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Abstract

Geocoding, the task of converting unstructured001
text to structured spatial data, has recently seen002
progress thanks to a variety of new datasets,003
evaluation metrics, and machine-learning al-004
gorithms. We provide a survey to review, or-005
ganize and analyze recent work on geocod-006
ing (also known as toponym resolution) where007
the text is matched to geospatial coordinates008
and/or ontologies. We summarize the findings009
of this research and suggest some promising010
directions for future work.011

1 Introduction012

Geocoding, also called toponym resolution or to-013

ponym disambiguation, is the subtask of geopars-014

ing that disambiguates place names in text. The015

goal of geocoding is, given a textual mention of a016

location, to choose the corresponding geospatial co-017

ordinates, geospatial polygon, or entry in a geospa-018

tial database. Geocoders must handle place names019

(known as toponyms) that refer to more than one ge-020

ographical location (e.g., Paris can refer to a town021

in the state of Texas in the United States, or the cap-022

ital city of France), and geographical locations that023

may be referred to by more than one name (e.g.,024

Leeuwarden and Ljouwert are two names for the025

same city in the Netherlands), as shown in fig. 1.026

Geocoding plays a critical role in tasks such as027

tracking the evolution and emergence of infectious028

diseases (Hay et al., 2013), analyzing and searching029

documents by geography (Bhargava et al., 2017),030

geospatial analysis of historical events (Tateosian031

et al., 2017), and disaster response mechanisms032

(Ashktorab et al., 2014; de Bruijn et al., 2018).033

The field of geocoding, previously dominated034

by geographical information systems communities,035

has seen a recent surge in interest from the natural036

language processing community due to the inter-037

esting linguistic challenges this task presents. The038

four most recent geocoding datasets (see table 1)039

were all published at venues in the ACL Anthology.040

Figure 1: An illustrative example of geocoding chal-
lenges. One toponym (Paris) can refer to more than
one geographical location (a town in the state of Texas
in the United States or the capital city of France in Eu-
rope), and a geographical location may be referred to
by more than one toponym (Leeuwarden and Ljouwert
are two names for the same city in the Netherlands).

And the recent ACL-SIGLEX sponsored SemEval 041

2019 Task 12: Toponym Resolution in Scientific 042

Papers (Weissenbacher et al., 2019) resulted in sev- 043

eral new natural language processing approaches 044

to geocoding. The field has thus changed substan- 045

tially since the most recent survey of geocoding 046

(Gritta et al., 2017), including a doubling of the 047

number of geocoding datasets, and the advent of 048

modern neural network approaches to geocoding. 049

The field would thus benefit from a survey 050

and critical evaluation of the currently available 051

datasets, evaluation metrics, and geocoding algo- 052

rithms. Our contributions are: 053

• the first survey on geocoding to include recent 054

deep learning approaches 055

• coverage of new geocoding datasets (which 056

increased by 100% since 2017) and geocoding 057

systems (which increased by 50% since 2017) 058

• discussion of new directions, such as polygon- 059

based prediction 060

In the remainder of this article, we first highlight 061

some previous geocoding surveys (section 2) and 062

explain the scope of the current survey (section 3). 063

We then categorize the features of recent geocod- 064
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ing datasets (section 4), compare different choices065

for geocoding evaluation metrics (section 5), and066

break down the different types of features and ar-067

chitectures used by geocoding systems (section 6).068

We conclude with a discussion of where the field069

should head next (section 7).070

2 Background071

To the best of our knowledge, the first formal sur-072

vey of geocoding is Leidner (2007). This Ph.D. the-073

sis distinguished the tasks of finding place names074

(known as geotagging or toponym recognition)075

from linking place names to databases (known as076

geocoding or toponym resolution). They found that077

most geocoding methods were based on combining078

natural language processing techniques, such as lex-079

ical string matching or word sense matching, with080

geographic heuristics, such as spatial-distance min-081

imum and population maximum. Most geocoders082

studied in this thesis were rule-based.083

Monteiro et al. (2016) surveyed work on predict-084

ing document-level geographic scope, which of-085

ten includes mention-level geocoding as one of its086

steps. Most of this survey focused on the document-087

level task, but the geocoding section found tech-088

niques similar to those found by Leidner (2007).089

Gritta et al. (2017) reviewed both geotagging090

and geocoding, and proposed a new dataset, Wik-091

ToR. The survey portion of this article compared092

datasets for geoparsing, explored heuristics of rule-093

based and feature-based machine learning-based094

geocoders, summarized evaluation metrics, and095

classified common errors from several geocoders096

(misspellings, case sensitivity, processing fictional097

and historical text presents, etc.). Gritta et al.098

(2017) concluded that future geoparsers would099

need to utilize semantics and context, not just syn-100

tax and word forms as the geocoders of the time.101

Geocoding research since these previous surveys102

has changed in several important ways, as will be103

described in the remainder of this article. Most104

notably, new datasets and evaluation metrics are105

enabling new polygon-based views of the problem,106

and deep learning methods are offering new algo-107

rithms and new approaches for geocoding.108

3 Scope109

We focus on the geocoding problem, where men-110

tions of place names are resolved to database en-111

tries or polygons. We thus searched the Google112

Scholar and Semantic Scholar search engines113

for papers matching any of the keyword queries: 114

geocoding, geoparsing, geolocation, toponym res- 115

olution, toponym disambiguation, or spatial infor- 116

mation extraxtion. From the results, we excluded 117

articles that described tasks other than mention- 118

level geocoding, for example: 119

• matching a full document or full microblog 120

post to a single location (Luo et al., 2020; 121

Hoang and Mothe, 2018; Kumar and Singh, 122

2019; Lee et al., 2015) 123

• geographic document retrieval and classifica- 124

tion (Gey et al., 2005; Adams and McKenzie, 125

2018) 126

• matching typonyms to each other within a 127

geographical database (Santos et al., 2018) 128

We also excluded papers published before 2010 129

(e.g., Smith and Crane, 2001), as they have been 130

covered thoroughly by prior surveys. 131

In total, we reviewed more than 60 papers and 132

included more than 30 of them in this survey. 133

4 Geocoding Datasets 134

Many geocoding corpora have been proposed, 135

drawn from different domains, linking to differ- 136

ent geographic databases, with different forms of 137

geocoding labels, and with varying sizes in terms 138

of both articles/messages and toponyms. Table 1 139

summarizes these datasets, and the following sec- 140

tions walk through some of the dimensions over 141

which the datasets vary. 142

4.1 Domains 143

The news domain is the most common target for 144

geocoding corpora, covering sources like broad- 145

cast conversation, broadcast news, and news mag- 146

azines. Examples include the ACE 2005 English 147

SpatialML Annotations (ACS, Mani et al., 2010)1, 148

the Local Global Lexicon (LGL, Lieberman et al., 149

2010), CLUST (Lieberman and Samet, 2011), TR- 150

NEWS (Kamalloo and Rafiei, 2018), GeoVirus 151

(Gritta et al., 2018), and GeoWebNews (Gritta et al., 152

2019). Though all these datasets include news text, 153

they vary in what toponyms are included. For ex- 154

ample, LGL is based on local and small U.S. news 155

sources with most toponyms smaller than a U.S. 156

state, while GeoVirus focuses on news about global 157

disease outbreaks and epidemics with larger, often 158

country-level, toponyms. 159

1https://catalog.ldc.upenn.edu/
LDC2008T03
https://catalog.ldc.upenn.edu/LDC2011T02
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Corpus Domain Geographic
Database Label Type Articles /

Messages Toponyms

ACS, Mani et al. (2010) News GeoNames Point 428 4783
LGL, Lieberman et al. (2010) News GeoNames Point & GeoNamesID 588 4783
CLUST, Lieberman and Samet (2011) News GeoNames Point & GeoNamesID 1082 11564
Zhang and Gelernter (2014) Twitter GeoNames Point & GeoNamesID 956 1393
WOTR, DeLozier et al. (2016) Historical OpenStreetMap Point & Polygon 9653 10380
WikTOR, Gritta et al. (2017) Wikipedia GeoNames Point 5000 25000
TR-NEWS, Kamalloo and Rafiei (2018) News GeoNames Point & GeoNamesID 118 1274
GeoCorpora, Wallgrün et al. (2018) Twitter GeoNames Point & GeoNamesID 211 2966
GeoVirus, Gritta et al. (2018) News GeoNames Point 229 2167
GeoWebNews, Gritta et al. (2019) News GeoNames Point & GeoNamesID 200 5121
SemEval2019, Weissenbacher et al. (2019) Scientific GeoNames Point & GeoNamesID 150 8360
GeoCoDe, Laparra and Bethard (2020) Wikipedia OpenStreetMap Polygon 360187 360187

Table 1: Summary of geocoding datasets covered by this survey, sorted by year of creation.

Web text is also a common target for geocoding160

corpora. Wikipedia Toponym Retrieval (WikToR;161

Gritta et al., 2017) and GeoCoDe (Laparra and162

Bethard, 2020) are both based on Wikipedia pages.163

ACS, mentioned above, also includes newsgroup164

and weblog data. And social media, specifically165

Twitter, is the target for the Zhang and Gelernter166

(2014) dataset and GeoCorpora (Wallgrün et al.,167

2018). These corpora vary as widely as the inter-168

net text upon which they are based. For example,169

GeoCoDe and WikToR include the first paragraphs170

of Wikipedia articles, while Zhang and Gelernter171

(2014) and GeoCorpora contain Twitter messages172

with place names that were highly ambiguous and173

mostly unambiguous, respectively.174

Other geocoding domains are less common, but175

have included areas such as historical documents176

and scientific journal articles. The Official Records177

of the War of the Rebellion (WOTR; DeLozier178

et al., 2016) corpus annotates historical toponyms179

of the U.S. Civil War. The SemEval-2019 Task 12180

dataset (Weissenbacher et al., 2019) is based on181

scientific journal papers from PubMed Central2.182

4.2 Geographic Databases183

All geocoding corpora rely on some database of184

geographic knowledge, sometimes also called a185

gazetteer or ontology. Such a database includes186

canonical names for places along with their ge-187

ographic attributes such as latitude/longitude or188

geospatial polygon, and may include other infor-189

mation, such as population or type of place.190

Most geocoding corpora have used GeoNames3191

as their geographic database, including ACS, LGL,192

2https://www.ncbi.nlm.nih.gov/pmc/
tools/openftlist/

3https://www.geonames.org/

CLUST, the Zhang and Gelernter (2014) corpus, 193

WikToR, TR-NEWS, GeoCorpora, GeoVirus, Ge- 194

oWebNews, and the SemEval-2019 Task 12 corpus. 195

GeoNames is a crowdsourced database of geospa- 196

tial locations, with almost 7 million entries and a 197

variety of information such as feature type (country, 198

city, river, mountain, etc.), population, elevation, 199

and positions within a political geographic hierar- 200

chy. The freely available version of GeoNames 201

contains only a (latitude, longitude) point for each 202

location, with the polygons only available with a 203

premium data subscription, so most corpora based 204

on GeoNames do not use geospatial polygons. 205

Geocoding corpora where recognizing geospa- 206

tial polygons is important have typically turned 207

to OpenStreetMap4. OpenStreetMap is another 208

crowdsourced database of geospatial locations, 209

which contains both (latitude, longitude) points 210

and geospatial polygons for its locations. WOTR 211

and GeoCoDe are based on OpenStreetMap. 212

4.3 Geospatial Label Types 213

Three different types of geospatial labels have been 214

considered in geocoding corpora: database entries, 215

(latitude, longitude) points, and polygons. All cor- 216

pora except WTOR and GeoCoDe assign to each 217

place name the (latitude, longitude) point that rep- 218

resents its geospatial center on the globe. Many 219

of the GeoNames-based corpora (LGL, CLUST, 220

TR-NEWS, GeoCorpora, GeoWebNews, and the 221

SemEval-2019 Task 12 corpus) also assign to each 222

place name its GeoNames database ID. The WTOR 223

corpus assigns to each place name a point or a poly- 224

gon, and GeoCoDe assigns to each place name only 225

a polygon. Figure 2 shows an example of a polygon 226

annotation from GeoCoDe. 227

4https://www.openstreetmap.org/
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Figure 2: The red-shaded area is the polygon label for
Biancavilla, which is defined by the set of its boundary
coordinates retrieved from OpenStreetMap.

4.4 Analysis: Geocoding Datasets228

The most compelling improvements in geocoding229

datasets have been in the variety of domains, mov-230

ing from exclusively news to include historical231

documents, scientific documents, Wikipedia, and232

social media. Less change has been seen in geo-233

graphic databases, where GeoNames is still domi-234

nant over OpenStreetMap, and in geospatial label235

types, where points are still dominant over poly-236

gons. These latter two issues are intertwined: Geo-237

Names polygons are only available for a fee, while238

OpenStreetMap polygons are freely available.239

5 Geocoding Evaluation Metrics240

Geocoding systems are evaluated on geocoding241

corpora using metrics that depend on the corpus’s242

geospatial label type.243

5.1 Database entry correctness metrics244

When the target label type is a geospatial database245

entry ID, common evaluation metrics for multi-246

class classification tasks are applied. These metrics247

can also be used for corpora with (latitude, longi-248

tude) point labels by breaking the globe down into249

a discrete grid of geospatial tiles, and treating each250

geospatial tile like a database entry.251

Accuracy is the number of place names where252

the system has predicted the correct database entry,253

divided by the number of place names. Accuracy is254

sometimes also called Precision@1 or P@1 when255

there is only one correct answer (as in the case for256

current geocoding datasets) and when the ranking-257

based system is turned into a classifier by taking258

the top-ranked result as its prediction (the current 259

standard for geocoding evaluation). 260

Accuracy =

∣∣∣Û ∣∣∣
|U |

261

where U is the set of human-annotated place names, 262

Û is the set of place names where the system’s 263

single prediction or top-1 ranked result is correct. 264

5.2 Point distance metrics 265

When the target label type is a (latitude, longi- 266

tude) point, common evaluation metrics attempt to 267

measure the distance between the system-predicted 268

point and the human-annotated point. 269

Mean error distance calculates the mean over 270

all predictions of the distance between each system- 271

predicted and human-annotated point: 272

MeanErrorDist =

∑
u∈U

dis(ls(u), lh(u))

|U |
273

where U is the set of all human-annotated place 274

names, ls(u) is the system-predicted (latitude, lon- 275

gitude) point for place name u, lh(u) is the human- 276

annotated (latitude, longitude) point for place name 277

u, and dis is the distance between the two points 278

on the surface of the globe. 279

Median Error Distance is defined in a similar 280

way to mean error distance, but takes the median 281

of the error distances rather than the mean. 282

Accuracy@k km/miles measures the fraction of 283

system-predicted (latitude, longitude) points that 284

were less than k km/miles away from the human- 285

annotated (latitude, longitude) points. Formally: 286

Acc@k =
|{u|u ∈ U ∧ dis(ls(u), lh(u)) <= k}|

|U |
287

where U , ls, lh, and dis are defined as above, and 288

k is a hyper-parameter. A common choice for k is 289

161 (Cheng et al., 2010). 290

Area Under the Curve (AUC) calculates the 291

area under the curve of the distribution of geocod- 292

ing error distances. A geocoding system is better if 293

the area under the curve is smaller. Formally: 294

AUC = ln
ActualErrorDistance

MaxPossibleErrors
295

where ActualErrorDistance is the area under 296

the curve, and MaxPossibleErrors is the far- 297

thest distance between two places on earth. The 298

value of AUC is between 0 and 1. 299

4



5.3 Polygon-based metrics300

When the target label type is a polygon, eval-301

uation metrics attempt to compare the overlap302

between the system-predicted polygon and the303

human-annotated polygon.304

Polygon-based precision and recall were pro-305

posed by Laparra and Bethard (2020) based on306

the intersection of system-predicted and human-307

annotated geometries. Formally:308

Precision =
1

|S|
∑
i∈|S|

area(Si ∩Hi)

area(Si)
309

Recall =
1

|H|
∑
i∈|H|

area(Si ∩Hi)

area(Hi)
310

where the S is the system-predicted set of polygons311

and H is the human-annotated set of polygons.312

5.4 Analysis: Geocoding Evaluation Metrics313

In point-based metrics, median error distance is314

generally preferred to mean error distance, as the315

latter is sensitive to outliers. For example, Gritta316

et al. (2017) found that the bulk of errors are trig-317

gered by roughly 20% of the places and the errors318

from the remaining places are relatively low. AUC319

is generally preferred to Accuracy@k km/miles be-320

cause in AUC, the difference between two small321

errors (such as 10 and 20 km) is more significant322

than the same difference between two large errors323

(such as 110 and 120 km) (Jurgens et al., 2015).324

Polygon-based metrics have so far only been ap-325

plied to datasets with polygon labels, but future326

work should consider applying them to datasets327

with database entry labels. This could give credit328

when two database entries are equally applicable329

(e.g., a mention of Dallas that is ambiguous be-330

tween city and county) and the polygons overlap331

(e.g., Dallas city, GeoNames ID 4684888, makes332

up most of Dallas county, GeoNames ID 4684904).333

6 Geocoding Systems334

Table 2 summarizes the approaches of geocoders335

over the last decade. These models have differ-336

ent approaches to the prediction problem, ranging337

from ranking to classification to regression. They338

implement their predictive models with technology339

ranging from hand-constructed rules and heuristics,340

to feature-based machine-learning models, to deep341

learning (i.e., neural network) models that learn342

their own features.343

6.1 Prediction Types 344

Ranking is the most common approach to 345

making geospatial predictions (Edinburgh Parser, 346

Grover et al., 2010; Tobin et al., 2010; Mar- 347

tins et al., 2010; Lieberman et al., 2010; Lieber- 348

man and Samet, 2011; MG, Freire et al., 2011; 349

CLAVIN, Berico Technologies, 2012; Lieberman 350

and Samet, 2012; WISTR, Speriosu and Baldridge, 351

2013; GeoTxt, Karimzadeh et al., 2013; Zhang and 352

Gelernter, 2014; CBH, SHS, Kamalloo and Rafiei, 353

2018; DM NLP, Wang et al., 2019). For exam- 354

ple, most rule-based systems index their geospatial 355

database with a search system such as Lucene5, 356

and query that index to produce a ranked list of 357

candidate database entries. This ranked list may 358

be further re-ranked based on other features such 359

as population or proximity. The type of scores 360

using in re-ranking include binary classification 361

score (MG, Freire et al., 2011; Lieberman and 362

Samet, 2012; WISTR, Speriosu and Baldridge, 363

2013; Zhang and Gelernter, 2014; CBH, SHS, Ka- 364

malloo and Rafiei, 2018; DM NLP, Wang et al., 365

2019), regression distance (Martins et al., 2010) 366

and heuristics based on information in the geospa- 367

tial database (Edinburgh Parser, Grover et al., 2010; 368

Tobin et al., 2010; Lieberman et al., 2010; Lieber- 369

man and Samet, 2011; CLAVIN, Berico Technolo- 370

gies, 2012; GeoTxt, Karimzadeh et al., 2013). 371

Classification is commonly used in making 372

geospatial predictions when the Earth’s surface has 373

been discretized into tiny areas (Topocluster, De- 374

Lozier et al., 2015; CamCoder, Gritta et al., 2018; 375

Cardoso et al., 2019; MLG, Kulkarni et al., 2020). 376

For example, CamCoder divides the Earth’s surface 377

into 7,823 tiles, and then changes the geospatial 378

label of each toponym to the tile containing its co- 379

ordinate. CamCoder then directly predicts one of 380

7823 classes for each toponym mention. 381

Regression is sometimes used for geospatial pre- 382

dictions when the label type is a (latitude, longi- 383

tude) point or a polygon (Cardoso et al., 2019; La- 384

parra and Bethard, 2020). For example, Laparra 385

and Bethard (2020) predict a set of coordinates (i.e., 386

a polygon) by applying operations over reference 387

geometries, where the operations take sets of coor- 388

dinates as inputs and produce sets of coordinates as 389

outputs. Regression approaches to geocoding are 390

rare because directly predicting coordinates over 391

the entire surface of the Earth is challenging. 392

5https://lucene.apache.org/
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GeoCoder Implementation Prediction Type Database
Independent

Polygon
based

Edinburgh Parser, Grover et al. (2010) Rule-based Ranking No No
Tobin et al. (2010) Rule-based Ranking No No
Martins et al. (2010) Machine Learning Ranking No No
Lieberman et al. (2010) Rule-based Ranking No No
Lieberman and Samet (2011) Rule-based Ranking No No
MG, Freire et al. (2011) Machine Learning Ranking No No
CLAVIN, Berico Technologies (2012) Rule-based Ranking No No
Lieberman and Samet (2012) Machine Learning Ranking No No
GeoTxt, Karimzadeh et al. (2013) Rule-based Ranking No No
WISTR, Speriosu and Baldridge (2013) Machine Learning Ranking No No
Zhang and Gelernter (2014) Machine Learning Ranking No No
Topocluster, DeLozier et al. (2015) Machine Learning Classification Yes No
CBH, SHS Kamalloo and Rafiei (2018) Machine Learning Ranking No No
CamCoder, Gritta et al. (2018) Deep Learning Classification No No
DM NLP, Wang et al. (2019) Machine Learning Ranking No No
Cardoso et al. (2019) Deep Learning Classification & Regression Yes No
MLG, (Kulkarni et al., 2020) Deep Learning Classification Yes No
Laparra and Bethard (2020) Rule-based Regression Yes Yes

Table 2: Summary of geocoding systems covered by this survey, sorted by year of creation.

6.2 Features and Heuristics393

All geocoding systems combine string matching394

(exact string matching, Levenshtein distance, etc.)395

with other features and/or heuristics (population,396

words in nearby context, etc.). Details of such397

features are described in this section.398

String match checks whether the place name399

matches any names in the geospatial database (Ed-400

inburgh Parser, Grover et al., 2010; Tobin et al.,401

2010; Martins et al., 2010; Lieberman et al.,402

2010; Lieberman and Samet, 2011; MG, Freire403

et al., 2011; CLAVIN, Berico Technologies, 2012;404

GeoTxt, Karimzadeh et al., 2013; Zhang and Gel-405

ernter, 2014; CBH, SHS, Kamalloo and Rafiei,406

2018; DM NLP, Wang et al., 2019). String match-407

ing can be done exactly, or approximately with edit408

distances metrics like Levenshtein Distance. For409

example, GeoTxt calculates the Levenshtein Dis-410

tance between the place name in the text and each411

candidate entry from the geospatial database, and412

selects the candidate with the lowest edit distance.413

Population looks at the size of the population414

associated with candidate database entry, typically415

preferring more populous entries to less populous416

ones (Edinburgh Parser, Grover et al., 2010; Tobin417

et al., 2010; Martins et al., 2010; Lieberman et al.,418

2010; Lieberman and Samet, 2011; MG, Freire419

et al., 2011; Lieberman and Samet, 2012; CLAVIN,420

Berico Technologies, 2012; GeoTxt, Karimzadeh421

et al., 2013; Zhang and Gelernter, 2014; CBH, SHS,422

Kamalloo and Rafiei, 2018; CamCoder, Gritta et al.,423

2018; DM NLP, Wang et al., 2019). For example,424

when the Edinburgh Parser geocodes the text I love 425

Paris, it resolves Paris to PARIS, FRANCE instead 426

of PARIS, TX, U.S. since the former has a greater 427

population in the geospatial database. 428

Type of place looks at the geospatial feature type 429

(country, city, river, populated place, facility, etc.) 430

of a candidate database entry, typically preferring 431

the more geographically prominent ones (Edin- 432

burgh Parser, Grover et al., 2010; Tobin et al., 2010; 433

Martins et al., 2010; Lieberman et al., 2010; Lieber- 434

man and Samet, 2011; MG, Freire et al., 2011; 435

CLAVIN, Berico Technologies, 2012; Lieberman 436

and Samet, 2012; GeoTxt, Karimzadeh et al., 2013; 437

TRAWL, Speriosu and Baldridge, 2013; Zhang and 438

Gelernter, 2014; CBH, SHS, Kamalloo and Rafiei, 439

2018; DM NLP, Wang et al., 2019). For example, 440

Tobin et al. (2010) prefers “populated places” to 441

“facilities” such as farms and mines, when there are 442

multiple candidate geospatial labels. 443

Words in the nearby context are used to disam- 444

biguate ambiguous place names (Lieberman and 445

Samet, 2012; WISTR, Speriosu and Baldridge, 446

2013; Zhang and Gelernter, 2014; Topocluster, 447

DeLozier et al., 2015; CBH, SHS, Kamalloo and 448

Rafiei, 2018; DM NLP, Wang et al., 2019Cam- 449

Coder, Gritta et al., 2018; Cardoso et al., 2019; 450

MLG, Kulkarni et al., 2020). Ways of using these 451

context words range from simple to complex. For 452

example, WISTR uses a context window of 20 453

words on each side of the target place name, and 454

thereby benefits from location-oriented words such 455

as uptown and beach. In contrast, Zhang and Gel- 456

ernter (2014) searches for common country and 457
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state names in other nearby location expressions,458

in essence resolving these mostly unambiguous459

place names to help resolve the target place name.460

One sense per referent is a heuristic that as-461

sumes that all occurrences of a unique place name462

in the same document will refer to the same463

geographical database entry (Edinburgh Parser,464

Grover et al., 2010; Tobin et al., 2010; Lieberman465

et al., 2010; Lieberman and Samet, 2011; GeoTxt,466

Karimzadeh et al., 2013; CBH, SHS, Kamalloo and467

Rafiei, 2018 DM NLP, Wang et al., 2019). For ex-468

ample, after each time that Lieberman et al. (2010)469

resolves a place name to a geospatial label, it prop-470

agates the same resolution to all identical place471

names in the remainder of the document.472

Spatial minimality is a heuristic that assumes473

that place names in a text tend to refer to geospatial474

regions that are in close spatial proximity to each475

other (Edinburgh Parser, Grover et al., 2010; Tobin476

et al., 2010; Lieberman et al., 2010; Lieberman and477

Samet, 2011; CLAVIN, Berico Technologies, 2012;478

SPIDER, Speriosu and Baldridge, 2013; Topoclus-479

ter, DeLozier et al., 2015; CBH, SHS, Kamalloo480

and Rafiei, 2018;). For example, when Lieberman481

et al. (2010) geocodes the text 96 miles south of482

Phoenix, Arizona, just outside of Tucson, it takes483

Tucson as an “anchor” toponym and resolves that484

first to get a target region. Then for Phoenix, it485

selects the geospatial label that is most geographi-486

cally proximate to the target region.487

6.3 Implementation Types488

Rule-based systems use hand-crafted rules and489

heuristics to predict a geospatial label for a place490

name (Edinburgh Parser, Grover et al., 2010; To-491

bin et al., 2010; Lieberman et al., 2010; Lieber-492

man and Samet, 2011; CLAVIN, Berico Technolo-493

gies, 2012; GeoTxt, Karimzadeh et al., 2013; La-494

parra and Bethard, 2020). The rule bases range495

in size from 2 to more than 200 rules, and rules496

may be formalized in rule grammars or defined497

more informally and provided as code. For exam-498

ple, Lieberman et al. (2010) uses a rule defined499

via code to identify place names in comma groups,500

such as groups of prominent places (e.g., ”New501

York, Chicago and Los Angeles”, all major cities502

in the U.S.), and then resolves all toponyms in503

the group by applying a heuristic uniformly across504

the entire group. As another example, Laparra505

and Bethard (2020) use 219 synchronous gram-506

mar rules to parse a target polygon from reference507

polygons by constructing a tree of geometrical op- 508

erators (e.g., BETWEEN(p1, p2) calculates the 509

region between geolocation polygons p1 and p2). 510

Feature-based machine-learning systems use 511

many of the same features and heuristics of rule- 512

based systems, but provide these as input to a su- 513

pervised classifier that makes the prediction of a 514

geospatial label (Martins et al., 2010; MG, Freire 515

et al., 2011; Lieberman and Samet, 2012; WISTR, 516

Speriosu and Baldridge, 2013; Zhang and Gelern- 517

ter, 2014; Topocluster, DeLozier et al., 2015; CBH, 518

SHS, Kamalloo and Rafiei, 2018; DM NLP, Wang 519

et al., 2019). They typically operate in a two-step 520

rank-then-rerank framework, where first an infor- 521

mation retrieval system produces candidate geospa- 522

tial labels, then a supervised machine-learning 523

model produces a score for each candidate, and the 524

candidates are reranked by these scores. Common 525

classification algorithms include logistic regression 526

(WISTR, Speriosu and Baldridge, 2013), support 527

vector machines (Martins et al., 2010; Zhang and 528

Gelernter, 2014), random forests (MG, Freire et al., 529

2011; Lieberman and Samet, 2012), and stacked 530

LightGBMs (DM NLP, Wang et al., 2019). For ex- 531

ample, Martins et al. (2010) train a support vector 532

machine regression model using features such as 533

the population and the number of alternative names 534

for each candidate. 535

Deep learning systems often approach geocod- 536

ing as a one-step classification problem by dividing 537

the Earth’s surface into an N × N grid, where 538

the neural network attempts to map place names 539

and their features to one of these N × N cate- 540

gories (CamCoder, Gritta et al., 2018; Cardoso 541

et al., 2019; MLG, Kulkarni et al., 2020). Each 542

system has a unique neural architecture for com- 543

bining inputs to make predictions, typically based 544

on either convolutional neural networks (CNNs) or 545

recurrent neural networks (RNNs). 546

CamCoder (Gritta et al., 2018) was the first 547

deep learning based-geocoder. Its lexical model 548

uses CNNs to create vectors representing context 549

words (a window of 200 words, location mentions 550

excluded), location mentions (context words ex- 551

cluded) and the target place name. Its geospatial 552

model produces a vector using a geospatial label’s 553

population (from the database) as its prior prob- 554

ability. CamCoder concatenates the lexical and 555

geospatial vectors for the final classification. 556

MLG (Kulkarni et al., 2020), is also a CNN- 557
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based geocoder, but it does not use population or558

other geospatial database information. It captures559

lexical features in a similar manner to CamCoder,560

but takes advantage of the S2 geometry6 to repre-561

sent its geospatial output space in hierarchical grid-562

cells from coarse to fine-grained. MLG can predict563

the geospatial label of a place name at multiple S2564

levels by mutually maximizing both precision and565

generalization of predictions.566

Cardoso et al. (2019) proposed an RNN-based567

geocoder that uses HEALPix geometry (Gorski568

et al., 2005) instead of S2 geometry to discretize569

the Earth’s surface. It uses Long Short-Term Mem-570

ory (LSTM) network with pre-trained Elmo em-571

beddings (Peters et al., 2018) to create vectors rep-572

resenting the place name, local context (50 words573

around the place name), and larger context (para-574

graph or 500 words around the place name). The575

three vectors are concatenated and used to predict576

both the class of HEALPix region and the coordi-577

nates of the centroid of the HEALPix class. This578

joint learning approach allows the two tasks to be579

mutually promoted and restricted.580

6.4 Analysis: Geocoding Systems581

While the advent of recent deep learning ap-582

proaches is an exciting step forward for geocod-583

ing research, most such models include only a few584

of the many features investigated by feature-based585

architectures. For example, no deep learning mod-586

els yet incorporate document-level consistency fea-587

tures like one sense per referent or geospatial con-588

sistency features like spatial minimality. Database589

information beyond population has also not been590

incorporated by any deep learning systems.591

7 Future Directions592

A key direction of future research will be output593

representations. Many past geocoders focused on594

mapping place names to geospatial database entries595

(see column 4 of table 2). This was convenient,596

enabling fast resolution by applying standard in-597

formation retrieval models to propose candidate598

entries from the database, but was limited by the599

simple types of matching that information retrieval600

systems could perform. Modern deep learning ap-601

proaches to geocoding allow more complex match-602

ing of place names to geospatial locations, but typ-603

ically rely on discretizing the Earth’s surface into604

tiles to constrain the size of the network’s output605

6https://s2geometry.io/

space. For the neural networks to achieve the fine- 606

grained level of geocoding available in geocoding 607

databases, they may need to consider hierarchical 608

output spaces (e.g., Kulkarni et al., 2020) or com- 609

positional output spaces (e.g., Laparra and Bethard, 610

2020) that can express the necessary level of detail 611

without exploding the output space. 612

Another key direction of future research will be 613

the structure and evaluation of geocoding datasets. 614

Most existing datasets and systems treat geocod- 615

ing as a problem of identifying points rather than 616

polygons (see column 4 of table 1 and column 5 617

of table 2). Yet the vast majority of real places 618

in geospatial databases are complex polygons (as 619

in fig. 2), not simple points. More polygon-based 620

datasets are needed, especially ones like GeoCoDe 621

(Laparra and Bethard, 2020) that include complex 622

descriptions of locations (e.g., between the towns 623

of Adrano and S. Maria di Licodia) and not just 624

explicit place names (e.g., Paris). The current state- 625

of-the-art for complex geographical description 626

geocoding is rule-based, but more polygon-based 627

datasets will drive algorithmic research that can 628

improve upon these rule-based systems with some 629

of the insights gained from deep neural network 630

approaches to explicit place name geocoding. 631

Finally, geocoding evaluation is still an open 632

research area. Future research will likely extend 633

some of the new polygon-based evaluation met- 634

rics. For example, using polygon precision and 635

recall would give credit to a geocoding system 636

that predicted the GeoNames entry Nakhon Sawan 637

even if the annotated data used the entry Changwat 638

Nakhon Sawan, since the polygons of these two 639

place names are nearly identical. 640

8 Conclusion 641

After surveying a decade of work on geocoding, 642

we have identifed several trends. First, combining 643

contextual features with geospatial database infor- 644

mation makes geocoders more powerful. Second, 645

like much of NLP, geocoders have moved from rule- 646

based systems to feature-based machine-learning 647

systems to deep-learning systems. Third, the older 648

rank-then-rerank approaches, combining informa- 649

tion retrieval and supervised classification, are be- 650

ing replaced by direct classification approaches, 651

where the Earth’s surface is discretized into many 652

small tiles. Finally, the field of geocoding is just 653

beginning to look beyond a point-based view of 654

locations to a more realistic polygon-based view. 655
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