baltrusaitis et al., 2019), driving comparisons be-031

tween traditional unimodal text-only models and032

multimodal models which take both text and image033

inputs. In this work, we explore to what extent uni-034

modal and multimodal models are able to capture035

commonsense visual concepts across five types of036

relations: color, shape, material, size, and visual037

co-occurrence (see Fig. 1). We further explore how038

such an ability is influenced by the reporting bias039

(defined in Section 2.3) in training data. We mea-040

sure visual commonsense, defined as knowledge041

about visual properties which humans are implicitly 042

aware of even without explicit visual cues, through 043

frequency distributions. A visually aware language 044

model should be able to capture such properties 045

upon elicitation. The color, shape, material, and 046

co-occurrence data are mined from Visual Genome 047

(Krishna et al., 2016), and the size data are created 048

from object lists. 049

Paik et al. (2021) evaluate language models’ 050

color perception using a human-annotated color 051

dataset (CoDa), finding that reporting bias nega- 052

tively influences model performance and that mul- 053

timodal training can mitigate those effects. In this 054

work, we confirm those findings while extending 055

the evaluation to a broader range of visually salient 056

properties, resulting in a more comprehensive met- 057

ric for visual commonsense. In order to elicit visual 058

commonsense from language models, we utilize 059

soft prompt tuning (Qin and Eisner, 2021), which 060

trains optimal templates by gradient descent for 061

each model and relation type that we explore. We 062

also utilize knowledge distillation to enhance a text- 063

only model’s visual commonsense ability, where 064

the vision-language model serves as the teacher. 065

The major contributions of this work are: (1) we 066

design a comprehensive analytic dataset for prob- 067

ing English visual commonsense that is applicable 068

to any language model; (2) apply the dataset to 069

study the capacity of unimodal language models 070

and multimodal vision-language (VL) models to 071

capture empirical distributions of visually salient 072

properties; and (3) train a knowledge-distilled ver- 073

sion of a VL model that achieves improved perfor- 074

mance on our task. The dataset and code will be 075

made available at http://anonymous_url. 076

2 Related Work 077

2.1 Vision-Language Modeling 078

Recent advances in vision-language modeling have 079

achieved great success. Most of them learn joint 080
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Figure 1: Illustration of our main idea with input “penguin” as an example. We compare unimodal and multimodal
models in terms of their ability to capture commonsense knowledge. The commonsense knowledge is evaluated by
five relation types: color, shape, material, size, and visual co-occurrence. To do evaluation, we compare the model
outputs with the gold distribution, which is mined from Visual Genome.

image and text representations from cross-modal081

training of transformers with self-attention, includ-082

ing LXMERT (Tan and Bansal, 2019), ViLBERT083

(Lu et al., 2019), UNITER (Chen et al., 2020), etc.084

Oscar (Li et al., 2020) additionally uses object tags085

in images as anchor points to ease the learning of086

image-text alignments and VinVL (Zhang et al.,087

2021) presents an improved object detection model.088

CLIP (Radford et al., 2021) learns by predicting089

caption-image alignment from a large internet cor-090

pus of (image, text) pairs.091

While our work uses textual prompt tuning tech-092

niques, there have also been work on visual prompt093

engineering to enhance the performance of pre-094

trained vision-language models. Zhou et al. (2021)095

model context in prompts as continuous represen-096

tations and learn to optimize that context. Yao097

et al. (2021) develop a cross-modal prompt tuning098

framework that reformulates visual grounding as a099

fill-in-the-blank problem for both image and text.100

2.2 Visual Commonsense101

In one of the early attempts at learning visual com-102

monsense, Vedantam et al. (2015) measure the plau-103

sibility of a commonsense assertion in the form of104

(obj1, relation, obj2) based on how similar it is105

to known plausible assertions, using both visual106

scenes and accompanying text. Zellers et al. (2021)107

learn physical commonsense through interaction,108

and uses this knowledge to ground language. Frank109

et al. (2021) probe whether vision-language models110

have learned to construct cross-modal representa- 111

tions using both modalities via cross-modal input 112

ablation. 113

Note that our definition of visual commonsense 114

differs from that of Zellers et al. (2019), where the 115

model is required to perform commonsense reason- 116

ing based on an image. Our idea of visual com- 117

monsense is more similar to the idea of stereotypic 118

tacit assumptions (Prince, 1978) – the propositional 119

beliefs that humans hold about generic concepts, 120

such as “dogs have to be walked.” Weir et al. (2020) 121

probe neural language models for such human tacit 122

assumptions and demonstrate the models’ success. 123

We extend this intuition to visual concepts and ex- 124

plore how visual information may help language 125

models to capture such assumptions. 126

Zhu et al. (2020) investigate the “language prior” 127

problem in Visual Question Answering models, 128

where models tend to answer questions based on 129

word frequencies in the data and ignore the image 130

contents. In this work, we explore to what extent 131

such language prior is correct when there is no 132

image input. 133

2.3 Reporting Bias 134

Pretrained language models such as BERT (Devlin 135

et al., 2019) are trained on millions of tokens of text, 136

capturing statistical regularities present in the train- 137

ing corpora. However, their textual training data 138

can suffer from reporting bias, where the frequency 139

distribution of specific events and properties in text 140
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may not reflect the real-world distribution of such141

properties (Gordon and Van Durme, 2013). For142

example, while grass is most commonly green, this143

may not be reported as much in web corpora, and144

while motorcycle crashes may be more common in145

the real world, plane crashes may be mentioned far146

more in news text.147

Misra et al. (2016) shows that “human-centric”148

image annotations contain reporting bias as well149

and that the noise in annotations exhibits structure150

and can be modeled.151

3 Datasets152

3.1 Dataset Mining153

Our data take the form of (subject, object) tuples154

for each relation, with the goal being to predict the155

object (and its distribution) from the subject and156

relation. Relations include color, shape, material,157

size, and object co-occurrence. Table 1 summarizes158

the number of classes and subject-object pairs for159

each relation. 1160

Color, Shape, Material For color, shape, and161

material, the subject is a noun and the object is162

the color, shape, or material property of the noun,163

mined from Visual Genome (VG) (Krishna et al.,164

2016) 2 attributes. We manually create a list of165

single-word attributes for each relation, and only166

VG subjects that are matched with a specific at-167

tribute for more than a threshold number of times168

are recorded, in order to avoid noise in the dataset.169

The thresholds for color, material, and shape are 5,170

2, and 1, respectively, chosen based on the avail-171

ability of attributes of each relation in VG. VG172

attributes are filtered with the following steps: (1)173

attribute “Y colored / made / shaped” is treated as174

“Y”; (2) select only the last word for compound175

attributes (e.x. treat “forest green” as “green”); (3)176

similar attributes are merged into one of the main177

attribute classes (e.x. “maroon” and “crimson” are178

merged into “red”).179

The above procedure produces a distribution180

over the set of attributes for each subject noun.181

From that distribution, a (subject, object) data in-182

stance is generated for each subject where the ob-183

ject is the attribute that associates with it the most.184

See the first three rows of Table 1 for examples.185

1See Appendix A.1 for more information on the object
classes.

2Licensed under CC-BY 4.0.

Size Size is separated into size_smaller and 186

size_larger, where the subject is a noun and 187

the object is another noun that is smaller or larger, 188

respectively, than the subject. To form the size 189

dataset, we obtain a set of concrete nouns which 190

we classify into 5 size categories (tiny, small, 191

medium, large, and huge). We randomly pick 192

two nouns from different categories to form a (sub- 193

ject, object) pair. 194

Visual Co-occurrence The visual co-occurrence 195

dataset is generated in a way similar to that of the 196

color, shape, and material datasets. The (subject, 197

object) tuple here contains two nouns correspond- 198

ing to objects that may appear in the same context. 199

Co-occurrence distribution is extracted from Vi- 200

sual Genome where two objects that occur in the 201

same scene graph together for more than 8 times 202

are recorded. 203

3.2 Data Grouping 204

Following Paik et al. (2021), we split the color, 205

shape, and material datasets each into three groups: 206

Single, Multi, and Any. The Single group is for 207

subjects whose most common attribute covers more 208

than 80% of the probability, e.g., the color of snow 209

is almost always white. The Multi group is defined 210

as subjects not in the Single group where more than 211

90% of the probability falls in the top 4 attribute 212

classes, e.g., the color of a penguin in Fig. 1. The 213

rest of the subjects are in the Any group. Lower 214

model performance for the Single group would 215

indicate the influence of reporting bias. 216

3.3 Templates 217

In order to elicit model response and extract target 218

objects and distributions from text, we manually 219

design a set of templates for each relation. There 220

are 7 templates for color, shape, and material each, 221

8 for size, and 4 for visual co-occurrence. See 222

Table 1 for example templates. 223

3.4 Wikipedia Data 224

In order to compare the text-only and multimodal 225

datasets, we mine the color, shape, and material 226

datasets from Wikipedia data, which is typically 227

used in model pretraining. To mine these text- 228

based datasets, we combine the sets of subjects 229

in VG, take the manual list of attributes as objects 230

again, and extract (subject, object) pairs if the pair 231

matches any of the pre-defined templates. In Sec- 232

tion 3.5 we will show the advantages of the VG 233
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Relation # Classes # (subj, obj) Pairs Ex Template Ex (subj, obj) Pair
color 12 2877 [subj] can be of color [obj] (sky, blue)
shape 12 706 [subj] has shape [obj] . (egg, oval)
material 18 1423 [subj] is made of [obj] . (sofa, cloth)
size (smaller) 107 2000 [subj] is smaller than [obj] . (book, elephant)
size (larger) 107 2000 [subj] is larger than [obj] . (face, spoon)
co-occurrence 5939 2108 [subj] co-occurs with [obj] . (fence, horse)

Table 1: Summary of the dataset mined from Visual Genome and manual templates, including the number of
classes, (subject, object) pairs, and examples for each relation.

Source Group Spearman ρ # Subjs Avg # Occ Top5 # Occ Btm5 # Occ Acc@1
VG All 64.3 ± 23.9 355 1252.6 64.6 308.6

Single 62.2 ± 24.0 131 494.9 64.6 1181.6 80.2
Multi 69.3 ± 20.7 136 1156.1 2062.2 347.0
Any 58.4 ± 27.1 88 2529.6 8452.4 1213.4

Wikipedia All 33.4 ± 30.6 302 543.6 1758.0 49.8
Single 29.6 ± 29.9 110 352.2 345.8 35.0 35.5
Multi 33.9 ± 30.9 119 500.8 1242.0 27.6
Any 38.2 ± 30.4 73 902.0 3000.2 161.2

Table 2: Evaluation of the VG-mined and Wikipedia-mined color datasets by comparing with the human-annotated
dataset CoDa. Reported are the average Spearman correlation (×100), number of common subjects, average number
of occurrences of the common subjects, average number of occurrences of subjects with top- and bottom-5 Spearman
correlations, and the percentage of top-1 attributes being matched for the single group. VG has higher correlations
with human annotations.

dataset over this text-based data.234

3.5 Dataset Evaluation235

To ensure the validity of the datasets mined from236

Visual Genome, we compare our color dataset with237

the human annotated CoDa dataset (Paik et al.,238

2021), which we assume is close to real-world color239

distributions and has minimal reporting bias. We240

see a reasonably strong correlation with human an-241

notations, indicating that our dataset is a good and242

cost-effective approximation to human annotations.243

Metrics We report the Spearman’s rank-order244

correlation between the two distributions in com-245

parison, averaged across all subjects. The Spear-246

man correlation is used instead of the Pearson cor-247

relation since we care more about the rank of the248

object distributions than the exact values, which249

may be variable due to data variability. The top-1250

accuracy (Acc@1) is measured by the percentage251

of the objects with the highest probability in the252

source distribution matching those in the target dis-253

tribution. Those two metrics are also used in later254

sections when evaluating model distributions.255

Analysis Table 2 shows the detailed results of the256

evaluation of the VG and Wikipedia color datasets257

by comparing with the human-annotated dataset,258

CoDa. We can see that the VG dataset has much259

higher Spearman correlation with CoDa, as well as260

substantially higher top-1 accuracy for the Single261

group. The VG correlation is expected to be low for 262

the Any group, because objects in the Any group 263

can have many possible colors. 264

Reporting bias is present in both datasets, as the 265

average number of occurrences of Single group 266

subjects are much fewer than that of the Multi and 267

Any group subjects. Counter-intuitively, for VG, 268

the highly-correlated Single group subjects have 269

fewer average occurrences than the ones with low 270

correlations. This is contrary to our expectation 271

that more frequent objects would better reflect the 272

human-perceived distribution and can be explained 273

by Single subjects being easier to represent even 274

without a large amount of data. 275

One example where the Wikipedia distribution 276

diverges from the CoDa distribution is “penguin,” 277

whose most likely color in CoDa is black, fol- 278

lowed by white and gray; however, its top color 279

in Wikipedia is blue, because “blue penguin” is a 280

specific species with an entry in Wikipedia, even if 281

it is not as common as black and white penguins. 282

One example where the VG distributions diverge 283

from CoDa is “mouse,” because in VG, most oc- 284

currences of “mouse” are computer mice, which 285

are most commonly black, whereas when asked 286

about the word “mouse”, human annotators typi- 287

cally think about the animal, meaning that the most 288

likely colors in CoDa are white and gray.3 289

3Additional examples are provided in Appendix A.3.
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4 Probing Visual Commonsense290

4.1 Models291

Following Paik et al. (2021), we apply zero-shot292

probes to models that are trained on a language293

modeling objective, and conduct representation294

probes for those that are not. We report the predic-295

tion accuracy and the Spearman correlation of the296

output distribution with the true distribution.297

We examine 6 transformer-based models, trained298

on a variety of data. BERT (Devlin et al., 2019),299

ALBERT (Lan et al., 2020), and RoBERTa (Liu300

et al., 2019) are trained on text only using a masked301

language modeling objective (MLM). Oscar (Li302

et al., 2020) is a vision-language model based on303

the BERT architecture, trained with an combined304

MLM and contrastive loss on text-image pairs. As305

our experiments involve exclusively textual inputs,306

we later describe a knowledge-distilled version of307

Oscar (“Distilled”) which corrects for the lack of308

image input in our task. Finally, we use representa-309

tions from CLIP (ViT-B/32) (Radford et al., 2021),310

which is trained with a contrastive image-caption311

matching loss.312

We use models trained with an MLM objective313

(BERT, Distilled, etc) directly for zero-shot predic-314

tion of masked tokens4. For Oscar we add a word-315

prediction head on top of it. The results across316

templates are aggregated in two modes. In the317

“best template” mode, for each example, the high-318

est Spearman correlation among all templates is319

reported, and the top-1 result is regarded as correct320

if the true target object is the same as the top-1321

result of any of the templates. In the “average tem-322

plate” mode, the output distribution is the mean of323

the distributions across all templates.324

Since CLIP is not trained on a token-prediction325

objective, we implement logistic regression on top326

of the frozen encoder output, to predict the target327

attribute or object. The input is each of the tem-328

plates with the subject [X] filled with an input in the329

dataset. Like Paik et al. (2021), to give the model330

ample chance of success, we take the template that331

results in the best test accuracy score, report that332

accuracy and the Spearman correlation associated333

with that template.334

Vokenization Tan and Bansal (2020) introduce335

the “vokenization” method, which aligns language336

tokens to their related images, mitigating the short-337

4For the target words that contain more than one subword
tokens, we use the first token as the target.

comings of models trained on visually-grounded 338

datasets in text-only tasks. Since our task is purely 339

text-based, we also experiment with a pretrained 340

vokenization model (BERT + VLM on Wiki). 341

4.2 Elicitation Methods 342

We compare the visual commonsense abilities 343

of pretrained unimodal and multimodal models. 344

Given a list of prompts and a subject word, each 345

model outputs the distribution of the target word. 346

Soft prompt tuning In order to overcome the 347

limitation of self-designed prompts, we incorporate 348

prompt tuning techniques in Qin and Eisner (2021), 349

which learns soft prompts by gradient descent. The 350

algorithm minimizes the log loss: 351∑
(x,y)∈Er

− log
∑
t∈Tr

p(y|t, x)

for a set of example pairs Er and template set Tr. 352

Knowledge distillation Through preliminary ex- 353

periments, we notice, as expected, that pretrained 354

Oscar, even without visual input, achieved better re- 355

sults than BERT. This led us to consider knowledge 356

distillation (Hinton et al., 2015; Sanh et al., 2019). 357

We use Oscar as the teacher and BERT as the stu- 358

dent, and the weights of the student are adjusted to 359

simulate the output distribution of the teacher. The 360

training data is part of the Oscar pretraining corpus: 361

COCO (Lin et al., 2014), Flickr30k (Young et al., 362

2014), and GQA (Hudson and Manning, 2019). 363

4.3 Size Evaluation 364

We use two evaluation strategies for size, because 365

the size dataset differs from the other datasets in 366

that we use relative sizes (X is larger/smaller than 367

Y), as absolute size information is hard to obtain. 368

Rank partition First, similar to the previous pre- 369

diction task, given a template such as “[X] is larger 370

than [Y]” and an object [X], we ask the model to 371

predict the distribution of [Y], taking only the dis- 372

tribution D of nouns in the size dataset. For the 373

current object [X], we take the nouns in size cat- 374

egories that are smaller than the category of [X] 375

(Nsm), and those that are in larger categories (Nlg). 376

Let the length of Nsm be m and the length of Nlg 377

be n. Then for the “larger” templates, we compute 378

the average percentage of overlap between the top 379

n objects in D and Nlg and that between the bot- 380

tom m objects in D and and Nsm. For the “smaller” 381

templates, the “top” and “bottom” are reversed. 382
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Color Shape Material Cooccur

Tune Model Spearman ρ Acc@1 Spearman ρ Acc@1 Spearman ρ Acc@1 Spearman ρ
N BERTb 26.1 ± 31.0* 11.7 38.7 ± 15.1 6.7 33.7 ± 19.6 30.0 4.7 ± 3.5

Oscarb 26.4 ± 30.7* 24.0 45.9 ± 14.1 53.0 38.6 ± 17.5 43.3 9.8 ± 6.9
Distilled 34.8 ± 27.3 27.5 46.2 ± 14.2 37.3 36.1 ± 20.2 37.7 10.1 ± 7.5
BERTl 37.6 ± 30.3 30.3 42.7 ± 17.1 28.4 36.6 ± 19.1 35.7 5.2 ± 3.8
Oscarl 31.8 ± 28.3 17.1 40.0 ± 16.9 38.1 39.2 ± 17.1 40.5 9.7 ± 6.7

Y BERTb 48.0 ± 22.9 47.4 49.2 ± 12.7* 76.1 41.2 ± 15.3 45.2 11.3 ± 7.9
Oscarb 58.1 ± 21.1 67.9 50.4 ± 11.5* 81.3 45.3 ± 14.3 66.2 12.7 ± 9.3
Distilled 57.1 ± 21.9 64.6 50.5 ± 12.3 82.8 45.4 ± 14.8 66.2 13.0 ± 10.1
BERTl 37.6 ± 30.3 30.3 49.2 ± 12.6 78.4 43.7 ± 15.1 53.3 11.4 ± 8.0
Oscarl 57.6 ± 21.6 65.3 50.1 ± 12.2 81.3 45.2 ± 15.2 65.8 12.8 ± 9.6

Table 3: Spearman correlation and top-1 accuracy (both × 100) of zero shot probing, before and after soft prompt
tuning (“N” and “Y” for the “Tune” column). This is the “average template” case where the output distribution is
the mean of distributions across all templates. The Spearman correlation reported is the mean across all subjects ±
standard deviation, comparing the output distribution and the Visual Genome distribution. The subscripts b and l
indicate the size of the model, and Distilled is the BERT model after distilling from Oscar. Asterisk indicates where
there is no significant difference between BERTb and Oscarb (t-test p-value > 0.05).

Adjective projection The second approach fol-383

lows that of van Paridon et al. (2021), which384

projects the word to be evaluated onto an adjective385

scale. In this case, we compute the word embed-386

dings of the adjectives “small” and “large” and the387

nouns from models, so the scale is
−−→
large − −−−→

small388

and the projection is calculated by cosine similar-389

ity. For instance, for the example noun “bear”, the390

projection score is given by:391

cos_sim(
−−→
large −−−−→

small,
−−→
bear)392

With good word embeddings, larger nouns are ex-393

pected to have higher projection scores. The va-394

lidity of the adjective scales from word representa-395

tions is shown by Kim and de Marneffe (2013).396

5 Experiments397

5.1 Implementation Details398

Dataset splits Each of the color, shape, material,399

size, and co-occurrence datasets is split into 80%400

training data and 20% test data. All evaluation401

metrics are reported on the test set. The training402

set is used for the logistic regression and the soft403

prompt tuning algorithm.404

Model training For the classification head, we405

use the sklearn implementation of Logistic Regres-406

sion (random_state=0, C=0.316, max_iter=2000).407

For soft prompt tuning, we use the implementa-408

tion from Qin and Eisner (2021) 5. For knowledge409

distillation, we use the Kullback-Leibler loss to410

measure the divergence between the output dis-411

tributions of BERT and Oscar, and optimize the412

5https://github.com/hiaoxui/
soft-prompts

pretrained BERT on that loss to match the outputs 413

of Oscar. Configurable parameters are set the same 414

as for Oscar pretraining. 415

5.2 Results 416

The experimental results show that multimodal 417

models outperform text-only models in capturing 418

visual commonsense. However, all models are sub- 419

ject to the influence of reporting bias, as they cor- 420

relate better with the distributions from Wikipedia 421

than those from VG. Prompt tuning and knowl- 422

edge distillation substantially enhance model per- 423

formance, while increasing model size does not. 424

Color, Shape, Material The resulting model per- 425

formance for the “average template” mode is shown 426

in Table 3. Prompt tuning is done in this mode 427

only. Note that because the top-1 accuracy is 428

taken among all possible classes of each relation, 429

it should be interpreted together with the number 430

of classes (Table 1). 431

We can see from Table 3 that Oscar does better 432

than BERT in almost all cases. Significant differ- 433

ence between Oscar (base) and BERT (base) is seen 434

in most cases. Also, after soft prompt tuning, both 435

the Spearman correlation and the accuracy substan- 436

tially improved. Although the standard deviations 437

of the Spearman correlations are large, we find con- 438

sistent improvement per example with both prompt 439

tuning and multimodal pretraining (Appendix A.2). 440

Table 3 also shows that knowledge distillation 441

helps improve the performance of BERT in all 442

cases, and the distilled model can sometimes even 443

outperform the teacher model, Oscar. Moreover, 444

the large version of each model does not neces- 445

sarily perform better than their base counterparts, 446

6
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Figure 2: Spearman correlations (×100) for color, under
the “best template” case, for base models on CoDa, VG,
and Wikipedia. While all models correlate the best with
Wikipedia, BERT is the most biased.

suggesting that increasing the size of the model447

would not enhance the model’s ability to under-448

stand visual commonsense. Instead, training with449

visually grounded data would.450

Fig. 2 illustrates the Spearman correlations of451

different models with the color distributions from452

CoDa, VG and Wikipedia, under the “best tem-453

plate” mode.6 We assume that CoDa contains no454

reporting bias, in which case we can interpret Ta-455

ble 2 as showing that VG contains a relatively small456

amount of it, and Wikipedia contains a relatively457

large amount. All models correlate moderately458

with all three datasets, with the highest correlations459

to Wikipedia, indicating text-based reporting bias460

in all model types. BERT has the largest correlation461

gap between Wikipedia and CoDa.462

Visual Co-occurrence Table 3 also contains the463

results on visual co-occurrence before and after464

prompt tuning. Only the Spearman correlations are465

reported, because the top-1 accuracy is meaningless466

due to the large number of possible co-occurring467

objects with any noun.468

Before prompt tuning, BERT has small Spear-469

man correlations, suggesting that it may contain470

little knowledge about the visual co-occurrence471

relationship. Oscar demonstrates more such knowl-472

edge under the zero-shot setting. After prompt473

tuning, all model performances improve.474

Size Table 4 shows results of the rank partition475

method (Section 4.3), before and after prompt tun-476

ing. Surprisingly, prompt tuning does not help477

in this case. Moreover, the performance for the478

6Appendix A.2 contains further details.

Tune Model Larger Smaller
N BERTb 80.0 67.1

Oscarb 79.5 67.7
Distilled 84.6 60.7
BERTl 80.9 66.1
Oscarl 79.4 70.7

Y BERTb 69.9 55.7
Oscarb 70.6 57.3
Distilled 70.6 57.3
BERTl 70.0 55.7
Oscarl 70.6 57.3

Table 4: Percent correct for size relation, for “larger”
and “smaller” templates, before and after soft prompt
tuning. Interestingly, tuning does not help with size.

tiny small medium large huge
group

0.05

0.00

0.05

0.10

0.15

co
s_

sim

model
bert
oscar
clip

Figure 3: The size projection scores, where the x-axis
indicates the object groups. Outliers are omitted. All
three models perform reasonably well, as larger objects
have higher cosine similarities in general.

“larger” templates is higher than that of the “smaller” 479

templates, suggesting that the models contain in- 480

herent preference towards the “larger” templates. 481

Fig. 3 shows the results of the adjective projec- 482

tion method.7 For BERT and Oscar, we use the 483

average embedding of the subword tokens of the 484

nouns projected onto that of the adjectives “large” 485

and “small”. For CLIP, we take the textual encoder 486

outputs as the embeddings, resulting in a different 487

score range from that of BERT and Oscar. The 488

results show the following trend: larger objects are 489

projected onto the “large” end of the spectrum, al- 490

though the trend is sometimes broken towards the 491

“huge” end. This may be due to the “huge” group 492

including nouns such as “pool” and “house” which 493

can be modified by a relative size indicator “small”. 494

5.3 Results with Classification Head 495

Table 5 shows the results of BERT, CLIP, and Os- 496

car when topped with a classification head. We 497

observe that Oscar and CLIP achieve similar per- 498

7Appendix A.2 contains per-object plot for BERT vs Oscar.
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Color Shape Material Co-occur

Model Spearman ρ Acc@1 Spearman ρ Acc@1 Spearman ρ Acc@1 Spearman ρ
BERTb 48.0 ± 21.6 51.4 53.2 ± 13.4 78.4 41.3 ± 15.6 51.1 30.2 ± 11.7
Oscarb 52.5 ± 20.8 63.1 54.4 ± 14.8 80.6 43.2 ± 14.4 63.0 31.2 ± 12.1
CLIP 51.9 ± 20.8 63.8 54.5 ± 13.9 79.9 42.9 ± 15.0 63.0 31.3 ± 11.6

Table 5: Spearman correlation and top-1 accuracy (both × 100) with a logistic regression head on model encoder
outputs. Oscar and CLIP have comparable performance, both slightly better than BERT.

Color Shape Material

Group Model Spearman ρ Acc@1 Spearman ρ Acc@1 Spearman ρ Acc@1
Single BERTb 36.8 ± 19.0 54.8 48.3 ± 12.3 83.0 35.9 ± 14.3 51.6

Oscarb 39.9 ± 15.3 60.3 49.3 ± 11.6 87.0 38.5 ± 12.8 65.1
CLIP 41.0 ± 15.2 66.3 49.2 ± 14.5 90.0 38.1 ± 12.8 64.1

Multi BERTb 49.7 ± 21.2 42.3 65.9 ± 16.9 59.5 53.8 ± 16.2 51.3
Oscarb 51.2 ± 19.9 50.6 65.2 ± 17.4 64.9 56.2 ± 13.0 53.9
CLIP 50.5 ± 21.1 55.4 64.6 ± 18.9 67.6 56.2 ± 14.3 59.2

Any BERTb 56.5 ± 19.5 46.1 100.0 ± 0 – 58.7 ± 15.2 35.7
Oscarb 62.5 ± 18.9 58.4 100.0 ± 0 – 60.4 ± 17.1 35.7
CLIP 60.3 ± 18.2 55.8 100.0 ± 0 – 63.5 ± 20.5 21.4

Table 6: Per-group Spearman correlation and top-1 accuracy (both × 100) with a logistic regression head on model
encoder outputs. Note that the Any group for shape only has one example, so the accuracy is less meaningful and is
omitted. All models have higher correlations in the Multi and Any groups than the Single group, which is a sign of
reporting bias.

formance and are both better than BERT. Note that,499

while Visual Genome is part of Oscar’s pretrain-500

ing corpus and one might suspect that that gives501

it an advantage, CLIP is trained on a large corpus502

from web search that is unrelated to Visual Genome.503

Therefore, we can conclude that multimodal mod-504

els pretrained on both images and text outperform505

text-only models.506

Table 6 breaks down the results in Table 5 into507

three subject groups. Oscar and CLIP outperform508

BERT in almost all cases. The top-1 accuracy is509

higher for the Single group than for the Multi and510

Any groups, perhaps because the Single group sub-511

jects have only one most likely target attribute,512

which may be easier to predict. Note that the513

Spearman correlations for all three models become514

higher from group Single to Multi to Any. Paik515

et al. (2021) argue that higher correlation for the516

Any and Multi groups is a sign of model reporting517

bias, as objects in those two groups are more of-518

ten reported. Thus, the results here indicate that519

reporting bias is still present in multimodal models.520

5.4 Analysis and Limitations521

In Table 3, the accuracy of BERT for shape is par-522

ticularly low (only 6.7%), despite that shape has523

only 12 classes. We hypothesize that this is due524

to reporting bias on shape in the text corpora that525

BERT is trained on. This hypothesis is supported526

by mining sentences from Wikipedia that contain527

(noun, attribute) pairs, where we see that the rela- 528

tion shape has fewer number of occurrences than 529

material and color (see Appendix A.3). 530

Finally, although multimodal models show im- 531

provement on the task, the improvement is some- 532

times not significant and the resulting correlations 533

are still weak. Further work is needed to enhance 534

the visual commonsense abilities of the models and 535

mitigate reporting bias, and our datasets can serve 536

as an evaluation method. 537

6 Conclusion 538

In this paper, we probe knowledge about visu- 539

ally salient properties from pretrained neural net- 540

works. We automatically extract dataset of five 541

visual relations–color, shape, material, size, and 542

co-occurrence, and show that it has much higher 543

correlation with human perception for color than 544

data mined from text copora. Then, we apply 545

various types of probing techniques and discover 546

that visually-supervised models can better capture 547

such visual properties than pure language models. 548

Knowledge distillation can sometimes further en- 549

hance model performance. Despite their higher 550

performance, visually-supervised models are still 551

subject to the influence of reporting bias, as shown 552

by the per-group analysis, where both types of mod- 553

els perform better for the Multi group than the Sin- 554

gle group. 555
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A Appendix739

A.1 List of Objects740

Table 7 shows the list of all possible attributes for741

relations color, shape, and material. Table 8 shows742

the list of objects in the five categories of relation743

size. Visual co-ocurrence has a large number of744

objects that are not listed here for space reasons.745

Relation Classes
Color black, blue (aqua, azure, cyan, indigo, navy),

brown (khaki, tan), gray (grey),
green (turquoise), orange (amber),
pink (magenta), purple (lavender, violet),
red (burgundy, crimson, maroon, scarlet),
silver, white (beige),
yellow (blond, gold, golden)

Shape cross, heart, octagon, oval,
polygon (heptagon, hexagon, pentagon),
rectangle, rhombus (diamond), round (circle),
semicircle, square, star, triangle

Material bronze (copper), ceramic, cloth, concrete,
cotton, denim, glass, gold, iron, jade,
leather, metal, paper, plastic, rubber,
stone (cobblestone, slate), tin (pewter),
wood (wooden)

Table 7: List of all objects for relation color, shape, and
material. Inside the parentheses are the attributes that
are grouped into the object class.

Size Objects
Tiny ant, leaf, earring, candle, lip, ear, eye,

nose, pebble, shrimp, pendant, spoon, dirt,
pill, bee

Small bird, tomato, pizza, purse, bowl, cup,
mug, tape, plate, potato, bottle, faucet,
pot, knob, dish, book, laptop, menu,
flower, pillow, clock, teapot, lobster, duck,
balloon, helmet, hand, face, lemon, microphone,
foot, towel, shoe

Medium human, door, dog, cat, window, lamp,
chair, tire, tv, table, desk, sink, guitar,
bicycle, umbrella, printer, scooter, pumpkin,
monitor, bag, coat, vase, deer, horse, kite

Large elephant, car, tree, suv, pillar, stairway,
bed, minivan, fireplace, bus, boat, cheetah,
wall, balcony, bear, lion

Huge building, airplane, plane, clocktower, tower, earth,
pool, mountain, sky, road, house, hotel,
tank, town, city, dinasour, whale, school

Table 8: List of objects in five size categories.

A.2 Additional Probing746

Best template mode Table 9 contains zero-shot747

results under the “best template” mode, for BERT748

(base), Oscar (base), BERT distilled from Oscar,749

RoBERTa (base), ALBERT (base), and Vokeniza-750

tion. These results demonstrate similar trends as751

the ones in the “average template” mode.752
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Figure 4: Spearman correlation per object class for
BERT and CLIP with the logistic regression head, for
color, shape, and material. The error margins are the
standard deviations.

Per-object analysis Fig. 4 illustrates the fine- 753

grained Spearman correlation ± standard deviation 754

per object group for BERT and CLIP. 755
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Figure 5: The size projection scores from BERT and Os-
car, where each point is one object. Cosine similarities
are correlated between Oscar and BERT.

Size per-object Fig. 5 shows how the per-object 756

projection scores on the size spectrum from BERT 757

and Oscar are correlated. 758

Per-Subject Comparison Fig. 6 and Fig. 7 show 759

how the Spearman correlations of 10 individual 760

subjects improve after soft prompt tuning and after 761

multimodal pretraining. Consistent improvement 762
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Color Shape Material Cooccur

Model Spearman ρ Acc@1 Spearman ρ Acc@1 Spearman ρ Acc@1 Spearman ρ
BERTb 47.5 ± 21.6 41.8 48.2 ± 12.0 64.3 41.9 ± 15.4 55.3 6.1 ± 4.0
Oscarb 50.0 ± 19.8 59.8 52.7 ± 10.0 89.3 46.5 ± 13.7 74.6 10.1 ± 7.2
Distilled 53.7 ± 21.3 57.7 51.4 ± 11.1 74.3 46.0 ± 13.6 74.6 10.4 ± 7.8
RoBERTab 44.8 ± 19.8 41.6 45.4 ± 12.4 69.3 33.0 ± 15.5 39.1 1.1 ± 1.4
ALBERTb 20.2 ± 24.8 13.4 29.8 ± 15.7 13.6 25.0 ± 17.9 27.8 6.6 ± 5.1
Vokenization 47.6 ± 20.9 51.6 49.8 ± 13.1 72.9 39.4 ± 16.0 52.5 6.0 ± 3.7

Table 9: Spearman correlation and top-1 accuracy (both × 100) of zero shot probing. This is the “best template”
case discussed in Section 4.1.

can be seen in color, material, and cooccurrence.763

Although we report average Spearman correlations764

in Table 3 and there are large standard deviations,765

here we show that when improvement is observed766

collectively, it is also consistent across subjects.767

With shape, the improvement is less obvious (45.9768

to 50.4 for prompt tuning and 49.2 to 50.4 for mul-769

timodal pretraining).770

A.3 Error Analysis771

Data The three subjects with the highest and low-772

est Spearman correlation are shown in Fig. 8 and773

Fig. 9.774

Wikipedia Table 10 shows the number of (noun,775

attribute) pairs of the three relation types in776

Wikipedia. Shape has fewer occurrences than ma-777

terial and color.778

Color Shape Material
Total 331480 195921 307879
Avg 12 27623.3 16326.8 24634.7

Table 10: First row is the total number of occurrences
of (noun, attribute) pairs for relations shape, material,
and color in Wikipedia. Second row is the average num-
ber of occurrences across the top 12 attributes for each
relation. Shape has the fewest number of occurrences.

Model Table 11 shows the errors made by BERT779

and Oscar in the “average template” mode before780

prompt tuning. Overall, subjects with low correla-781

tion are those that are less often reported in Visual782

Genome as well as in textual data.783

A.4 Resources784

BERT, RoBERTa, ALBERT We use the Hug-785

gingface implementations of BERT, RoBERTa, and786

ALBERT.787

Oscar See the GitHub repository for the code788

and pretrained Oscar: https://github.com/789

microsoft/Oscar.790

CLIP We use the CLIP model released by 791

OpenAI: https://github.com/openai/ 792

CLIP. 793

Vokenization See the GitHub repository for 794

the pretrained model: https://github.com/ 795

airsplay/vokenization. 796
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Figure 6: Spearman correlation of 10 subjects for each relation type before and after soft prompt tuning, with Oscar
(base). Almost all individual subject has increased correlation after prompt tuning, except in relation shape.
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Figure 7: Spearman correlation of 10 subjects for each relation type with BERT (base) and Oscar (base), after soft
prompt tuning. Almost all individual subject has higher correlation with Oscar than with BERT, except in relation
shape.

High Corr Subjs Low Corr Subjs

Relation BERTb Oscarb BERTb Oscarb
Color lace, jacket, design balloon, jacket, apple flush, water faucet, muffler hinge, leg, slack
Shape mirror, vase, container chair, pizza, vase connector, log, knot banana, toast, phone
Material wall, tray, board fence, wall, shelf sheep, fabric, patch elephant, rug, patch

Table 11: Three subjects each with high and low correlations for relations color, shape, and material.
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Figure 8: VG vs. CoDa distribution of 3 subjects with
the lowest and highest correlation, ordered by probabil-
ity of colors in CoDa.
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Figure 9: Wikipedia vs. CoDa distribution of 3 subjects
with the lowest and highest correlation, ordered by prob-
ability of colors in CoDa.
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