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Abstract

Machine learning methods can be unreliable when
deployed in domains that differ from the domains
on which they were trained. To address this, we
may wish to learn representations of data that are
domain-invariant in the sense that we preserve
data structure that is stable across domains,
but throw out spuriously-varying parts. There
are many representation-learning approaches of
this type, including methods based on data
augmentation, distributional invariances, and risk
invariance. Unfortunately, when faced with any
particular real-world domain shift, it is unclear
which, if any, of these methods might be expected
to work. The purpose of this paper is to show how
the different methods relate to each other, and
clarify the real-world circumstances under which
each is expected to succeed. The key tool is a
new notion of domain shift relying on the idea
that causal relationships are invariant, but non-
causal relationships (e.g., due to confounding)
may vary. Considering this type of domain shift,
a natural goal is to learn representations that
are “Counterfactually Invariant”. We find the
popular domain-invariant representation learning
methods enforce invariance that corresponds to
the Counterfactual Invariance under different
types of causal structures. Therefore, we should
pick the method that matches the underlying
causal structure.

1. Introduction
Even when machine learning models have excellent
performance on held-out data, they can perform poorly when
deployed in the wild. Part of the problem is domain shift, a
structural mismatch between the training domain(s), and the
deployed domain(s). Many methods have been developed
to address it. One popular class of approach—which we’ll
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focus on in this paper—is to try to learn a representation
of the data which is in some sense invariant across domains.
The intuition is that domain-invariant representations should
capture the part of the data structure that is the “same” in all
domains, so that, e.g., a predictor built on top of a domain-
invariant representation will have good performance even
when deployed in a previously unseen domain.

A principle challenge here is that it’s unclear a priori how
domain-invariance ought to be formalized and enforced.
There exists many popular approaches for learning
domain-invariant representations. When applied to broad
ranges of real-world domain-shift benchmarks, there is
no single dominant approach, and an it’s even hard to
beat the baseline empirical risk minimization. The aim of
this paper is to clarify what assumptions on domain-shift
structure justify (or contradict) common approaches
to domain-invariant representation learning. We’ll be
particularly interested in the following three approaches:

Data augmentation We want our representations to b
invariant to small perturbations: E.g., if t(X) is a small
rotation of an image X , then ϕ(X) = ϕ(t(X)). For
example, [KSH12; Hen+19; Cub+19; Xie+20; WZ19;
Pas+19; HG17; SHB15; Kob18; Nie+20].

Distributional invariance We learn a representation so
that some distribution involving ϕ(X) is constant
in all domains. There are three such distributional
invariances that can be required to hold for all domains
e, e′:
marginal invariance: Pe(ϕ(X)) = Pe′(ϕ(X))
[MBS13; Gan+16; Alb+20; Li+18a; SFS17; SS16;
MH20];
conditional invariance: When Y is a label of interest,
Pe(ϕ(X) | Y ) = Pe′(ϕ(X) | Y ) [Li+18b; Lon+18;
Com+20; Goe+20]
sufficiency: Pe(Y | ϕ(X))=Pe′(Y | ϕ(X)) [PBM16;
RC+18; Wal+21].

Risk minimizer invariance For supervised learning, we
learn a representation ϕ(X) so that there is a fixed
(domain-independent) predictor w∗ on top of ϕ(X)
that minimizes risk in all domains [Arj+19; Lu+21;
Ahu+20; Kru+21; BCL21].

To understand the relationship of these notions of invariance,
it is necessary to specify how different domains are



related. In particular, we require an assumption that is both
reasonable for real-world domain shifts and that precisely
specifies what structure is invariant across domains.
Specializing to supervised learning with label Y and
covariates X , the approach we’ll take proceeds as follows.
The covariates X are caused by some (unknown) factors
of variation. These factors of variation are also dependent
with Y . For some factors of variation, jointly denoted as
Z, the relationship between Y and Z is spurious: Y and Z
are dependent due to an unobserved common cause U . The
distribution of U may change across environments, thereby
shifting the relationship between Y and Z. However, the
structural causal relationships between variables will be the
same in all environments —e.g., P(X | pa(X)) is invariant,
where pa(X) denotes the (possibly unobserved) causal
parents of X . We call a family of domains with this structure
Causally Invariant with Spurious Associations (CISA).

Concretely, consider the problem of classifying images
X as either Camel or Cow Y . In training, the presence of
sand in the image background Z is strongly associated with
camels. But, we may deploy our new classifier in an island
domain where cows are frequently on beaches—changing
the Z-Y association. Nevertheless, the causal relationships
between the factors of variation—Y , Z, and others such
as camera type or time of day—and the image X remain
invariant. Although Z (the background) is known in this
example, it’s important to note that we do not assume
spurious factors Z are known a priori in general. CISA
merely asserts the existence of such factors, but requires
no knowledge of what they might be.

CISA is an assumption that is reasonable for many real-
world situations and gives a canonical notion of domain-
invariant representation. Namely, ϕ(X) should be the part
of X that does not depend on the (unknown) spurious
factors of variation Z. In the Camel/Cow example, ϕ(X)
should exclude information in the image that changes if
sand is added or removed from the background. We
say a representation with this property is counterfactually
invariant to spurious factors (CF-invariant for short). Under
the CISA assumption, CF-invariance is the ‘right’ notion
of domain-invariance—it exactly captures the part of X
that has a stable relationship with Y across all domains.
Accordingly, in the CISA setting, an ideal domain-invariant
representation learning method should produce a CF-
invariant representation.

We now return to the motivating questions: how are different
approaches to domain-invariant representation learning
related, and when might each work? The main idea of
the paper is to answer these questions by determining the
conditions under which each approach learns a CF-invariant
representation. Informally, the technical contributions of
the paper are:

1. Formalization of CISA and Counterfactually Invariant
Representation Learning.

2. We first show that data augmentation techniques lead to
counterfactually invariant representations for a suitable
class of augmentations. The required condition is that
the augmentations should be “label preserving” in the
sense of (being equivalent to) affecting only spurious
factors, and exhaustive in the sense of affecting all
spurious factors.

3. Next, we show that distributional-invariance
techniques can enforce (a relaxed form of)
counterfactual invariance. This holds if and only if the
particular distributional invariance is chosen to match
the true underlying causal structure of the problem.

4. Finally, we show that risk minimizer invariance
is impossible under CISA except for certain
special causal structures. We then give causal-
structure dependent generalizations of risk-invariant
representation learning and show that these enforce
(a relaxed version of) the causal-structure induced
distributional invariance.

2. Related Work
Causal invariance in domain generalization Several
works ([PBM16; RC+18; Arj+19; Lu+21; CB20]) specify
domain shifts with causal models. In most frameworks,
the invariant predictor learns P (Y | pa(Y )). This is quite
limiting. For example, it’s impossible to have meaningful
stable predictors in problems where Y causes X [Sch+12].
CISA allows learning with more general structures, which
we’ll see is helpful in understanding the representation
learning methods. [CB20] allows more general causal
structures, but it relies on limited parametric assumptions.

Domain generalization methods There are many methods
for domain generalization; we give a categorization in the
introduction. Our aim in this paper is to give theoretical
insight into when each might work. Complementary to this,
there have been a number of empirically-oriented surveys
testing domain generalization methods in natural settings
[Koh+21; Wil+21; GLP20; Hen+21]. These evaluations find
that no method consistently beats ERM, but many methods
work well in at least some situations. The question we’re
concerned with here is which situations are well-matched to
which methods.

Robust methods The CISA framework is reasonable for
many real-world problems, but certainly not all. There are
other notions of domain shifts and differently motivated
methods that do not fit under this framework. For example,
many works [e.g., Sag+19; Liu+21; BDOR22] assume
the testing domains are not too different from the training
domains (e.g., test samples are drawn from the mixture



of training distributions); under this type of domain shift,
"robustness" (e.g. good worst-case loss over training
domains) is a more desired property than "invariance" as
discarding spurious features would be too conservative for
prediction. However, these methods would all fail in the
simple Colored MNIST experiment in Appendix D.

3. Causal Invariance with Spurious
Associations

Setup In domain generalization problems, we have
training and test data from several related domains. The goal
is to learn a predictor using data from training domains, and
apply it to unseen test domains. The data comes in the form
of (X,Y,E) where X ∈ X is the input, Y ∈ Y the label
and E ∈ E is the domain index. We abstract each domain as
a probability distribution Pe, where Xi, Yi | Ei=e

iid∼ Pe.
At training time, we have access to data from a finite set of
domains Etrain ⊂ E .

Y ZX⊥
z

X

U E

Figure 1: Examples of a causal
structures compatible with
the CISA assumption. Causal
relationships (solid arrows) are
invariant across domains. Only
the distribution of the unobserved
confounder U can vary.

Causal Invariance
with Spurious
Associations First we
specify the structure
that is preserved across
domains, and the ways
in which they are
allowed to vary.1 To
formalize this, we
assume that X is caused
by some (unobserved)
factors of variation, and
give a notion of what it
means for these factors

to be spuriously associated with Y :

Definition 1. We say a (latent) cause of X is a spurious
factor of variation if it is not a cause of Y and there is some
(latent) confounder that affects both it and Y . Call the set
of all such causes the spurious factors of variations.

Figure 1 shows examples of causal structures for prediction
problems involving spurious factors of variation (Z). We
will need notation for the part of X that is not affected
by the spurious factors Z. Formally, we use the notion of
counterfactual invariance from [Vei+21].

Definition 2. Let ϕ be a function from X to H and
Z the spurious factors. We say ϕ is counterfactually
invariant to spurious factors (abbreviated CF-invariant),
if ϕ(X(z)) = ϕ(X(z′)) a.e., ∀z, z′ ∈ Z . Here, X(z) is

1Without such an assumption, the test domain could be chosen
adversarially to have support only on points where the training-
domain predictor makes mistakes.

potential outcomes notation and denotes the value of X we
would have seen had Z been set to z.

Definition 3. X⊥
z is a X-measurable variable such that, for

all measurable functions f , f is CF-invariant iff f(X) is
X⊥

z -measurable.2 3

Now we can introduce the confounder U and formally
specify how the domains are related:

Definition 4. We say a set of domains E are Causally
Invariant with Spurious Associations (CISA), if there
are (unknown) spurious factors of variation Z, and
unknown confounder U (that does not confound the
relationship between X⊥

z and Y ) so that Pe(X,Y ) =∫
P0(X,Y, Z|U)Pe(U)dZdU,∀e ∈ E , where P0 is a fixed

distribution determined by the underlying dynamics of the
system and Pe(U) is a domain-specific distribution of the
unobserved confounder.

CF-invariant representation learning The goal is to
learn a representation that’s both predictive of Y , and has
the "invariance" property. For CISA domains, the canonical
notion of invariance is CF-invariance. Let Φcf-inv(E) denote
the set of CF-invariant representations for CISA domains E .
Our domain-invariant representation learning objective is:

min
ϕ:X→H,w:H→Y

EPEtrain
[L(Y, (w ◦ ϕ)(X))] s.t. ϕ ∈ Φcf-inv(E)

The challenge here is that the spurious factors of variation
are unknown and unobserved, so identifying Φcf-inv(E)
is difficult. Now we can turn to understanding various
approaches to domain adaptation methods as achievable
relaxations of this ideal objective.

4. Causal View on Domain Invariant
Representation Learning

4.1. Data Augmentation

Our goal is to understand when and why data augmentation
might enable domain-invariant representation learning.
The basic technique first applies pre-determined "label-
preserving" transformations t to original features X to
generate artificial data t(X). There are two ways this
transformed data can be used. The first option is to
simply add the transformed data as extra data to a standard
learning procedure. Alternatively, we might pass in pairs
(Xi, t(Xi)) to our learning procedure, and directly enforce
some condition that ϕ(X) ≈ ϕ(t(X)) [Gar+19].

2Such a variable exists under weak conditions; e.g., Z discrete
[Vei+21].

3It will be convenient to think of X⊥
z as a cause of X—this is

just shorthand for the part of X that is caused by the non-spurious
factors of variation, and avoids introducing another latent variable
to explicitly label the non-spurious factors.



We first formalize a notion of “label-preserving” for CISA
domains. The key idea is that we can think of transformation
t(X) of X as being equivalent to changing some cause of
X and then propagating this change through. For example,
suppose a particular transformation t rotates the input
images by 30 degrees, and W is the factor corresponding
to the angle away from vertical. Then, we can understand
the action of t as t(X(w)) = X(w + 30). With this idea
in hand, we see that a transformation is label-preserving in
CISA domains if it is equivalent to a change that affects only
spurious factors of variation. Otherwise, the transformation
may change the invariant relationship with Y ; replacing
the background of cows with "sand" with "grass" doesn’t
change animal type; but distorting the part corresponding to
the "cow" object may.

Definition 5. We say a data transformation t : X → X
is label-preserving for CISA domains E if, for each X(z)
there is z′ so that t(X(z)) = X(z′), a.e..

Label preserving transformations leave the CISA invariant
relationships (between X⊥

z and Y ) alone, but can change
the relationship between Y and the spurious factors of
variation Z. Intuitively, if we have a ‘large enough’ set
of such transformations, they can destroy the relationship
between Y and Z that exists in the training data. This is
nearly correct, with the caveat that things can go wrong (for
the naive training approach) if there is a part of X that is
causally related to both Z and Y . We follow [Vei+21] in
formalizing how to rule out this case:

Definition 6. The spurious factors of variation Z are purely
spurious if Y ⊥ X|X⊥

z , Z

That is, conditioning on the spurious factors, X⊥
z is

sufficient for Y .We can now state the main result connecting
data augmentation and domain-invariance:

Theorem 7. For a CISA domain, if the set of
transformations T satisfies label-preserving and
enumerates all potential outcomes of Z, then

1. If the model is trained to minimize risk on augmented
data, and Z is purely spurious, or

2. If the model is trained to minimize risk on original data,
regularized to satisfy ϕ(X) = ϕ(t(X)),∀t ∈ T

Then we recover the CF-invariant predictor that minimizes
risk on original data.

Thus for CISA domains, the ideal data augmentation will
exactly learn CF-invariant representations, irespective of
the true underlying causal structure. Accordingly, such
data augmentation would be the gold standard for domain-
invariant representation learning. However, in practice the
set of pre-determined transformations often is not label-
preserving ([GMZ19]) nor exhaustive ([VCS16], [Gei+18]).

X YZ

X⊥
z

U E

(a) anti-causal

X YZ

X⊥
z

U E

(b) conf-out

X YZ

X⊥
z

U E

(c) conf-desc

Figure 2: Every CISA compatible set of domains obeys exactly
one of these causal structures. The black arrows are included in all
graphs. The blue arrows are specific to different causal structures.
The orange arrows are optional. At least one of the two dashed
blue arrows in Figure 2c must exist.

Considering their limitations, a natural idea is to replace
them with transformations learned from data. However,
in practice, Z is unknown and we only observe the data
domains E. Then, learning transformations must rely either
on detailed structural knowledge of the problem [RPH21,
e.g., ], or on some distributional relationship between E, Y
and X and t(X) [e.g., Goe+20]. Since t(X) is only used
for the representation learning, this is equivalent to learning
based on some distributional criteria involving E, Y , and
ϕ(X)—the subject of the next section.

4.2. Distributionally Invariant Learning

Many approaches to domain-invariant representation
learning work by enforcing one of the three forms of
distributional invariance as discussed in Section 1. The
question now is: when, if ever, are each of these
distributional invariances the right approach for domain-
invariant representation learning? First, observe that CISA
domains can be categorized three types, corresponding to
the underlying causal structure of the problem.

Theorem 8. If a set of domains E satisfy CISA, then the
underlying causal structure must correspond to exactly one
of three types of causal graph: anti-causal, confounded-
outcome, or confounded-descendant. These graphs are
shown in Figure 2.

We now return to the question of when distributional
invariance learns counterfactually-invariant representations.
It turns out that the answer relies critically on the true causal
structure of the problem:

Theorem 9. Let ϕ be a CF-invariant representation, if the
underlying causal graph is

1. anti-causal, then ϕ(X) ⊥⊥ E|Y
2. confounded-outcome, then ϕ(X) ⊥⊥ E
3. confounded-descendant, then Y ⊥⊥ E|ϕ(X). 4

In words: each of the distributional invariances arises as a
particular implication of CF-invariance. Let ΦDI(E) be the
set of representations matching the causal structure of E .

4This theorem looks similar to [Vei+21, Thm. 3.2]. This is
deceptive; here we observe the environment E, whereas they
assumed observations of the spurious factors Z.



Then Φcf-inv(E) ⊊ ΦDI(Etrain). Therefore enforcing the right
distributional invariance partially enforces CF-invariance.

4.3. Invariant Risk Minimization

The Invariant Risk Minimization (IRM) paradigm [Arj+19]
restricts the representation to this set:

ΦIRM(E) :={ϕ : ∃ w st w ∈ argmax
w̄

EPe [L(Y, (w̄ ◦ ϕ)(X))] ∀e ∈ E}

That is, they aims to find representations that elicit a
single predictor that has the optimal risk across all domains.
When, if ever, does the IRM procedure yield a CF-invariant
predictor?

Again the answer will turn out to depend on the underlying
causal structure. For confounded-descendant problems,
IRM is a relaxation of Y ⊥⊥ E|ϕ(X). However, for anti-
causal and confounded-outcome problems ΦIRM(E) = ∅
in general. Consider the most simple case with no X
(where the two types of graphs collapse into one). Since
Pe(Y ) can be arbitrarily different, there is no invariant risk
minimizer. Fortunately, for anti-causal problems there is
a natural generalization of IRM that partially enforces the
distributional invariance.

Definition 10. For anti-causal domains, we define the set
of representations satisfying g-IRM as:

Φg-IRM(E) :={ϕ : ∃ w st w ∈ argmaxw̄

EPe
[
P0(Y )

Pe(Y )
L(Y, (w̄ ◦ ϕ)(X))],∀e ∈ E}

where P0(.) is any baseline distribution for Y .

Then we can show the (generalized) IRM is a relaxation of
the corresponding distributional invariance:

Theorem 11. Let E satisfy CISA, then if E is

1. confounded-descendant, then ΦDI(E) ⊂ ΦIRM(E)
2. anti-causal, then ΦDI(E) ⊂ Φg-IRM(E)

Although this simple generalization works for the anti-
causal case, there is no such easy fix for the confounded-
outcome case. For example, if Y ← f(X,E, η) where
η is noise independent of X,E. There could be disctinct
relationships between X and Y in every domain. 5

5It may be possible to circumvent this by making structural
assumptions on the form of f ; e.g., there is an invariant risk
minimizer in the case where the effect of U and X is additive
[Vei+21].

A. Relationship of Methods
Data augmentation training is the gold standard for
CF-invariant representation learning if it’s possible to
enumerate all label-preserving transformations (Theorem 7).
This is impossible in general as it requires direct
manipulation of the spurious factors Z. Still, using
augmentation with label-preserving transformations (but
not exhaustively) enforces a relaxation of CF-invariance.

Distributional invariance is a relaxation of CF-invariance
if it’s chosen to match the underlying causal structures
of the problem (Theorem 9). However, enforcing full
distributional invariance is still hard ([SP20]).

(generalized) IRM further relaxes distributional
invariance for anti-causal and confounded-descendant
problem, when it’s chosen to match the causal structure
of the problem (Theorem 11). It weakens the full
independence criteria to use just the implication for a single
natural test statistic: the loss of the model. This allows for
more efficient algorithms [Arj+19].

B. Insights for Robust Prediction
Usually, learning domain-invariant representations is an
intermediate step towards learning robust predictors.
Here, robust means that the predictor should have good
performance when deployed in a previously unseen domain.
We now turn to the implications of our domain-invariant
representation learning results for robust prediction.

First, for CISA domains, whether or not robust prediction is
even possible will depend on the underlying causal structure.
For confounded-descendant problems, robust prediction
is straightforward. Enforcing the correct distributional
invariance on representation function ϕ leads to invariant
risk in test domains for every value of ϕ(X). If we enforce
the weaker IRM requirement, the optimal predictor (on top
of ϕ) on training domains is optimal on test data. For anti-
causal problems, there is no invariant predictor in general
because Pe(Y ) can change across domains. However, there
are simple adaptation methods to jointly estimate Pe(Y )
and adjust prediction during deployment [SLD02], which
can achieve near-optimal performance efficiently [LP20].
Moreover, if the prior distribution doesn’t shift very much
between training and deployment, then the training-domain
optimal predictor trained on the invariant representation will
be nearly optimal in the test case. This kind of limited label
shift seems common in practice. Accordingly, for both the
confounded-descendant and (many) anti-causal cases, we
can achieve robust prediction simply by naively training
a predictor on top of the domain-invariant representation.
For the confounded-outcome case, there is no notion of
robust predictor without making some further structural
assumptions.



With this in mind, we can now extract some general insights
for robust prediction:

no method dominates in all domain generalization
problems Heuristic data augmentation enforces
CF-invariance directly regardless of causal structures,
but requires truly label-preserving transformations
and only solves the invariant representation problem
if the transformation set affects all spurious factors.
Distributionally-invariant methods can work, but each
approach is only valid if it matches the underlying causal
structure of the problem. Enforcing the wrong distributional
invariance can actually harm performance [Vei+21].
Similarly, (generalized) invariant risk minimizer can work
for some types of problems, but only when it matches the
causal structure. This is consistent with the findings from
various benchmark studies that there is no single method
that can dominate all tasks [Wil+21; Koh+21; GLP20].

data augmentation helps in most cases Label-preserving
data augmentation won’t hurt domain generalization
and can often help. This is true no matter the
underlying causal structure of the problem. This
matches empirical benchmarks where data augmentations
usually help domain generalization performance, sometimes
dramatically [Wil+21; Koh+21; GLP20]. For example,
[Wil+21] finds that simple augmentations used in [KSH12]
generally improves performance when "augmentations
approximate the true underlying generative model".

pick a method matching the true causal structure Many
papers apply distributional invariance approaches with no
regard to the underlying causal structure of the problem. In
particular, many tasks in benchmarks have the anti-causal
structures, but the methods evaluated do not include those
enforcing ϕ(X) ⊥ E|Y [Koh+21]. [Com+20] find that
methods enforcing ϕ(X) ⊥ E|Y consistently improve
over methods that enforce ϕ(X) ⊥ E—retrospectively,
this is because they benchmark on anti-causal problems.
[Wil+21] finds that learned data augmentation ([Goe+20])
consistently improves performance in deployment—this
method can be viewed as enforcing ϕ(X) ⊥ E|Y and,
again, the benchmarks mostly have anti-causal structure.

C. Examples of the three types of CISA
domains

Anti-causal Image classification can be naturally viewed
as an anti-causal problem. Various factors of variations such
as lighting, background, angles, etc, and the object class Y ,
generate the image X . Some of the factors of variation Z
are confounded with Y —e.g., background and Y may be
associated due to evolutionary pressures. The Cow/Camel

on Grass/Sand example fits here.6

Confounded outcome The goal is to predict the
helpfulness of a review. Each review receives a number
of "helpful" votes Y , produced by site users. We use the
review’s text content X as covariates. The data is collected
for different types of products E. The model’s performance
drops significantly when deployed in new product type. We
think that the general sentiment Z of the review, and the
helpfulness has unstable relationship across E: e.g. for
books, customers write very positive reviews which are
often voted favorably; for electronics this relationship is
reversed.

Confounded descendant Consider predicting
unemployment rate Y from a variety of economic
factors X . It’s not clear which factors cause Y directly,
and which are descendants of Y . The relationships among
X,Y change under certain big events, say financial crisis or
pandemics. We denote those events as domains E, and take
U = E. U might affect Y ’s descendants jointly with Y
(through intermediate variable Z), but Y is not changed. Or
U might affect pa(Y ) directly, which changes Y . Notice
that in this case, the CF-invariant representation is also the
representation that uses only pa(Y ). Thus, for this causal
structure, the counterfactually invariant notion matches
the traditional causally-invariant representation learning
desiderata [PBM16; Arj+19].

D. Experiments
One implication of our work is that we should use methods
matching the true causal structure. To evaluate this claim,
we conduct experiments on data modified from Color
MNIST datasets from [Arj+19]. We can understand the
underlying data generating process as anti-causal, but
[Arj+19] treated it as confounded-descendant. The two
views give the same IRM/gIRM objective when Pe(Y )
remains the same,so IRM method gives near-optimal results.
When simply re-distributing samples to make Pe(Y ) change
across domains, we predict gIRM would give superior
results to IRM since it matches the underlying causal
structure.

More specifically, this is how the (modified) Color MNIST
is generated from the original MNIST dataset: first assign
label 0 to digits 0 − 4 and label 1 to other digits; then the
labels are flipped with probability α; assign each label-digit
(call it (Y,X1)) pair to domains by the label so Pe(Y =
1) = πe; finally the binary color (call it X2) is assigned
based on the (flipped) label, with flip rate βe; the final
image X is a colored version of the original handwritten

6In some cases there is some controversy about this example,
since the label Y is often due to human annotators [Lu+21].



digit (X = g(X1, X2) with composition function g). So
the population parameter for each domain is (α, βe, πe).
[Arj+19] uses two training domains (0.25, 0.1, 0.5) and
(0.25, 0.2, 0.5), and the test domain is (0.25, 0.9, 0.5). In
this case, the ideal invariant predictor depends only on the
digit X1 and attains the optimal 75% accuracy. ERM or
other robust methods would learn to use X2 and generalize
poorly. IRMv1 (the practical implementation of IRM)
is shown to attain the near-optimal test accuracy. We
simply change the priors Pe(Y ) so that training domains
are (0.25, 0.1, 0.9) and (0.25, 0.1, 0.1) and the test domain
is (0.25, 0.9, 0.5). The optimal invariant predictor should
remain the same and give the same 75% testing accuracy.
fig. 3 shows that gIRMv1 penalty forces model to use only
X1 and gets close-to-optimal accuracy; IRMv1 penalty, on
the other hand, allows the model use spurious features and
get poor test accuracy.

E. Proofs
Theorem 7. For a CISA domain, if the set of
transformations T satisfies label-preserving and
enumerates all potential outcomes of Z, then

1. If the model is trained to minimize risk on augmented
data, and Z is purely spurious, or

2. If the model is trained to minimize risk on original data,
regularized to satisfy ϕ(X) = ϕ(t(X)),∀t ∈ T

Then we recover the CF-invariant predictor that minimizes
risk on original data.

Proof. First, for the convenience of notation let’s assume
X = X(z0) a.e. for some z0 ∈ Z . Then by the label-
preserving T , we have: for each t ∈ T we have t(X)(=
t(X(z0))) = X(z) for some z ∈ Z .

Consider consistency training. Let Φc(T ) denote the set of
representation functions satisfying consistency requirement
under transformation set T , i.e. Φc(T ) := {ϕ : ϕ(X) =
ϕ(t(X)) a.e. ∀t ∈ T }. If ϕ ∈ Φc(T ), then for
any z, z′ ∈ Z , can find t ∈ T such that X(z′) =
t(X(z)) since T enumerates all potential outcomes of Z;
therefore ϕ(X(z′)) = ϕ(t(X(z))) = ϕ(X(z)) a.e. by
consistency requirement. Thus ϕ ∈ Φcf-inv(E). On the
other hand if ϕ ∈ Φcf-inv(E), then for any t ∈ T , we have
ϕ(t(X)) = ϕ(X(z)) = ϕ(X) for some z ∈ Z . Thus
ϕ ∈ Φc(T ). Therefore Φc(T ) = Φcf-inv(E). Therefore,
training the model to minimize risk on original data, with
hard consistency regularization is equivalent to CF-invariant
representation learning, which recovers the optimal CF-
invariant predictor on training distribution.

Consider ERM training on augmented data with purely-
spurious Z. Let P denote the original distribution, and P̃
denote the distribution after the augmentation. Let T be

(a) IRMv1

(b) gIRMv1

Figure 3: IRMv1 vs gIRMv1 on Color MNIST. For each methods
there are 1000 trained models, each represented by a point. The
color represents the corresponding penalty. The optimal invariant
predictor attains 75% accuracy on both training and test domains,
marked by purple lines. The overall trend for gIRMv1 models
is: before reaching 75% training accuracy, models improve
predictions in both training and test domains; after passing the
optimal training accuracy, the models rely on spurious feature to
get better training performance, but this is discouraged by gIRMv1
penalty and won’t be selected. IRMv1, however, cannot learn a
good invariant model — the selected model will only give around
20% testing accuracy



the random variable for transformation operation. First, the
generating process of the augmented data is: first sample
T ∼ P̃T (.); then sample (X,Y )|T = t from the distribution
of (t(X), Y ). Then we have:

P̃ (X,Y ) =

∫
P (t(X), Y )dP̃T (t)

=

∫
P (X(z), Y )dP̃Z(z)

=

∫
P (X(z), Y (z))dP̃Z(z)

=

∫
P (X,Y |do(z))dP̃Z(z)

by the label-preserving of T , and the fact that Y is not a
descendant of Z.

Next, observe that P (y|x, do(z)) = P (y|x⊥
z ). This is

because: in original probability we have Y ⊥⊥ X|X⊥
z , Z;

the do(z)-operation removes the incoming edges of Z and
set Z = z; as a result P (y|x, do(z)) = P (y|x⊥

z , do(z)) =
P (y|x⊥

z ).

Put together:

P̃ (X,Y ) =

∫
P (X,Y |do(z))dP̃ (z)

=

∫
P (Y |X, do(z))P (X|do(z))dP̃ (z)

=

∫
P (Y |X⊥

z )P (X|do(z))dP̃ (z)

= P (Y |X⊥
z )

∫
P (X|do(z))dP̃ (z)

= P (Y |X⊥
z )P̃ (X)

Therefore the objective is:

EP̃ [L(Y, f(X))] = EP̃ (X)[EP (Y |X⊥
z )(L(Y, f(X)))]

Then for any input x, the the optimal predictor output
f∗(x) = argmina(x)

∫
L(y, a(x))dP (y|x⊥

z ). This is the
same as directly restricting predictor to be CF-invariant.

Theorem 8. If a set of domains E satisfy CISA, then the
underlying causal structure must correspond to exactly one
of three types of causal graph: anti-causal, confounded-
outcome, or confounded-descendant. These graphs are
shown in Figure 2.

Proof. There are a finite number of possible causal DAGs
relating the variables U,Z,X, Y,X⊥

z . Moreover, for a DAG
to be compatible with CISA it must satisfy some conditions
that narrows down the set. In particular, X⊥

z causes X; Z
affects X but not X⊥

z or Y ; U should affect Z and Y but
cannot confound X⊥

z and Y ; E only affects U . In Figure
2, we show all possible DAGs on these variables that are
compatible with CISA

Theorem 9. Let ϕ be a CF-invariant representation, if the
underlying causal graph is

1. anti-causal, then ϕ(X) ⊥⊥ E|Y
2. confounded-outcome, then ϕ(X) ⊥⊥ E
3. confounded-descendant, then Y ⊥⊥ E|ϕ(X). 7

Proof. Reading d-separation from the corresponding DAGs,
we have X⊥

z ⊥ E|Y for anti-causal problems; X⊥
z ⊥

E for confounded-outcome problems; Y ⊥ E|X⊥
z for

confounded-descendant problems. Since ϕ is CF-invariant,
that means ϕ(X) is X⊥

z -measurable. Thus the claim
follows.

Theorem 11. Let E satisfy CISA, then if E is

1. confounded-descendant, then ΦDI(E) ⊂ ΦIRM(E)
2. anti-causal, then ΦDI(E) ⊂ Φg-IRM(E)

Proof. Confounded-descendant case: let ϕ ∈ ΦDI(E), i.e.
Y ⊥⊥ E|ϕ(X). To show the risk minimizer is the same, it
suffices to show Pe(Y |ϕ(X)) to be the same for all e ∈ E .
This is immediate from the distributional invariance.

Anti-causal case: if the representation ϕ ∈ ΦDI(E), i.e.
ϕ(X) ⊥⊥ E|Y ,

EPe
[
P0(Y )

Pe(Y )
L(Y, (w̄ ◦ ϕ)(X))]

= EY∼Pe [
P0(Y )

Pe(Y )
[Eϕ(X)∼Pe(.|Y )(L(Y, (w̄ ◦ ϕ)(X))|Y )]]

= EY∼P0 [Eϕ(X)∼P (.|Y )(L(Y, (w̄ ◦ ϕ)(X))|Y )]

The second equality is because ϕ(X) ⊥⊥ E|Y .

Thus the objective function is the same across domains, so
the optimal w is the same. Therefore ϕ ∈ Φg-IRM(E)

7This theorem looks similar to [Vei+21, Thm. 3.2]. This is
deceptive; here we observe the environment E, whereas they
assumed observations of the spurious factors Z.
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