
SEQUENTIAL GRADIENT CODING FOR STRAGGLER
MITIGATION

M. Nikhil Krishnan ∗

Indian Institute of Technology Palakkad
nikhilkrishnan.m@gmail.com

M. Reza Ebrahimi ∗

University of Toronto
mr.ebrahimi@mail.utoronto.ca

Ashish Khisti
University of Toronto
akhisti@ece.utoronto.ca

ABSTRACT

In distributed computing, slower nodes (stragglers) usually become a bottleneck.
Gradient Coding (GC), introduced by Tandon et al., is an efficient technique that
uses principles of error-correcting codes to distribute gradient computation in the
presence of stragglers. In this paper, we consider the distributed computation of a
sequence of gradients {g(1), g(2), . . . , g(J)}, where processing of each gradient
g(t) starts in round-t and finishes by round-(t+ T). Here T ≥ 0 denotes a delay
parameter. For the GC scheme, coding is only across computing nodes and this
results in a solution where T = 0. On the other hand, having T > 0 allows
for designing schemes which exploit the temporal dimension as well. In this
work, we propose two schemes that demonstrate improved performance compared
to GC. Our first scheme combines GC with selective repetition of previously
unfinished tasks and achieves improved straggler mitigation. In our second scheme,
which constitutes our main contribution, we apply GC to a subset of the tasks and
repetition for the remainder of the tasks. We then multiplex these two classes of
tasks across workers and rounds in an adaptive manner, based on past straggler
patterns. Using theoretical analysis, we demonstrate that our second scheme
achieves significant reduction in the computational load. In our experiments, we
study a practical setting of concurrently training multiple neural networks over an
AWS Lambda cluster involving 256 worker nodes, where our framework naturally
applies. We demonstrate that the latter scheme can yield a 16% improvement
in runtime over the baseline GC scheme, in the presence of naturally occurring,
non-simulated stragglers.

1 INTRODUCTION

We consider a distributed system consisting of a master and n computing nodes (will be referred to as
workers). We are interested in computing a sequence of gradients g(1), g(2), . . . , g(J). Assume for
simplicity that there are no dependencies between the gradients (we will relax this assumption later in
Sec. 2). If we naively distribute the computation of each gradient among n workers, delayed arrival
of results from any of the workers will become a bottleneck. Such a delay could be due to various
reasons such as slower processing at workers, network issues leading to communication delays etc.
Irrespective of the actual reason, we will refer to a worker providing delayed responses to the master,
as a straggler. In a recent work Tandon et al. (2017), the authors propose Gradient Coding (GC) to
distribute computation of a single gradient across multiple workers in a straggler-resilient manner.
Using (n, s)-GC, the master is able to compute the gradient as soon as (n− s) workers respond (s is
an integer such that 0 ≤ s < n). Adapting GC to our setting, we will have a scheme where g(t) is
computed in round-t and in every round, up to s stragglers are tolerated (the concept of round will
be formally introduced in Sec. 2). Experimental results (Yang et al., 2019) have demonstrated that
intervals of “bad” rounds (where each round has a large number of stragglers) are followed by “good”
rounds (where there are relatively fewer number of stragglers), leading to a natural temporal diversity.

∗Equal contribution authors.

Published as a conference paper at ICLR 2023

Note that GC will enforce a large s, as dictated by the number of stragglers expected in bad rounds,
leading to a large computational load per worker. The natural question to ask here is that: do there
exist better coding schemes that exploit the temporal diversity and achieve better performance?. In
this paper, we present sequential gradient coding schemes which answer this in the affirmative.

1.1 SUMMARY OF CONTRIBUTIONS

In contrast to existing GC approaches where coding is performed only across workers, we propose
two coding schemes which explore coding across rounds as well as workers.

• Our first scheme, namely, Selective-Reattempt-Sequential Gradient Coding (SR-SGC)
(Sec. 3.2), is a natural extension of the (n, s)-GC scheme, where unfinished tasks are
selectively reattempted in future rounds. Despite the simplicity, SR-SGC scheme tolerates a
strict superset of straggler patterns compared to (n, s)-GC, for the same computational load.

• In our more involved second scheme, namely, Multiplexed-Sequential Gradient Coding
(M-SGC) scheme (Sec. 3.3), we divide tasks into two sets; those which are protected against
stragglers via reattempts and those which are protected via GC. We then carefully multiplex
these tasks to obtain a scheme where computational load per worker is significantly reduced.
In particular, the load decreases by a factor of s when compared to the (n, s)-GC scheme
and is close to the information theoretic limit in certain conditions.

• Our experiments (Sec. 4) on an AWS Lambda cluster involving 256 worker nodes show
that the M-SGC scheme achieves a significant reduction of runtime over GC, in real-world
conditions involving naturally occurring, non-simulated stragglers.

1.2 RELATED WORK

We provide a brief overview on the use of erasure codes for straggler mitigation in Appendix B. The
terminology of “sequential gradient coding” initially appears in Krishnan et al. (2021). Both the
current paper and the work Krishnan et al. (2021) extend the classical GC setting (Tandon et al., 2017),
by exploiting the temporal dimension. The authors of Krishnan et al. (2021) provide a non-explicit
coding scheme that is resilient against communication delays and does not extend when stragglers
are due to computational slowdowns. In contrast, we propose two explicit coding schemes that are
oblivious of the reason for straggling behavior. Moreover, under equivalent straggler conditions,
the computational load requirements of the newly proposed SR-SGC scheme and the scheme in
Krishnan et al. (2021) are identical, whereas the new M-SGC scheme offers a significantly smaller
load requirement. The works Ye & Abbe (2018); Kadhe et al. (2020) explore a trade-off between
communication and straggler resiliency in GC. Several variations to the classical GC setting appear
in papers Raviv et al. (2020); Halbawi et al. (2018); Wang et al. (2019a;b); Maity et al. (2019).

There is a rich literature on distributing matrix multiplication or more general, polynomial function
computation (see Yang et al. (2019); Yu et al. (2017); Lee et al. (2018); Ramamoorthy et al. (2019);
Subramaniam et al. (2019); Yu et al. (2019); Dutta et al. (2020); Yu et al. (2020); Ramamoorthy
et al. (2020) and references therein). In Krishnan et al. (2020), the authors introduce a sequential
matrix multiplication framework, where coding across temporal dimension is exploited to reduce
the cumulative runtime for a sequence of matrix multiplication jobs. While we also explore the idea
of introducing temporal dimension to obtain improved coding schemes, extending the approach in
Krishnan et al. (2020) to our setting yields an inferior solution requiring a large computational load.

2 SEQUENTIAL GRADIENT CODING SETTING

For integers a, b, let [a : b] ≜ {i | a ≤ i ≤ b} and [a : b]∗ ≜ {i mod n | a ≤ i ≤ b}. For integer c,
we have c+ [a : b]∗ ≜ {c+ i | i ∈ [a : b]∗}. Workers are indexed by [0 : n− 1]. We are interested
in computing a sequence of J gradients {g(i)}i∈[1:J]. Computation of gradient g(i) is referred to
as job-i. All gradients are computed with respect to a single data set D (this assumption is just for
simplicity in exposition and our schemes can easily be adapted to include multiple data sets).

Data placement: Master partitions D into η data chunks {D0,D1, . . . ,Dη−1}, possibly of different
sizes. Each worker-i stores data chunks {Dj}j∈Di , where Di ⊆ [0 : η− 1]. Let gj(t) denote the t-th

2

Published as a conference paper at ICLR 2023

partial gradient computed with respect to Dj , i.e.,
∑

j∈[0:η−1] gj(t) = g(t). Naturally, we also say
that the partial gradient gj(t) corresponds to job-t.

Encoding: Master operates based on a certain concept of rounds and it takes J + T rounds to finish
computing all the J gradients. Here, T ≥ 0 is a system parameter which takes integer values. Let
t ∈ [1 : J + T]. In round-t, worker-i computes γi(t) partial gradients with respect to a subset of data
chunks it stores. These partial gradients may correspond to any of the jobs [1 : t]. In other words,
the partial gradients computed by worker-i in round-t are from within the set {gj(t′)}t′∈[1:t],j∈Di

.
The process of worker-i computing γi(t) partial gradients will be referred to as a task. Once the γi(t)
partial gradients are computed in round-t, worker-i returns a task result ϕi(t), which is a function of
the γi(t) partial gradients, via an encoding step.

Identification of stragglers: In each round-t, let κ(t) denote the time (in seconds) taken for the fastest
worker (say, worker-i) to return the task result to the master. Master then waits for µκ(t) (µ > 0 is a
tolerance parameter) more seconds and possibly more workers will return their task results during
this time. Any worker which does not return its task result during this time will be marked as a
straggler. Any pending tasks of stragglers will then be canceled and the system will move to the
next round. Clearly, if worker-i is a straggler in round-t, the task undertaken by it has “failed” and
task result ϕi(t) will not be returned to the master. We note that determining stragglers using the µ
parameter is in line with the earlier work Krishnan et al. (2020).

Decoding: In the end of round-(t+ T), master attempts to produce (decode) g(t) using all available
results from the set {ϕi(t

′)}i∈[0:n−1],t′∈[1:t+T]. i.e., master tries to finish job-t, in the end of round-
(t+ T). Decoding is assumed to incur negligible computational cost, in comparison to that for partial
gradient computation. This assumption can easily be justified for our proposed schemes, as they
require only finite memory. As workers potentially start computing partial gradients corresponding to
any job-t only from round-t onwards, the parameter T may be regarded as delay in finishing a job.

Normalized computational load per worker: Let d denote the number of data points in D. Let di(t)
denote the total number of data points across which worker-i computes γi(t) partial gradients in
round-t. The normalized (computational) load at worker-i in round-t is then given by: Li(t) ≜

di(t)
d .

Remark 2.1. Any dependencies existing between jobs need to be managed by choosing the T
parameter accordingly. Suppose job-i2 is dependent on the computation of g(i1), where i1 < i2.
One may choose here a T satisfying T ≤ i2 − i1 − 1. In our experiments presented in Sec. 4, we
concurrently train M neural network models, where jobs Mi+ 1, . . . ,M(i+ 1) are i-th iterations
(i = 0, 1, . . .) in the training of models 1, . . . ,M , respectively. Here, we need T ≤ M − 1.

Remark 2.2. The flexibility of T > 0 (coding across rounds) enables us to design coding schemes
which feature lower computational load and tolerate practically motivated straggler models. This in
turn leads to smaller cumulative runtime (in seconds) for finishing J jobs (in J + T rounds).

2.1 STRAGGLER MODELS

For the sake of our analysis and code design, we will be referring to the following three straggler
models. However, as explained in Remark 2.3 at the end of this section, and validated in Sec. 4, our
coding schemes apply to any naturally occurring straggler patterns.

(B,W, λ)-bursty straggler model: Based on experiments over Amazon EC2 cluster, the authors of
Yang et al. (2019) observe that a 2-state Gilbert-Elliot (GE) model (see Appendix C for more details)
can be used to track transitions of workers from being stragglers to non-stragglers and vice-versa.
However, while designing codes for straggler mitigation, a deterministic counterpart for the GE
model is more ideal. Sliding-window-based deterministic models have been employed in many
works as a reliable approximation of GE model; for instance, in the early classical work Forney
(1971), in Saberi et al. (2019) in the context of control systems, Martinian & Sundberg (2004) in the
context of low-latency communications and Krishnan et al. (2020) in the context of distributed matrix
multiplication. We will now define the (B,W, λ)-bursty straggler model. Let Si(t) be an indicator
function which is 1 if worker-i is a straggler in round-t and 0 otherwise. The straggler model is
defined by the following two properties:

1. (Spatial correlation): In every window Wj of the form [j : j +W − 1] consisting of W
consecutive rounds starting at round-j, there are at most λ ≤ n distinct stragglers. i.e., size
of the set of workers given by {i | Si(t) = 1 for some t ∈ Wj} is at most λ.

3

Published as a conference paper at ICLR 2023

2. (Temporal correlation): For any worker-i, first and last straggling slots (if any) are not more
than B − 1 rounds apart in every window Wj . i.e., if Si(t) = 1, for some t ∈ Wj , then
Si(l) = 0 for all l ∈ [t+B : j +W − 1].

Clearly, the parameters λ,B satisfy: 0 ≤ λ ≤ n, 1 ≤ B ≤ W .

(N,W ′, λ′)-arbitrary straggler model: This is a natural extension of the (B,W, λ)-bursty straggler
model where we consider arbitrary stragglers instead of bursty stragglers. As in the bursty model, in
every window W ′

j of the form [j : j +W ′ − 1], there are at most λ′ distinct stragglers. Moreover, for
every worker-i,

∑
t∈W ′

j
Si(t) ≤ N . The parameters λ′, N satisfy: 0 ≤ λ′ ≤ n, 0 ≤ N ≤ W ′.

s-stragglers-per-round model: In this model, in each round, at most s workers can be stragglers. Here
s is an integer satisfying 0 ≤ s < n.

Remark 2.3. Coding schemes that we present in the paper (see Sec. 3.2 and 3.3) are designed to
tolerate straggler patterns conforming to a “mixture” of these deterministic straggler models. As
these models are a design choice, the ground truth associated with the actual straggler behavior need
not always conform to them. For instance, we evaluate the performance of our coding schemes
on a large AWS cluster (see Sec. 4), in the presence of naturally occurring stragglers. Clearly, the
actual straggler behavior here need not be conforming to the straggler model used during code design.
However, even then, every job-t will still be finished by the end of round-(t+ T). We ensure this in
the following manner. In any round, if the actual straggler pattern deviates from the straggler model
assumption, the master will wait for stragglers to return results in that round. This way, the actual
straggler pattern will “effectively” continue conform to the assumed straggler model.

3 SEQUENTIAL GRADIENT CODING SCHEMES

3.1 PRELIMINARIES: GRADIENT CODING

We present here a summary of the (n, s)-GC scheme. The data set D is partitioned into η ≜ n
equally sized data chunks D0,D1, . . . ,Dn−1. Worker-i stores s + 1 data chunks {Dj}j∈[i:i+s]∗ .
With respect to each Dj stored, worker-i computes the partial gradient gj . Hence, worker-i computes
the following s + 1 partial gradients: {gj}j∈[i:i+s]∗ . Worker-i then transmits the result, which
is a linear combination of the s + 1 partial gradients, ℓi =

∑
j∈[i:i+s]∗ αi,jgj . The coefficients

{αi,j} are designed so that if master has access to results returned by any n− s out of n workers,
g ≜ g0+g1+ · · ·+gn−1 can be computed. In other words, for any W ⊆ [0 : n−1] with |W| = n−s,
there exist coefficients {βW,w}w∈W such that g =

∑
w∈W βW,wℓw. Clearly, the scheme tolerates

s stragglers. Applying the (n, s)-GC scheme to our framework, we get a scheme which computes
g(t) in round-t (i.e., delay T = 0). Each worker-i in round-t works on a task corresponding to
job-t. Specifically, worker-i computes {gj(t)}j∈[i:i+s]∗ and returns ℓi(t) =

∑
j∈[i:i+s]∗ αi,jgj(t).

Normalized load is given by LGC = s+1
n . This scheme clearly tolerates any straggler pattern

conforming to the s-stragglers-per-round model. We will now present both our proposed schemes.

3.2 SELECTIVE-REATTEMPT-SEQUENTIAL GRADIENT CODING (SR-SGC) SCHEME

SR-SGC scheme is a natural extension of the (n, s)-GC scheme. We begin with (n, s)-GC as the
“base scheme” and whenever there are more stragglers than the base scheme can handle, we will
carefully reattempt certain tasks across time. This simple idea helps the scheme tolerate a strict
superset of straggler patterns compared to the classical (n, s)-GC scheme for the same normalized
load (we present the formal statement in Prop. 3.1).

Design parameters: The parameter set is given by {n,B,W, λ}, where 0 < λ ≤ n,B > 0
and B divides (W − 1). i.e., there exists an integer x ≥ 1 such that W = xB + 1. We set
s ≜ ⌈ Bλ

W−1+B ⌉ = ⌈ λ
x+1⌉. The scheme incurs a delay of T = B and normalized load LSR-SGC = s+1

n .

Scheme outline: Recall the notation ℓi(t) presented in Sec. 3.1. In round-t, worker-i will attempt to
compute either ℓi(t) or else, ℓi(t−B) as we will see now. Using the property of (n, s)-GC, a job can
be finished if master receives (n− s) task results corresponding to that job. In round-t, if master finds
out that (n− ν) < (n− s) task results corresponding to job-(t−B) are received in round-(t−B),
the minimum additionally required number of (ν − s) tasks corresponding to job-(t − B) will be

4

Published as a conference paper at ICLR 2023

attempted in round-t. These tasks will be attempted by workers who did not previously return task
results corresponding to job-(t−B) in round-(t−B). Rest of the (n− ν + s) workers will attempt
tasks corresponding to job-t. On the other hand, if job-(t−B) is already finished in round-(t−B),
all tasks in round-t correspond to job-t. Let N (t) denote the number of task results corresponding to
job-t returned to master in round-t. In Algorithm 1, we formally describe the exact task assignments.
As jobs are indexed in the range [1 : J], for consistency in notation, we assume that all task results
corresponding to job-t′ are known to master by default (i.e., N (t′) = n), whenever t′ /∈ [1 : J].

Algorithm 1 Algorithm used by master to assign tasks in round-t

Initialize δ ≜ N (t−B).
for i ∈ [0 : n− 1] do

if δ < n− s and ℓi(t−B) is not returned previously by worker-i in round-(t−B) then
Worker-i attempts to compute ℓi(t−B). ▷ Recall the definition of ℓi(.) in Sec. 3.1
Set δ = δ + 1

else
Worker-i attempts to compute ℓi(t).

Proposition 3.1. Consider the SR-SGC scheme designed for parameters {n,B,W, λ}, where 0 <

λ ≤ n,B > 0,W = xB+1, T = B, s ≜ ⌈ Bλ
W−1+B ⌉ and LSR-SGC = s+1

n . The scheme then tolerates
any straggler pattern which conforms to either (i) the (B,W, λ)-bursty straggler model or else, (ii)
the s-stragglers-per-round model, when restricted to any window of W consecutive rounds.

The proof of Prop. 3.1 requires a careful analysis of dependencies between successive rounds due to
repetition of tasks. We defer the proof to Appendix D.
Remark 3.1. Let λ < n. Without selective repetition, classical GC requires s = λ in order to
tolerate the (B,W, λ)-bursty straggler model. In SR-SGC, we are able to choose a lower s value of
⌈ Bλ
W−1+B ⌉ and as a result, normalized load is lower as well. In another perspective, SR-SGC scheme

tolerates a superset of straggler patterns compared to the GC scheme for the same normalized load.

3.3 MULTIPLEXED-SEQUENTIAL GRADIENT CODING (M-SGC) SCHEME

In contrast to the SR-SGC scheme (where all tasks are coded using a base (n, s)-GC scheme), a
large fraction of computations in the M-SGC scheme are uncoded (thus incurs no computational
overheads). This results in the M-SGC scheme achieving a significantly lower normalized load
compared to SR-SGC or GC schemes. Such a lower normalized load eventually translates to reduced
cumulative runtimes as we see in Sec. 4.

The parameter set for M-SGC scheme is given by {n,B,W, λ}, where 0 ≤ λ < n, 0 < B < W .
The scheme incurs a delay of T = W − 2 + B. A minor modification of the scheme to cover the
λ = n scenario is discussed in Remark 3.2. As M-SGC scheme is more involved compared to the
SR-SGC scheme, we initially present an example which highlights the ideas involved in M-SGC
scheme. Subsequently, we provide the general coding scheme in Sec. 3.3.2. The scheme tolerates
straggler patterns which conform to either (B,W, λ)-bursty straggler model or (N = B,W ′ =
W +B − 1, λ′ = λ)-arbitrary straggler model (see Prop. 3.2).

3.3.1 EXAMPLE

Data placement: Consider parameters {n = 4, B = 2,W = 3, λ = 2}. Assume that data set D
contains d data points. D is partitioned into 16 data chunks of unequal sizes {D0, . . . ,D15}. Data
chunks D1 ≜ {D0, . . . ,D7} are of equal size and contain 3

32d data points each. Similarly, data
chunks D2 ≜ {D8, . . . ,D15} contain 1

32d data points each. These 16 data chunks are distributed
across workers in the following manner; worker-0: {D0,D1,D8,D9,D10,D12,D13,D14}, worker-
1: {D2,D3,D9,D10,D11,D13,D14,D15}, worker-2: {D4,D5,D10,D11,D8,D14,D15,D12}
and worker-3: {D6,D7,D11,D8,D9,D15,D12,D13}. Note that data chunks in D1 are not repli-
cated, whereas each data chunk in D2 is replicated 3 times. Each job-t is finished when master
computes g(t) = g0(t) + · · ·+ g15(t). A high level idea of the coding scheme is as follows. Failed
partial gradient computations with respect to data chunks D1 will be reattempted across rounds.
Partial gradient computations with respect to data chunks D2 will be made straggler-resilient by
employing the (4, 2)-GC scheme.

5

Published as a conference paper at ICLR 2023

Diagonally interleaved mini-tasks: The task performed by each worker-i in round-t consists of
W − 1 +B = 4 sequentially performed mini-tasks Ti(t; 0), . . . , Ti(t; 3). If worker-i is a straggler
in round-t, results of mini-tasks Ti(t; 0), . . . , Ti(t; 3) will not reach master and as far as master is
concerned, all of them “failed”. Conversely, if worker-i is a non-straggler in round-t, all the four mini-
task results will reach master in the end of round-t. Mini-tasks Ti(t; 0), Ti(t+ 1; 1), . . . , Ti(t+ 3; 3)
involve partial gradient computations corresponding to job-t (see Fig. 5 in the Appendix).

Fixed mini-task assignment: Computations done as part of first two mini-tasks Ti(t; 0), Ti(t; 1) are
fixed for all t. Specifically, mini-tasks along the “diagonal” Ti(t; 0) and Ti(t+1; 1) involve computing
g2i(t) and g2i+1(t), respectively.

Adaptive mini-task assignment: The other two mini-tasks Ti(t + 2; 2), Ti(t + 3; 3), which also
involve partial gradient computations corresponding to job-t, are assigned adaptively, based on
the straggler patterns seen in previous rounds. Specifically, if master did not receive g2i(t) in
round-t, Ti(t + 2; 2) involves computing g2i(t). Else if master did not receive g2i+1(t) in round-
(t + 1), Ti(t + 2; 2) involves computing g2i+1(t). In a similar manner, if master did not receive
g2i+1(t) in rounds (t + 1) and (t + 2), Ti(t + 3; 3) involves computing g2i+1(t). Note that so
far we have described only partial gradient computations with respect to data chunks in D1. In
round-(t + 2), if g2i(t) and g2i+1(t) are already available to master, Ti(t + 2, 2) will involve
computation of three partial gradients {gl(t)}l∈8+[i:i+2]∗ and obtaining the linear combination
ℓi,0(t) =

∑
j∈[i:i+2]∗ αi,jgj+8(t) (applying a (4, 2)-GC). Using properties of GC-scheme, if master

has access to any two among {ℓ0,0(t), . . . , ℓ3,0(t)}, g8(t) + g9(t) + g10(t) + g11(t) can be obtained.
Similarly, in round-(t+3), if g2i(t) and g2i+1(t) are already available to master, Ti(t+3, 3) involves
computing ℓi,1(t) =

∑
j∈[i:i+2]∗ αi,jgj+12(t). Master can recover g12(t) + g13(t) + g14(t) + g15(t)

from any two results among {ℓ0,1(t), . . . , ℓ3,1(t)}. This completes the description of the M-SGC
scheme. Note that number of data points involved is the same in both fixed and adaptive mini-tasks
and hence, computational load remains the same in both situations.

Analysis of straggler patterns: We will now show that the scheme tolerates any straggler pattern
conforming to the (B = 2,W = 3, λ = 2)-bursty straggler model. In Fig. 6 (included in the
Appendix), we illustrate mini-task assignments with respect to a straggler pattern conforming to this
model. As jobs are indexed in the range [1 : J], mini-tasks corresponding to job-t, t /∈ [1 : J] are
indicated using 0 in the figure. These are trivial mini-tasks which do not incur any computation.
Consider the computation of g(2) (i.e., job-2) based on Fig. 6. Since, worker-0 is a straggler in
round-2 and worker-1 is a straggler in rounds 2 and 3, computations of {g0(2), g2(2), g3(2)} failed
initially, got reattempted and succeeded. From ℓ2,0(2) and ℓ3,0(2) (both finished in round-4), the
master can recover g8(2) + g9(2) + g10(2) + g11(2), owing to the use of (4, 2)-GC. Similarly,
g12(2) + g13(2) + g14(2) + g15(2) can be recovered using ℓ0,1(2) and ℓ3,1(2) in round-5. Hence,
master computes g(2) ≜ g0(2) + · · ·+ g15(2) after round-5 (delay T = W − 2 +B = 3).

3.3.2 GENERAL SCHEME

Data placement: Assume that dataset D contains d data points. D is partitioned into (W −
1 + B)n unequally sized data chunks {D0,D1, . . . ,D(W−1+B)n−1}. Data chunks D1 ≜
{D0,D1, . . . ,D(W−1)n−1} are all equally sized and contain λ+1

n(B+(W−1)(λ+1))d data points each.

Similarly, D2 ≜ {D(W−1)n,D(W−1)n+1, . . . ,D(W−1+B)n−1} are also equally sized and contain
1

n(B+(W−1)(λ+1))d data points each. Data chunks in D1 are divided into n groups consisting of
(W − 1) data chunks each. Every worker will store one of these groups of data chunks. Pre-
cisely, worker-i stores data chunks {Dl}l∈[i(W−1):(i+1)(W−1)−1]. Similarly, D2 is divided into
B groups consisting of n data chunks each. Group-j, j ∈ [0 : B − 1], consists of data chunks
{D(W−1+j)n, . . . ,D(W+j)n−1}. The n equally sized data chunks in each group will be treated as n
partitions of data set in an (n, λ)-GC scheme (see Sec. 3.1) and will be stored in workers accordingly.
i.e., from each group-j, worker-i stores the (λ+ 1) data chunks {Dl}l∈(W−1+j)n+[i:i+λ]∗ .

Mini-task assignment: In round-t, each worker-i sequentially performs (W − 1 + B) mini-tasks
labelled as {Ti(t; 0), . . . , Ti(t;W − 2 + B)}. A mini-task involves either (i) computing partial
gradient with respect to one of the data chunks in D1 or else (ii) one partial gradient each with
respect to λ+ 1 data chunks (thus, λ+ 1 partial gradients in total) in D2. As noted in the example,
failed mini-tasks belonging to scenario (i) will be reattempted whereas those in scenario (ii) will be
compensated via use of (n, λ)-GC scheme. Recall that delay T = W − 2 +B. In Algorithm 2, we

6

Published as a conference paper at ICLR 2023

describe how mini-tasks are assigned. We have normalized load:

LM-SGC =

{
(λ+1)(W−1+B)

n(B+(W−1)(λ+1)) , if λ < n,
W−1+B
n(W−1) , if λ = n.

(1)

Remark 3.2 (Case of λ = n). For the special case λ = n, data set D will be partitioned into (W−1)n

equally sized data chunks D1 ≜ {D0,D1, . . . ,D(W−1)n−1}. i.e., effectively we have D2 ≜ Φ (null
set). For notational consistency, we set partial gradients gl(t) ≜ 0, l ∈ [(W−1)n : (W−1+B)n−1].
These are trivial partial gradients which do not incur any computation in Algorithm 2.
Remark 3.3. It is straightforward to note that for given {n,W,B}, normalized load is the largest
when λ = n. As B < W , we thus have LM-SGC ≤ 2

n irrespective of the choice of λ. In contrast,
normalized load s+1

n of SR-SGC scheme scales with λ (s ≜ ⌈ Bλ
W−1+B ⌉ ≥ 1).

Algorithm 2 Algorithm used by master to assign mini-tasks in round-t

for i ∈ [0 : n− 1] do
for j ∈ [0 : W − 2] do

Assign computation of gi(W−1)+j(t− j) as mini-task Ti(t; j).
▷ Mini-task result is gi(W−1)+j(t− j)

for j ∈ [W − 1 : W − 2 +B] do
if master received all of {gi(W−1)+j′(t− j)}j′∈[0:W−2] prior to round-t then

Assign computation of (λ+ 1) partial gradients {gjn+l(t− j)}l∈[i:i+λ]∗ as Ti(t; j).
▷ Mini-task result is ℓi,j−(W−1)(t− j) =

∑
l∈[i:i+λ]∗ αi,lgjn+l(t− j)

▷ Coefficients αi,l as defined in Sec. 3.1
else

for j′ ∈ [0 : W − 2] do
if master has not received gi(W−1)+j′(t− j) prior to round-t then

Assign computation of gi(W−1)+j′(t− j) as mini-task Ti(t; j).
▷ Mini-task result is gi(W−1)+j′(t− j)

break ▷ breaks the j′ for loop

Proposition 3.2. Consider the M-SGC scheme designed for parameters {n,B,W, λ}, where 0 ≤
λ ≤ n, 0 < B < W , T = W − 2 + B and LM-SGC as in equation 1. The scheme tolerates
any straggler pattern which conforms to either the (B,W, λ)-bursty straggler model or else, the
(N = B,W ′ = W +B − 1, λ′ = λ)-arbitrary straggler model.
Remark 3.4 (Near-optimality). Based on information-theoretic bounds (see Appendix F for more
details), we observe that when λ = n− 1 or n, M-SGC scheme is optimal as a scheme tolerating any
straggler pattern conforming to the (B,W, λ)-bursty straggler model. Moreover, for fixed n,B and
λ, the gap between the proposed load in equation 1 and optimal load decreases as O(1

W). Analogous
results are derived with respect to the (N,W ′, λ′)-arbitrary straggler model as well.

Remark 3.5. If (s+ 1) divides n, there exists a simplification to the GC scheme. Both SR-SGC and
M-SGC schemes can leverage the existence of such a simplified scheme. We discuss this in App. G.

4 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of proposed schemes by training multiple neural network
models concurrently. We use the AWS Lambda, a fully-managed and cost-efficient serverless cloud
computing service. Workers are invoked from the master node using HTTP requests, and task results
are received in the HTTP response payload. Appendices H and I provide detailed discussions on the
network architecture, experimental setup and potential applications.

4.1 ANALYSIS OF RESPONSE TIME

Our experiment setup consists of a master node and n = 256 workers. In Fig. 1, we demonstrate
statistics of response time across 100 rounds, where each worker calculates gradients for a batch of
16 MNIST images on a CNN involving three convolutional layers, followed by two fully connected

7

Published as a conference paper at ICLR 2023

layers. Fig. 1(a) shows the response time of each worker at every round. White cells represent
stragglers. As discussed in Sec. 2, a worker is deemed straggler when its response time exceeds
(1 + µ) times the response time of the fastest worker in the round. For the sake of consistency,
we choose µ = 1 for all experiments. Nonetheless, such a choice of µ is by no means critical to
observe stragglers. This can be seen in Fig. 1(c), where the empirical CDF of workers’ completion
time exhibits a relatively long tail. Fig. 1(b) plots the number of straggler bursts of different length
over this response profile. It can be observed that our response profile does not include nodes that
continue to remain stragglers for long duration. This motivates the use of coding across the temporal
dimension as proposed in the present work.

Figure 1: Statistics of response time for 256 workers across 100 rounds. Each worker calculates
gradients of the loss for a batch of 16 MNIST images on a convolutional neural network. (a) Each
white cell represents a worker (x-axis) who is a straggler at the corresponding round (y-axis). (b)
Histogram of stragglers’ burst lengths. (c) Empirical CDF of workers’ completion time, averaged
over 100 rounds (shades represent standard deviation).

4.2 COMPARISON OF CODING SCHEMES

Using the setup described in Sec. 4.1, we train M = 4 CNN classifiers for MNIST concurrently
following the approach stated in Remark 2.1. In every round, master samples a batch of 4096 data
points and distributes them among the workers. Non-straggling workers compute partial gradients
and return task results to the master at the end of each round. After completion of one update, master
uploads the updated model parameters to a shared network file system, accessible to the workers. We
use cross entropy as the loss function and ADAM as the optimizer. Moreover, the same dataset and
architecture are used for all the models.

In each experiment, we run a total of J = 480 jobs (120 jobs per classifier) using the three schemes,
namely GC, SR-SGC and M-SGC. As a baseline, we also train the classifiers without any coding
wherein the master node should wait for all the workers to return their task results. Finally, each
experiment is repeated 10 times to report the first and second-order statistics of total run times. Before
training the models, we perform some shorter experiments to choose the best-performing parameters
for each of the three coding schemes. Specifically, for GC, we perform a grid search over s and
select the value corresponding to the shortest run time. We refer readers to Appendix J for a detailed
discussion on the procedure of selecting the parameters for SR-SGC and M-SGC schemes, as well as
analysis of sensitivity to parameters.

Table 1 presents the total run time achieved by each coding scheme, along with the selected parameters
and resulting normalized loads. Selection of small values for parameters B and W in our sequential

8

Published as a conference paper at ICLR 2023

coding schemes matches the empirical evidence in Fig. 1(b) that isolated short-length-bursts are
prevalent. It is interesting to note that the effective value of parameter s in SR-SGC (s = 12) turns
out to be close to that of GC (s = 15). Fig. 2(a) plots total number of completed jobs (for all M = 4
models) across time, and Fig. 2(b) shows the course of training loss (of the first model out of the 4
models) as a function of time, for all coding schemes.

Table 1: Total run time achieved by different coding schemes

Scheme Parameters Normalized Load Run Time (s)

M-SGC B = 1,W = 2, λ = 27 0.008 891.37± 43.10
SR-SGC B = 2,W = 3, λ = 23 (s = 12) 0.051 994.22± 43.66
GC s = 15 0.062 1064.96± 46.72
No Coding − 0.004 1307.79± 61.88

Figure 2: (a) Number of completed rounds vs. clock time, averaged over 10 independent experiments.
(b) Training loss vs. clock time for the first model (out of four concurrently trained models), averaged
over 10 independent runs. Shades here represent standard deviation.

The first clear observation from Table 1 is that our proposed M-SGC achieves 16% lower run time
while maintaining smaller normalized load compared to the classical GC scheme. Furthermore,
compared to GC, SR-SGC shows slight improvements in total runtime and normalized load simulta-
neously, demonstrating the potential of incorporating selective repetition into GC. Next, as shown in
Fig. 2 and Table 1, the existence of stragglers is validated by the fact that any of the coding schemes
significantly outperforms the case of not using any coding. This is indeed in line with the empirical
observation of Figure 1(c), where the tail of the cumulative distribution of workers’ completion time
signals the existence of stragglers. Appendix K discusses how the overheads of decoding time and
parameter selection time can be completely removed in the training process. In Appendix L, we
present analogous results for concurrently training four ResNet-18 models on CIFAR-100 dataset.

5 CONCLUSION

We develop a new class of gradient coding schemes that exploit coding across the temporal dimension,
in addition to the spatial dimension (i.e., coding across workers) considered in prior works. Our first
scheme, SR-SGC uses the GC scheme in Tandon et al. (2017) as a base scheme and enhances it by
performing selective repetition of tasks based on the past sequence of straggler patterns. Our second
scheme, M-SGC multiplexes gradient coding and selective repetition of tasks over the dataset in a
novel way that dramatically reduces the computational load per worker, when compared to both GC
and SR-SGC. In addition, we demonstrate that the computational load of M-SGC can approach an
information theoretic lower bound in certain cases. We validate our schemes through experiments
over a large scale AWS Lambda cluster involving 256 worker nodes. We first analyze the response
time of workers and provide empirical evidence of straggler patterns that are consistent with our
modeling assumptions. We then demonstrate that the M-SGC scheme provides significant gains over
all the other schemes in real world experiments.

9

Published as a conference paper at ICLR 2023

REFERENCES

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for Hyper-Parameter
Optimization. In Proc. Annual Conference on Neural Information Processing Systems, 2011.

Neelkamal Bhuyan, Sharayu Moharir, and Gauri Joshi. Multi-Model Federated Learning with
Provable Guarantees. CoRR, abs/2207.04330, 2022.

Jean-Chrysostome Bolot. End-to-End Packet Delay and Loss Behavior in the Internet. In Proc.
ACM SIGCOMM Conference on Communications Architectures, Protocols and Applications, pp.
289–298. ACM, 1993.

Rafael Valente da Silva, Jinho Choi, Jihong Park, Glauber Brante, and Richard Demo Souza. Mul-
tichannel ALOHA Optimization for Federated Learning With Multiple Models. IEEE Wirel.
Commun. Lett., 11(10):2180–2184, 2022.

Jeffrey Dean and Luiz André Barroso. The tail at scale. Commun. ACM, 56(2):74–80, 2013.

Sanghamitra Dutta, Mohammad Fahim, Farzin Haddadpour, Haewon Jeong, Viveck R. Cadambe,
and Pulkit Grover. On the Optimal Recovery Threshold of Coded Matrix Multiplication. IEEE
Trans. Inf. Theory, 66(1):278–301, 2020.

G. Forney. Burst-Correcting Codes for the Classic Bursty Channel. IEEE Trans. Commun. Tech., 19
(5):772–781, 1971.

Wael Halbawi, Navid Azizan Ruhi, Fariborz Salehi, and Babak Hassibi. Improving Distributed
Gradient Descent Using Reed-Solomon Codes. In Proc. IEEE International Symposium on
Information Theory, ISIT, pp. 2027–2031. IEEE, 2018.

Swanand Kadhe, Onur Ozan Koyluoglu, and Kannan Ramchandran. Communication-Efficient
Gradient Coding for Straggler Mitigation in Distributed Learning. In Proc. IEEE International
Symposium on Information Theory, ISIT, pp. 2634–2639. IEEE, 2020.

M. Nikhil Krishnan, Seyederfan Hosseini, and Ashish Khisti. Coded Sequential Matrix Multiplication
For Straggler Mitigation. In Proc. Annual Conference on Neural Information Processing Systems,
2020.

M. Nikhil Krishnan, Erfan Hosseini, and Ashish Khisti. Sequential Gradient Coding for Packet-Loss
Networks. IEEE J. Sel. Areas Inf. Theory, 2(3):919–930, 2021.

Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris S. Papailiopoulos, and Kannan Ram-
chandran. Speeding Up Distributed Machine Learning Using Codes. IEEE Trans. Inf. Theory, 64
(3):1514–1529, 2018.

Songze Li and Salman Avestimehr. Coded Computing. Found. Trends Commun. Inf. Theory, 17(1):
1–148, 2020.

Raj Kumar Maity, Ankit Singh Rawat, and Arya Mazumdar. Robust Gradient Descent via Moment
Encoding and LDPC Codes. In IEEE International Symposium on Information Theory, ISIT, pp.
2734–2738. IEEE, 2019.

Emin Martinian and Carl-Erik W. Sundberg. Burst erasure correction codes with low decoding delay.
IEEE Trans. Inf. Theory, 50(10):2494–2502, 2004.

Aditya Ramamoorthy, Li Tang, and Pascal O. Vontobel. Universally Decodable Matrices for Dis-
tributed Matrix-Vector Multiplication. In Proc. IEEE International Symposium on Information
Theory, ISIT, pp. 1777–1781. IEEE, 2019.

Aditya Ramamoorthy, Anindya Bijoy Das, and Li Tang. Straggler-resistant distributed matrix
computation via coding theory. CoRR, abs/2002.03515, 2020.

Netanel Raviv, Itzhak Tamo, Rashish Tandon, and Alexandros G. Dimakis. Gradient Coding From
Cyclic MDS Codes and Expander Graphs. IEEE Trans. Inf. Theory, 66(12):7475–7489, 2020.

Amir Saberi, Farhad Farokhi, and Girish N. Nair. State Estimation via Worst-Case Erasure and
Symmetric Channels with Memory. In Proc. IEEE International Symposium on Information
Theory, ISIT, pp. 3072–3076. IEEE, 2019.

10

Published as a conference paper at ICLR 2023

A. M. Subramaniam, A. Heidarzadeh, and K. R. Narayanan. Random Khatri-Rao-Product Codes for
NumericallyStable Distributed Matrix Multiplication. In Proc. Allerton Conf. on Comm., Contr.,
and Comp., pp. 253–259, 2019.

Rashish Tandon, Qi Lei, Alexandros G. Dimakis, and Nikos Karampatziakis. Gradient Coding:
Avoiding Stragglers in Distributed Learning. In Proc. International Conference on Machine
Learning, ICML, volume 70, pp. 3368–3376. PMLR, 2017.

Haozhao Wang, Song Guo, Bin Tang, Ruixuan Li, and Chengjie Li. Heterogeneity-aware Gradient
Coding for Straggler Tolerance. In Proc. IEEE International Conference on Distributed Computing
Systems, ICDCS, pp. 555–564. IEEE, 2019a.

Hongyi Wang, Zachary B. Charles, and Dimitris S. Papailiopoulos. ErasureHead: Distributed
Gradient Descent without Delays Using Approximate Gradient Coding. CoRR, abs/1901.09671,
2019b.

Yanzhao Wu, Ling Liu, and Ramana Kompella. Parallel detection for efficient video analytics at
the edge. In Proc. IEEE International Conference on Cognitive Machine Intelligence, CogMI, pp.
1–10. IEEE, 2021.

Chien-Sheng Yang, Ramtin Pedarsani, and Amir Salman Avestimehr. Timely Coded Computing. In
Proc. IEEE International Symposium on Information Theory, ISIT, pp. 2798–2802. IEEE, 2019.

Min Ye and Emmanuel Abbe. Communication-Computation Efficient Gradient Coding. In Proc.
International Conference on Machine Learning, ICML, volume 80, pp. 5606–5615. PMLR, 2018.

Qian Yu, Mohammad Ali Maddah-Ali, and Salman Avestimehr. Polynomial Codes: an Optimal
Design for High-Dimensional Coded Matrix Multiplication. In Proc. Annual Conference on Neural
Information Processing Systems, pp. 4403–4413, 2017.

Qian Yu, Songze Li, Netanel Raviv, Seyed Mohammadreza Mousavi Kalan, Mahdi Soltanolkotabi,
and Amir Salman Avestimehr. Lagrange Coded Computing: Optimal Design for Resiliency,
Security, and Privacy. In Proc. International Conference on Artificial Intelligence and Statistics,
AISTATS, volume 89, pp. 1215–1225. PMLR, 2019.

Qian Yu, Mohammad Ali Maddah-Ali, and Amir Salman Avestimehr. Straggler Mitigation in
Distributed Matrix Multiplication: Fundamental Limits and Optimal Coding. IEEE Trans. Inf.
Theory, 66(3):1920–1933, 2020.

Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012.

11

Published as a conference paper at ICLR 2023

A SUMMARY OF NOTATIONS

Table 2: Table of notations

Symbol Meaning

n Number of workers
J Number of jobs
T Delay parameter
Z The set of all integers
[a : b] {i ∈ Z | a ≤ i ≤ b}
[a : b]∗ {i mod n | i ∈ [a : b]}
c+ [a : b]∗ {c+ i | i ∈ [a : b]∗}
D Dataset
Di i-th data chunk
g(t) Gradient corresponding to job-t
gi(t) i-th partial gradient corresponding to job-t
η Number of data chunks
γi(t) Number of partial gradients computed by worker-i in round-t
s Upper limit on the number of stragglers per round (GC, SR-SGC schemes)
µ Tolerance parameter
Li(t) Normalized computational load at worker-i in round-t
W Window size for the bursty straggler model
W ′ Window size for the arbitrary straggler model
λ Upper limit on the number of stragglers in any window (bursty straggler model)
λ′ Upper limit on the number of stragglers in any window (arbitrary straggler model)
B Upper limit on the length of burst
N Upper limit on the number of straggling rounds of a worker in any window
ℓi(t) Task result corresponding to job-t returned by worker-i (GC, SR-SGC schemes)
Ti(t; j) j-th mini-task of worker-i in round-t (M-SGC scheme)
ℓi,j(t) Task result corresponding to job-t returned by worker-i (M-SGC scheme)

B A BRIEF OVERVIEW ON THE USE OF CODING FOR STRAGGLER MITIGATION
IN DISTRIBUTED COMPUTING SYSTEMS

Stragglers, or slow processing workers, are common in distributed computing systems and potentially
delay the timely completion of computational jobs. One may use the following analogy to understand
the importance of erasure codes in the context of distributed computing. Consider an [n, k] erasure
code which encodes k bits of data to produce n > k coded bits for transmission over a channel
which could erase a few bits. Even if part of the n coded bits are erased by the channel in this
case, the redundant (n − k) bits aid in data recovery. The final job result to be obtained by the
master in a distributed computing system may be compared to the k-bit data which is being encoded.
Computations undertaken by a worker may be thought of as a coded bit of an erasure code. Naturally,
delayed responses due to stragglers correspond to bit erasures. The core idea behind existing works
in the literature is that erasure codes offer a way to efficiently add redundancy to computations or data
so that jobs can still be completed on schedule, even when some computations are unavailable. The
use of erasure coding to combat stragglers in distributed computing systems is initially investigated
in the work Lee et al. (2018) (in the context of distributed matrix multiplication). The survey Li &
Avestimehr (2020) provides a comprehensive summary of recent developments in the area.

Consider the following toy example to demonstrate the key idea employed in Lee et al. (2018).
Assume that the master node wants to distribute the job of computing A⊤x across n = 3 workers,
where any one of the workers could be a straggler. The master will partition the columns of A as
[A0 | A1]. It will now pass {A0, x}, {A1, x} and {A2 ≜ (A0 + A1), x} to workers 0, 1 and 2,
respectively. Worker-i will attempt to compute A⊤

i x and return the result. Clearly, the master can
compute A⊤x as soon as it receives results from any two workers and hence the system is resilient
against one straggler.

12

Published as a conference paper at ICLR 2023

The gradient coding framework proposed in Tandon et al. (2017) examines the possibility of using
erasure codes to perform distributed stochastic gradient descent in a straggler-resilient manner. We
borrow the following example from the original paper to highlight the key idea. Let the dataset D
be partitioned into D0, D1 and D2. Workers 0, 1 and 2 store {D0,D1}, {D1,D2} and {D2,D0},
respectively. Worker-0 is supposed to compute partial gradients {g0, g1} on data chunks {D0,D1}
and then return ℓ0 ≜ g0

2 + g1 to the master. Similarly, workers 1 and 2 attempt to return ℓ1 ≜ g1 − g2
and ℓ2 ≜ g0

2 + g2, respectively. It can be inferred that g ≜ g0 + g1 + g2 can be computed from the
results returned by any two workers. For instance, suppose workers 0 and 1 have returned their results
and worker-2 is a straggler. In this case, we have g = 2(g02 + g1)− (g1 − g2) = 2ℓ0 − ℓ1.

C ON THE USE OF GILBERT-ELLIOT MODEL FOR STRAGGLERS

The Gilbert-Elliot (GE) model is a 2-state probabilistic model with state transition probabilities as
outlined in Fig. 3. In the context of modeling stragglers, a worker is a straggler if and only if it is in
state S and a non-straggler otherwise. If a worker is a straggler in a given round, it will continue to
be a straggler in the next round with probability (1− pS). Similarly, a non-straggler will continue
to remain so in the next round with probability (1− pN). In essence, the GE model suggests that
straggling behavior occurs periodically and is often followed by non-straggling behavior.

Figure 3: The 2-state Gilbert-Elliot model.

In distributed systems, stragglers occur due to reasons such as resource sharing, communication
bottlenecks, routine maintenance activities etc. The periodic spikes in latency that are caused by
several of these factors (see Dean & Barroso (2013); Bolot (1993)) are naturally captured by the
GE model. The authors of Yang et al. (2019) make an empirical observation that the GE model can
accurately track the state transitions of workers on an Amazon EC2 cluster, particularly in the context
of applying erasure codes for straggler mitigation. In the current study, we approximate the GE model
using deterministic, sliding-window-based models since they are more tractable in terms of code
design. As our experiments indicate, such a design strategy finally led to techniques that outperform
the baseline GC on an Amazon Lambda cluster.

We will now present an intuitive justification on why sliding-window-based models are a natural
candidate to model straggler behavior in our work. Note that the sliding-window-based models
introduce constraints on the local structure of straggler patterns. For example, in the bursty model, a
burst of straggling rounds is followed by a period when the worker is a non-straggler. This provides a
simplified approximation of the GE model, capturing the dominant set of straggler patterns associated
with the GE channel (any other straggler pattern will be handled through wait-outs). Similarly, in
the arbitrary straggler model, we put a constraint on the total number of straggling rounds in each
window without requiring that the straggling rounds be consecutive. Finally, in our proposed setting
of sequential gradient coding, it turns out that modeling local constraints on straggler patterns using
the sliding-window-straggler model is a natural fit – for a job that starts in round-i and is completed
in round-(i+∆), the straggler patterns around the interval [i : i+∆] are relevant.

D PROOF OF PROPOSITION 3.1

Consider a straggler pattern which conforms to either (i) the (B,W, λ)-bursty straggler model or
else, (ii) the s-stragglers-per-round model, in any window of rounds Wj ≜ [j : j + W − 1],
j ∈ [1 : J + T −W + 1]. Let t′ ∈ [1 : J + T] denote the first round in which there are more than

13

Published as a conference paper at ICLR 2023

s stragglers. All the tasks attempted in round-t′ correspond to job-t′. By assumption, the straggler
pattern, when restricted to the W rounds [t′ : t′ + xB] conforms to the (B,W, λ)-bursty straggler
model. Let there be λ0 > s stragglers in round-t′. In round-(t′ +B), λ0 − s tasks corresponding to
job-t′ will be attempted by λ0 − s workers who were stragglers in round-t′ (see Fig. 4). Because
of the straggler model assumption, none of these workers will be stragglers again in round-(t′ +B)
and hence, job-t′ will be finished in round-(t′ + B) with delay B. Clearly, round-(t′ + B) is a
“deviation” from the (n, s)-GC scheme as not all tasks in this round correspond to job-(t′ + B).
Suppose now there are λ1 stragglers in round-(t′ +B). Thus, number of task results corresponding
to job-(t′ +B) returned by workers in round-(t′ +B) is given by n− λ1 − λ0 + s. If this quantity
is greater than or equal to n− s, job-(t′ +B) can be finished in round-(t′ +B) itself and there will
be a “reset” in round-(t′ + 2B) as all tasks there correspond to job-(t′ + 2B). On the other hand, if
(n− λ1 − λ0 + s) < (n− s), (λ0 + λ1 − 2s) tasks corresponding to job-(t′ +B) will be attempted
in round-(t′ + 2B) by workers who did not return task results corresponding to job-(t′ + B) in
round-(t′ + B). These workers can either be stragglers in round-(t′ + B) or else, be processing
tasks corresponding to job-t′ in round-(t′ +B). In either case, these workers cannot be stragglers
in round-(t′ + 2B) owing to the straggler model (see Fig. 4). Hence, job-(t′ + B) will finish in
round-(t′ + 2B) will delay B. Now, if not enough task results corresponding to job-(t′ + 2B) are
returned in round-(t′ + 2B), the minimum-required number of additional tasks corresponding to this
job will be attempted in round-(t′ + 3B) and so on. We will now show that there exist an ℓ ∈ [1 : x]
such that jobs t′, t′ +B, . . . , t′ + (ℓ− 1)B are finished with delay precisely B and job-(t′ + ℓB) is
finished with delay 0. i.e., there is a reset happening in round-(t′ + (ℓ+ 1)B). In order to show this,
assume that jobs t′, t′ +B, . . . , t′ + (x− 1)B have some of their tasks attempted with delay B (i.e.,
no reset in rounds t′ + 2B, . . . , t′ + xB). Because of the straggler model, all these delayed tasks
are guaranteed to succeed and hence all these jobs finish with delay B. We should now prove that
there is a reset in round-(t′ + (x+ 1)B), i.e., ℓ = x. For j ∈ [0 : x], let λj indicate the number of
stragglers in round-(t′ + jB). Number of tasks corresponding to job-(t′ + (x− 1)B) attempted in
round-(t′ + xB) is given by λ0 + λ1 + · · ·+ λx−1 − xs. Thus, number of task results corresponding
to job-(t′ + xB) received by master in round-(t′ + xB) is given by:

n− λx − (λ0 + λ1 + · · ·+ λx−1 − xs) = n− λ0 − λ1 − · · · − λx + xs

≥ n− λ+ xs

≥ n− ⌈ λ

x+ 1
⌉(x+ 1) + xs

= n− s(x+ 1) + xs

= n− s,

where we have used the fact that λ0 + · · · + λx ≤ λ owing to the straggler model. Hence, in
summary, we have showed that if all of jobs t′, t′ +B, . . . , t′ + (x− 1)B finish with delay B, then
t′ + xB finishes with delay 0 and there will be a reset in round-(t′ + (x+ 1)B). Thus, there exist
ℓ ∈ [1 : x] such that all jobs t′, t′ + B, . . . , t′ + (ℓ − 1)B finish with delay B and job-(t′ + ℓB)
finishes with delay 0. Because of the reset happening in round-(t′ + (ℓ + 1)B), the “effect” of
Algorithm 1 is now confined only to rounds t′, t′ +B, . . . , t′ + ℓB. We can now safely regard rounds
t′, t′ + B, . . . , t′ + ℓB as straggler-free as these rounds contain only tasks corresponding to jobs
t′, t′ + B, . . . , t′ + ℓB and we have shown that all these jobs succeed with delay at most B. We
can now essentially repeat all these steps starting with finding the next “first” round-t′ having more
than s stragglers. After repeating these arguments sufficient number of times, eventually, we will be
left with jobs R ⊆ [1 : J], where all rounds in R has at most s stragglers. Workers in each round-r,
r ∈ R, attempt only tasks corresponding to job-r. Thus, all these jobs can be finished with delay 0.
This completes the proof.

E PROOF OF PROPOSITION 3.2

Consider the computation of g(t), t ∈ [1 : J] in the presence of a straggler pattern conforming
to one of the following; (i) (B,W, λ)-bursty straggler model or else, (ii) (N = B,W ′ = W +
B − 1, λ′ = λ)-arbitrary straggler model. By design of Algorithm 2, for each worker-i, mini-tasks
{Ti(t; 0), Ti(t + 1; 1), . . . , Ti(t + W − 2 + B;W − 2 + B)} correspond to job-t. Master has to

14

Published as a conference paper at ICLR 2023

Round

𝑡′ 𝑡′ + 𝐵

Tasks
corresp. to

job−𝑡′

Tasks
corresp. to

job−𝑡’

.….

𝑡′ + ℓ𝐵

𝜆0

𝜆1

Tasks
corresp. to
job−(𝑡′ + 𝐵)

Tasks
corresp. to

job−𝑡’

Tasks
corresp. to
job−(𝑡′ + 𝐵)

Tasks
corresp. to
job−(𝑡′ + 𝐵)

𝜆0 − 𝑠

𝑡′ + 2𝐵

𝜆0
+ 𝜆1
− 2𝑠

Tasks
corresp. to

job−(𝑡′ + 2𝐵)

Tasks
corresp. to
job−(𝑡′ + 𝐵)

Tasks
corresp. to job-
(𝑡′ + ℓ𝐵 + 𝐵)

Tasks
corresp. to

job−(𝑡′ + 2𝐵)

Tasks
corresp. to

job−(𝑡′ + 2𝐵)

.….

Tasks
corresp. to

job−(𝑡′ + ℓ𝐵)

Tasks
corresp. to job-
(𝑡′ + ℓ𝐵 − 𝐵)

Tasks
corresp. to

job−(𝑡′ + ℓ𝐵)

Tasks
corresp. to

job−(𝑡′ + ℓ𝐵)

Tasks
corresp. to job-
(𝑡′ + ℓ𝐵 + 𝐵)

𝜆2

𝜆ℓ

𝜆0 +⋯
+ 𝜆ℓ−1 − ℓ𝑠

Tasks
corresp. to job-
(𝑡′ + ℓ𝐵 + 𝐵)

𝑡′ + (ℓ + 1)𝐵

Workers

Figure 4: An illustration of task assignment in SR-SGC. In the initial rounds, the task assignment is
precisely as in an (n, s)-GC scheme and all tasks in round-t correspond to job-t. In any such round-t,
if there are at most s stragglers, job-t can be finished in round-t itself. Let t′ denote a round where
all tasks correspond to job-t′ and there are λ0 > s stragglers. Stragglers are indicated in grey color.
In round-(t′ +B), there is a deviation from the (n, s)-GC scheme as λ0 − s tasks corresponding to
job-t′ will be attempted in this round (these tasks which are attempted with delay B are indicated
in orange). These tasks are attempted by workers who did not return task results corresponding to
job-t′ in round-t′. In round-(t′ +B), n− λ1 − λ0 + s workers return task results corresponding to
job-(t′ +B). If this quantity is lesser than n− s, λ0 + λ1 − 2s tasks corresponding to job-(t′ +B)
will be attempted in round-(t′ + 2B) by workers who did not return task results corresponding to
job-(t′ +B) in round-(t′ +B). The process is continued in a similar manner. If the straggler pattern
in the window of rounds [t′ : t′ + xB] conforms to the (B,W, λ)-bursty straggler model, there exists
an ℓ ∈ [1 : x] such that in round-(t′ + (ℓ+ 1)B) a “reset” happens back to the (n, s)-GC scheme,
i.e., in round-(t′ + (ℓ+ 1)B) all tasks correspond to job-(t′ + (ℓ+ 1)B).

𝒯𝑖(5; 0) 𝒯𝑖(6; 0) 𝒯𝑖(7; 0) 𝒯𝑖(8; 0) 𝒯𝑖(9; 0) 𝒯𝑖(10; 0)

𝒯𝑖(5; 1) 𝒯𝑖(6; 1) 𝒯𝑖(7; 1) 𝒯𝑖(8; 1) 𝒯𝑖(9; 1) 𝒯𝑖(10; 1)

𝒯𝑖(5; 2) 𝒯𝑖(6; 2) 𝒯𝑖(7; 2) 𝒯𝑖(8; 2) 𝒯𝑖(9; 2) 𝒯𝑖(10; 2)

𝒯𝑖(5; 3) 𝒯𝑖(6; 3) 𝒯𝑖(7; 3) 𝒯𝑖(8; 3) 𝒯𝑖(9; 3) 𝒯𝑖(10; 3)

Round

Mini-tasks corresp. to job-5

Figure 5: Figure corresponding to the M-SGC example provided in Sec. 3.3.1. For an M-SGC
scheme, all mini-tasks across a “diagonal” correspond to the same job.

15

Published as a conference paper at ICLR 2023

Worker-0

𝑔0(1)

𝟎

𝟎

𝟎

𝑔0(2)

𝑔1(1)

𝟎

𝟎

𝑔0(3)

𝑔1(2)

𝒈𝟎(𝟏)

𝟎

𝑔0(4)

𝑔1(3)

𝒈𝟎(𝟐)

𝒈𝟏(𝟏)

𝑔0(5)

𝑔1(4)

ℓ𝟎,𝟎(𝟑)

ℓ𝟎,𝟏(𝟐)

𝑔0(6)

𝑔1(5)

ℓ𝟎,𝟎(𝟒)

ℓ𝟎,𝟏(𝟑)

Worker-1

𝑔2(1)

𝟎

𝟎

𝟎

𝑔2(2)

𝑔3(1)

𝟎

𝟎

𝑔2(3)

𝑔3(2)

𝒈𝟑(𝟏)

𝟎

𝑔2(4)

𝑔3(3)

𝒈𝟐(𝟐)

𝒈𝟑(𝟏)

𝑔2(5)

𝑔3(4)

𝒈𝟐(𝟑)

𝒈𝟑(𝟐)

𝑔2(6)

𝑔3(5)

ℓ𝟏,𝟎(𝟒)

ℓ𝟏,𝟏(𝟑)

Worker-2

𝑔4(1)

𝟎

𝟎

𝟎

𝑔4(2)

𝑔5(1)

𝟎

𝟎

𝑔4(3)

𝑔5(2)

ℓ𝟐,𝟎(𝟏)

𝟎

𝑔4(4)

𝑔5(3)

ℓ𝟐,𝟎(𝟐)

ℓ𝟐,𝟏(𝟏)

𝑔4(5)

𝑔5(4)

ℓ𝟐,𝟎(𝟑)

ℓ𝟐,𝟏(𝟐)

𝑔4(6)

𝑔5(5)

𝒈𝟓(𝟒)

ℓ𝟐,𝟏(𝟑)

Worker-3

𝑔6(1)

𝟎

𝟎

𝟎

𝑔6(2)

𝑔7(1)

𝟎

𝟎

𝑔6(3)

𝑔7(2)

ℓ𝟑,𝟎(𝟏)

𝟎

𝑔6(4)

𝑔7(3)

ℓ𝟑,𝟎(𝟐)

ℓ𝟑,𝟏(𝟏)

𝑔6(5)

𝑔7(4)

ℓ𝟑,𝟎(𝟑)

ℓ𝟑,𝟏(𝟐)

𝑔6(6)

𝑔7(5)

ℓ𝟑,𝟎(𝟒)

ℓ𝟑,𝟏(𝟑)

Round

1 2 3 4 5 6

Figure 6: Figure corresponding to the M-SGC example provided in Sec. 3.3.1. Rectangles depict
mini-tasks (shaded ones have failed due to stragglers). Reattempted mini-tasks are indicated in red.
Mini-task results in blue are linear combinations of 3 partial gradients.

compute:
g(t) ≜

∑
j∈[0:(W−1)n−1]

gj(t)︸ ︷︷ ︸
g′(t)

+
∑

l∈[(W−1)n:(W−1+B)n−1]

gl(t)︸ ︷︷ ︸
g′′(t)

by the end of round-(t+ T), where T = W − 2 +B. If λ = n, we only have the g′(t) part and set
g′′(t) ≜ 0. We will now show that master will be able to compute each of {g′(t), g′′(t)} individually
by the end of round-(t+W − 2 +B) in presence of straggler patterns conforming to one of these
straggler models.

Computing g′(t): From Algorithm 2, it can be noted that mini-task Ti(t + j; j), j ∈ [0 : W − 2]
involves computing gi(W−1)+j(t). If worker-i is not a straggler in all the rounds [t : t +W − 2],
clearly, master can compute

∑
j∈[0:W−2] gi(W−1)+j(t) in the end of round-(t+W − 2).

Now, consider the remaining situation that worker-i is a straggler in at least one of the rounds within
[t : t+W − 2]. We initially discuss the case that the straggler pattern conforms to (B,W, λ)-bursty
straggler model. Worker-i experiences at most B straggling rounds (see Fig. 7) among rounds
[t : t + W − 2 + B]. Suppose worker-i is a straggler in x′ rounds, x′ ∈ [1 : B], within rounds
[t : t + W − 2]. Thus, x′ partial gradients among {gi(W−1)+j(t)}j∈[0:W−2] are not returned by
worker-i in rounds [t : t+W − 2]. However, Algorithm 2 reattempts those failed partial gradient
computations in rounds [t+W − 1 : t+W − 2 +B]. Even if there are B − x′ straggling rounds
among [t+W − 1 : t+W − 2 +B], in the remaining x′ rounds, the failed partial gradients will be
successfully computed. Hence, using mini-task results returned by worker-i, master can compute∑

j∈[0:W−2] gi(W−1)+j(t) by the end of round-(t+W − 2 +B). By accumulating results from all
the n workers, master will be able to compute g′(t) by the end of round-(t+W − 2 +B).

We now consider the case where straggler pattern conforms to the (N = B,W ′ = W+B−1, λ′ = λ)-
arbitrary straggler model. As per the model, a worker can be a straggler in at most N = B rounds
in any sliding window consisting of W ′ = W − 1 + B consecutive rounds. Let worker-i be a
straggler in x′′ rounds (x′′ ∈ [1 : B]) within rounds [t : t + W − 2] and at most B − x′′ rounds
within [t + W − 1 : t + W − 2 + B]. Clearly, x′′ mini-tasks among {gi(W−1)+j(t)}j∈[0:W−2]

fail in their first attempt. However, as worker-i is a non-straggler in at least x′′ rounds within

16

Published as a conference paper at ICLR 2023

[t+W − 1 : t+W − 2+B], these mini-tasks will eventually be repeated and finished. Thus, master
computes

∑
j∈[0:W−2] gi(W−1)+j(t) by the end of round-(t+W − 2 +B). Collecting results from

all the n workers, master will be able to compute g′(t) by the end of round-(t+W − 2 +B).

Computing g′′(t): Again, we begin with discussing the case where a straggler pattern conforms to the
(B,W, λ)-bursty straggler model. For any straggler pattern conforming to this straggler model, there
exist (n−λ) workers who do not have any straggling rounds among any window of rounds of the form
Wj ≜ [j : j +W − 1]. In particular, consider the rounds in Wt. Assume that worker-i does not have
any straggling rounds in the window Wt. Thus, mini-tasks {Ti(t+ l; l)}W−2

l=0 will be successful and
partial gradients {gi(W−1)+l(t)}W−2

l=0 will be computed in the first attempt. Hence, from Algorithm
2, it can be inferred that the mini-task Ti(t+W − 1;W − 1) involves computing ℓi,0(t). As worker-i
is not a straggler in round-(t + W − 1), master receives the linear combination ℓi,0(t). As there
are (n − λ) such workers returning ℓi,0(t)’s, owing to the use of (n, λ)-GC, master can compute∑

l∈[(W−1)n:Wn−1] gl(t) by the end of round-(t+W − 1). Similarly, due to the (B,W, λ)-bursty
straggler model assumption, there are (n − λ) workers who do not have any straggling rounds
in the window Wt+1 = [t + 1 : t + W]. Let worker-i′ be one such worker. All the mini-tasks
{Ti′(t + 1; 1), · · · , Ti′(t + W − 2;W − 2)} will be successful and {gi′(W−1)+l(t)}W−2

l=1 will be
computed in their first attempts. In round-t, worker-i′ can possibly be a straggler. However, as worker-
i′ is not a straggler in round-(t+W − 1), the failed computation of gi′(W−1)(t) will be reattempted
and finished in round-(t +W − 1). Thus, by the end of round-(t +W − 1), all partial gradients
{gi′(W−1)+l(t)}W−2

l=0 are guaranteed to be computed. Hence, mini-task Ti′(t + W ;W) involves
computing ℓi′,1(t). As round-(t+W) is a non-straggling round, master will receive ℓi′,1(t) in the
end of round-(t+W). Using (n− λ) such ℓi′,1(t)’s, master can compute

∑
l∈[Wn:(W+1)n−1] gl(t).

In a similar manner, it can be argued that, for m ∈ [0 : B − 1], master will be able to compute∑
l∈[(W−1+m)n:(W+m)n−1] gl(t) in the end of round-(t + W − 1 + m). Hence, by the end of

round-(t+W − 2 +B), master is able to compute g′′(t).

In the case if straggler pattern conforms to the (N = B,W ′ = W + B − 1, λ′ = λ)-arbitrary
straggler model, there are n−λ workers who do not have any straggling rounds in [t : t+W −2+B].
For any such worker-i, computations of {gi′(W−1)+l(t)}W−2

l=0 are all finished by the end of round-
(t+W − 2). Hence, in round-(t+ j), j ∈ [W − 1 : W − 2 +B], worker-i will compute and return
ℓi,j−W+1(t) to master. Using (n, λ)-GC, results from n − λ such workers can be used by master
to obtain

∑
l∈[jn:(j+1)n−1] gl(t). Thus, by the end of round-(t + W − 2 + B), master is able to

compute g′′(t).

F NEAR-OPTIMALITY OF M-SGC SCHEME

As seen earlier, SR-SGC scheme offers a clear advantage over GC scheme, as it tolerates a super set
of straggler patterns; bursty and s-stragglers-per-round straggler patterns, for the same normalized

….

Round

….Worker-𝑖

𝑡 𝑡 +𝑊 − 2 + 𝐵

𝑥 𝑊 − 1 𝐵 − 𝑥

….

𝑡 + 𝑥 − 1

(a)

….

Round

….Worker-𝑖

𝑡 𝑡 +𝑊 − 2 + 𝐵

𝑦 𝐵 𝑊 − 1 − 𝑦

….

𝑡 + 𝑦

(b)

Figure 7: In the figure, shaded boxes depict straggling rounds. Consider a straggler pattern conforming
to the (B,W, λ)-bursty straggler model. The straggling rounds, if any, seen by worker-i among
rounds [t : t+W − 2 +B] will be a subset of the B straggling rounds indicated in either situation
(a) or (b). Here x ∈ [1 : B], y ∈ [0 : W − 1].

17

Published as a conference paper at ICLR 2023

load of s+1
n . In the case of M-SGC scheme, the normalized load is substantially smaller as we note

in Remark 3.3. We will now show that the M-SGC scheme is near-optimal in terms of normalized
load. In the theorem below, we derive a fundamental lower bound on normalized load of any
sequential gradient coding scheme which tolerates straggler patterns conforming to the (B,W, λ)-
bursty straggler model.
Theorem F.1. Consider any sequential gradient coding scheme, which tolerates straggler patterns
permitted by the (B,W, λ)-bursty straggler model. Let the normalized load per worker L be a
constant, T < ∞ and the number of jobs J → ∞. We have the following:

L ≥ L∗
B ≜

{
W−1+B

n(W−1)+B(n−λ) , if B < W,
1

n−λ , if B = W.
(2)

Proof. We divide the proof into two cases; B < W and B = W .

• B < W : Consider the periodic straggler pattern shown in Fig. 8, which conforms to the
(B,W, λ)-bursty straggler model. Consider now the first η(W − 1 + B) rounds where
η > 0 is a large enough integer. There are ηBλ straggling rounds faced by workers
[0 : λ − 1] among these η(W − 1 + B). The workers can compute at most gradients
{g(t)}t∈[1:η(W−1+B)] in these rounds. However, the computations that workers can perform
is also limited by the normalized load L. Specifically, if a worker has normalized load L, it
is able to compute L fraction of a job (full gradient) in a round. As there are ηBλ straggling
rounds faced by workers [0 : λ− 1] in rounds [1 : η(W − 1 +B)], the number of jobs that
will be finished by non-straggling workers in these rounds is at most:

⌊min ({η(W − 1 +B), ηL(n(W − 1 +B)−Bλ)})⌋

gradients. If L < L∗
B , we have ηL(n(W − 1 + B)−Bλ) < η(W − 1 + B) and thus, in

the end of first η(W − 1 +B) rounds, there are

⌈η(W − 1 +B)− ηL(n(W − 1 +B)−Bλ)⌉ > 0

pending jobs among [1 : η(W − 1 + B)] which need to be finished. The number of
pending jobs clearly increases as η increases. In order to satisfy the delay constraint T , it is
necessary that all these pending jobs need to be processed in rounds [η(W − 1 +B) + 1 :
η(W − 1 + B) + T]. On the other hand, the number of jobs that can be finished in
these rounds is at most ⌈TLn⌉ (under the best-case scenario that all the workers are non-
stragglers in these T rounds), which is bounded. As T < ∞, for a sufficiently large η,
⌈TLn⌉ < ⌈η(W − 1 +B)− ηL(n(W − 1 +B)−Bλ)⌉. Thus, at least one of the jobs in
[1 : η(W − 1 +B)] cannot be finished with delay T if L < L∗

B . Thus, we have L ≥ L∗
B .

• B = W : Consider the periodic straggler pattern depicted in Fig. 9, which conforms to the
(B,W, λ)-bursty straggler model when B = W . Here, if L < L∗

B , there are ⌈η−ηL(n−λ)⌉
pending jobs after rounds [1 : η]. Following similar arguments as in the B < W case, for
sufficiently large η delay criterion T cannot be met and thus it can be inferred that L ≥ L∗

B .

….

Round

…. …. …. ….

…. …. …. …. ….

…. …. …. …. ….

…. …. …. …. ….

Worker-0

Worker-(𝜆 − 1)

Worker-𝜆

Worker-(𝑛 − 1)

…
.

…
.

…
.

…
.

…
.

…
.

1 2 𝐵 𝐵 + 1 𝐵 +𝑊 2𝐵 + 2𝑊 − 1

𝐵 𝑊 − 1 𝐵

Figure 8: A periodic straggler pattern conforming to the (B,W, λ)-bursty straggler model, when
B < W . Here, the shaded boxes indicate stragglers.

18

Published as a conference paper at ICLR 2023

Round

…. ….

…. ….

…. ….

…. ….

Worker-0

Worker-(𝜆 − 1)

Worker-𝜆

Worker-(𝑛 − 1)

…
.

…
.

…
.

…
.

1 2 3 ….

Figure 9: A periodic straggler pattern conforming to the (B,W, λ)-bursty straggler model, when
B = W . Here, the shaded boxes indicate stragglers.

An analogous result can be shown with respect to (N,W ′, λ′)-arbitrary straggler model as well.

Theorem F.2. Consider any sequential gradient coding scheme, which tolerates straggler patterns
permitted by the (N,W ′, λ′)-arbitrary straggler model. Let the normalized load per worker L be a
constant, T < ∞ and the number of jobs J → ∞. We have:

L ≥ L∗
A ≜

{
W ′

n(W ′−N)+N(n−λ′) , if N < W,
1

n−λ , if N = W.
(3)

Proof. The proof here follows in a similar manner as that of Theorem F.1 and hence, details are
omitted. For the case N < W ′, consider Fig. 10 (analogous to Fig. 8). Considering first ηW ′ rounds,
if L < L∗

A, number of pending jobs is given by ⌈η(W ′)− ηL(nW ′ −Nλ)⌉. If η is sufficiently large,
we have ⌈TLn⌉ < ⌈ηW ′ − ηL(nW ′ −Nλ)⌉ and hence, at least one of the jobs cannot be finished
with delay T . Thus L ≥ L∗

A. When N = W ′, if λ is replaced with λ′ in Fig. 9, we obtain a straggler
pattern conforming to the (N,W ′, λ′)-arbitrary straggler model. The proof follows precisely as in
the case of B = W in Theorem F.1 (with λ replaced by λ′).

….

Round

…. …. …. ….

…. …. …. …. ….

…. …. …. …. ….

…. …. …. …. ….

Worker-0

Worker-(𝜆′ − 1)

Worker-𝜆′

Worker-(𝑛 − 1)

…
.

…
.

…
.

…
.

…
.

…
.

1 2 𝑁 𝑁 + 1 𝑊′ + 1 2𝑊′ + 1

𝑁 𝑊′ − 𝑁 𝑁

Figure 10: A periodic straggler pattern conforming to the (N,W ′, λ′)-arbitrary straggler model,
when N < W ′.

Remark F.1 (Optimality). From equation 1 and equation 2, it can be observed that when λ = n−1 or
n, M-SGC scheme is optimal as a scheme tolerating any straggler pattern conforming to the (B,W, λ)-
bursty straggler model. In an analogous manner, using equation 1 and equation 3, M-SGC can be
shown to be optimal when λ′ = n− 1 or n (with respect to the (N = B,W ′ = W +B− 1, λ′ = λ)-
arbitrary straggler model). Moreover, for fixed n,B and λ, the gap between equation 1 and equation 2
decreases as O(1

W). In Fig. 11, we plot normalized loads of SR-SGC and M-SGC schemes and
compare it with equation 2. Similarly, gap between equation 1 and equation 3 decreases as O(1

W ′).

19

Published as a conference paper at ICLR 2023

5 10 15 20 25
W

0.06

0.08

0.10

0.12

0.14

No
rm

al
ize

d
Lo

ad

Optimal
SR-SGC
M-SGC

Figure 11: A comparison of normalized loads incurred by SR-SGC and M-SGC schemes when
{n = 20, B = 3, λ = 4} and W is varied. Note however that delay parameter T values in the case
of SR-SGC and M-SGC schemes are given by B and W − 2 +B, respectively. Hence, in terms of
scheduling tasks (see Remark 2.1) SR-SGC scheme offers more flexibility.

Round

Worker-0

1 2

ℓ0(1)

Worker-1

Worker-2

Worker-3

ℓ0(1) ℓ0(3) ℓ0(3) ℓ0(5) ℓ0(5)

ℓ1(1) ℓ1(1) ℓ1(3) ℓ1(3) ℓ1(5) ℓ1(5)

ℓ2(1) ℓ2(2) ℓ2(3) ℓ2(4) ℓ2(5) ℓ2(6)

ℓ3(1) ℓ3(2) ℓ3(3) ℓ3(4) ℓ3(5) ℓ3(6)

3 4 5 6

(a)

Worker-0
𝑔0(1)

Worker-1

Worker-2

Worker-3

𝟎

𝑔1(1)

𝟎

𝑔2(1)

𝟎

𝑔3(1)

𝟎

𝑔0(2)

𝑔0(1)

𝑔1(2)

𝑔1(1)

𝑔2(2)

𝑔2(1)

𝑔3(2)

𝑔3(1)

𝑔0(3)

𝟎

𝑔1(3)

𝟎

𝑔2(3)

𝟎

𝑔3(3)

𝟎

𝑔0(4)

𝑔0(3)

𝑔1(4)

𝑔1(3)

𝑔2(4)

𝑔2(3)

𝑔3(4)

𝑔3(3)

𝑔0(5)

𝟎

𝑔1(5)

𝟎

𝑔2(5)

𝟎

𝑔3(5)

𝟎

𝑔0(6)

𝑔0(5)

𝑔1(6)

𝑔1(5)

𝑔2(6)

𝑔2(5)

𝑔3(6)

𝑔3(5)

Round

1 2 3 4 5 6

(b)

Figure 12: Consider parameters {n = 4, B = 1,W = 2, λ = 4}; (a) SR-SGC scheme: reattempted
tasks are indicated in red (b) M-SGC scheme.

Example F.1. In Fig. 12, we perform a comparison of normalized load incurred by SR-SGC and
M-SGC schemes for parameters {n = 4, B = 1,W = 2, λ = 4}. We consider a straggler pattern
conforming to the (B = 1,W = 2, λ = 4)-bursty straggler model, where in alternate rounds (rounds
1, 3, 5, . . .), all the workers are stragglers. In both the schemes, data set D is partitioned into 4 data
chunks {D0,D1,D2,D3}. In Fig. 12 (a), we show the SR-SGC scheme. Here, the quantity ℓi(t)
is a linear combination of 3 partial gradients {gj(t)}j∈[i:i+2]∗ (application of (4, 2)-GC). Hence,
normalized load is 3

4 . On the other hand, in the case of M-SGC scheme (Fig. 12 (b)), each worker
in a round computes 2 partial gradients and hence, the normalized load is 1

2 . In both the schemes,
even though all the workers are stragglers in round-(2t− 1) (t = 1, 2, . . .), master is able to compute
g(2t− 1) and g(2t) together after receiving task results from workers in round-2t. In the SR-SGC
scheme, the increased computational load is due to the use of (4, 2)-GC to compute 2 jobs in round-2t
(corresponding to each of jobs (2t − 1) and 2t, there are two tasks being performed in round-2t).
Being a scheme where coding is only across workers (and not across rounds), in the (4, 2)-GC
scheme, partial gradient computations on each data chunk are attempted by 3 distinct workers and this
contributes to an increased load. On the other hand, in the M-SGC scheme, by repeating mini-tasks
across rounds, we achieve optimal load which matches equation 2.

G GRADIENT CODING: SIMPLIFICATION FOR SPECIFIC PARAMETERS

The gradient coding approach in general works for any s such that 0 ≤ s < n. For instance, let
s = 2 and n = 6. As per the general (n, s)-GC scheme (see the description in Sec. 3.1), the master
partitions the dataset D into n = 6 data chunks D0, . . . ,D5. These data chunks are then placed
across n = 6 workers as shown in Fig. 13. Here, worker-0 is expected to compute the partial gradients

20

Published as a conference paper at ICLR 2023

g0, g1, g2 and then return ℓ0 = α0,0g0 + α0,1g1 + α0,2g2. Similarly, worker-1 is supposed to return
ℓ1 = α1,1g1 + α1,2g2 + α1,3g3 and so on. The master can reconstruct g ≜ g0 + g1 + · · · + g5
as a linear combination of any (n − s) = 4 ℓi’s. For instance, assume that workers 0, 2, 4, 5
returned their results to master initially. The master will now perform the decoding step of computing
g = β{0,2,4,5},0ℓ0+β{0,2,4,5},2ℓ2+β{0,2,4,5},4ℓ4+β{0,2,4,5},5ℓ5. However, in the work Tandon et al.
(2017), the authors note that for the special case when (s+ 1) divides n, there exists an alternative,
simpler approach that only requires a trivial decoding procedure. We will now demonstrate this
idea for n = 6, s = 2. In Fig. 14, we outline how data fragments are placed in this simplified GC
scheme. Here, workers are divided into n

s+1 = 2 groups. The computations done across workers
within each group are simply replications of each other (for this reason, we will refer to the simplified
GC scheme as GC-Rep). In particular, workers in group-0 are supposed to compute g0, g1, g2 and
return ℓ(0) ≜ g0 + g1 + g2. Similarly, workers in group-1 need to compute g3, g4, g5 and return
ℓ(1) ≜ g3+g4+g5. In order to decode g, the master just needs to compute the sum ℓ(0)+ ℓ(1), which
is always possible if there are only s = 2 stragglers. In addition to the simplicity with respect to
decoding, the GC-Rep scheme offers improved straggler resiliency in the following sense. If there are
more than s stragglers, there is no guarantee that GC will recover g. However, GC-Rep can tolerate
the straggler pattern as long as one worker in each group is a non-straggler. For instance, the GC-Rep
scheme succeeds even if workers 1, 2, 3 and 5 are stragglers. Since neither worker-0 nor worker-4
computes the partial gradient g3, GC will fail in this scenario.

Both M-SGC and SR-SGC schemes can leverage the existence of the GC-Rep scheme. If (λ+ 1)
divides n, we may use the GC-Rep scheme in combination with the M-SGC scheme, since the latter
employs an (n, λ)-GC scheme to protect some of the computations from stragglers. We will refer to
this modified M-SGC scheme as the M-SGC-Rep scheme.

Similarly, in the case of SR-SGC scheme where s ≜ ⌈ Bλ
W−1+B ⌉, one may use GC-Rep instead of

GC as the base scheme if (s+ 1) divides n (let the new scheme be called SR-SGC-Rep). In order to
exploit the fact that all workers within group-i return the same result ℓ(i) in the GC-Rep scheme, we
present below a minor modification of Algorithm 1. Recall the definition of N (t), which denotes the
number of task results corresponding to job-t returned to master in round-t.

𝐃0

𝐃1

𝐃2

Worker-0

𝐃1

𝐃2

𝐃3

Worker-1

𝐃2

𝐃3

𝐃4

Worker-2

𝐃3

𝐃4

𝐃5

Worker-3

𝐃4

𝐃5

𝐃0

Worker-4

𝐃5

𝐃0

𝐃1

Worker-5

Figure 13: An illustration of the placement of data chunks across workers in the general GC scheme
for parameters n = 6, s = 2.

21

Published as a conference paper at ICLR 2023

𝐃0

𝐃1

𝐃2

Worker-0

𝐃0

𝐃1

𝐃2

Worker-1

𝐃0

𝐃1

𝐃2

Worker-2

𝐃3

𝐃4

𝐃5

Worker-3

𝐃3

𝐃4

𝐃5

Worker-4

𝐃3

𝐃4

𝐃5

Worker-5

Worker group-0 Worker group-1

Figure 14: An illustration of the placement of data chunks across workers for the simplified GC
scheme when n = 6, s = 2. Here, worker-i belongs to group-⌊ i

s+1⌋.

Algorithm 3 The algorithm which may be used by the master to assign tasks in round-t for the
SR-SGC-Rep scheme (valid only if (s+ 1) divides n).

Initialize δ ≜ N (t−B).
for i ∈ [0 : n− 1] do

if ℓ(⌊
i

s+1 ⌋)(t−B) is returned by some worker in group-⌊ i
s+1⌋ in round-(t−B) then

Worker-i attempts to compute ℓ(⌊
i

s+1 ⌋)(t).
else if δ < n− s and ℓ(⌊

i
s+1 ⌋)(t−B) is not returned previously by worker-i in round-(t−B)

then
Worker-i attempts to compute ℓ(⌊

i
s+1 ⌋)(t−B).

Set δ = δ + 1
else

Worker-i attempts to compute ℓ(⌊
i

s+1 ⌋)(t).

It is worth noting that the computational load for GC-based and GC-Rep-based schemes is the same.
Although decoding in GC-Rep-based schemes is simpler, as decoding time may be included into the
master’s idle time (see Appendix K), this will not have any impact on the total run time. However,
enhanced straggler resilience of GC-Rep-based schemes may lessen the number of rounds in which
the master must perform wait-outs, potentially reducing the overall run time.

Under identical load conditions, the SR-SGC-Rep scheme always permits a strict superset of straggler
patterns compared to the GC-Rep scheme, as is the case between SR-SGC and GC. Therefore,
SR-SGC-Rep is anticipated to outperform GC-Rep. A direct comparison between M-SGC-Rep
and GC-Rep is not feasible in terms of the straggler patterns tolerated by these schemes. However,
because M-SGC-Rep requires a substantially lower computational load than GC-Rep, it is expected
to perform better than the latter.

H AWS LAMBDA ARCHITECTURE

This section discusses the overall architecture, limitations, and additional details about the setup and
usage of the AWS cloud resources used in our experiments (Sec. 4).

We use AWS Lambda functions as workers in our distributed training experiments. Each Lambda
instance has 2500 MB of RAM, 1 vCPU, and supports Python 3.8 runtime environment. A Lambda
layer is used to inject external dependencies into the runtime environment (e.g. PyTorch, TorchVision,
NumPy etc). Since the size of required external libraries exceeds the 200MB limit of Lambda
layers, we zip some libraries in the layer package and unzip them at the time of Lambda instance
creation. Note that this will not affect workers’ run times as we perform a warm-up round before
each experiment to ensure that our Lambda instances are initialized and functional.

22

Published as a conference paper at ICLR 2023

Another limitation concerning the use of Lambda functions for training ML models is the total
payload size quota of 6 MB. i.e., the total sum of payload sizes in the HTTP request and response
cannot exceed 6 MB. Note that ideally the master includes current model weights in the HTTP request
payload, and receives the task results via the HTTP response payload. This incurs a serious limitation
on any reasonably-sized neural network. To overcome this, we need to use a proxy storage service to
communicate model weights and task results.

Fortunately, we have two storage options; Amazon S3 (Simple Storage Service) and AWS EFS
(Elastic File System). We use the latter, as it will provide higher throughput. EFS is a shared network
file system that will be mounted on all Lambda instances at their time of creation. This way, it can be
used as a means for communication between the master and workers. In our experiments, we reserve
the payload limit for the task result communication, and use EFS to communicate updated model
weights to workers, as depicted in Figure 15 (a). The overall architecture of our cloud resources is
shown in Figure 15 (b). We use AWS Serverless Application Model (SAM) tool to define, manage,
and deploy the cloud resources (included in the code submitted as supplementary material).

SCP

Master

Python (boto)

HTTP

AWS Cloud

VPC

Availability Zone

PyTorch Layer

EC2

Mount Target

Lambda Workers

EFS

API Gateway

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

AWS
Cloud

EFSLambda Workers

Master

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

(1) Upload Model Weights

(4) Send Task Results

(2) Invoke Workers

(3) Read Model
Weights

(a) (b)

Figure 15: (a) Communication between master and Lambda workers at each round. (b) The overall
architecture of AWS cloud resources used.

I EXPERIMENTAL SETUP AND POTENTIAL APPLICATIONS

We provide here a more detailed discussion of the experimental setup in Section 4.2. We consider
training M = 4 neural networks, denoted by NN1,NN2,NN3 and NN4. For neural network NNj

where j = 1, 2, 3, 4, we let w(0)
j denote the initialized weights and w

(i)
j denote the weights after a

total of i rounds of gradient descent updates i.e.,

w
(i)
j = w

(i−1)
j − ϵ

(i)
j g

(i−1)
j (4)

where g
(i−1)
j denotes the gradient associated with neural network NNj with weights w(i−1)

j and ϵ
(i)
j

denotes the learning rate. We assume that the training of NN1,NN2,NN3 and NN4 is interleaved
across rounds – i.e., model updates for the interleaved training uses the following schedule:

23

Published as a conference paper at ICLR 2023

• Weights of NN1 are updated in rounds: 1 (Initialization), 5, 9, 13, . . .

• Weights of NN2 are updated in rounds: 2 (Initialization), 6, 10, 14, . . .

• Weights of NN3 are updated in rounds: 3 (Initialization), 7, 11, 15, . . .

• Weights of NN4 are updated in rounds: 4 (Initialization), 8, 12, 16, . . .

Thus if we consider the training of say NN1, then there two steps:

• Step 1: At the start of round-(4i+1), the server will generate w(i)
1 . It will have decoded the

gradient vector g(i−1)
1 by the end of round-4i and performed the SGD update in equation 4.

• Step 2: The server will issue a request at the start of round-(4i + 1) to the workers to
compute the associated partial gradients such that the gradient vector g(i)

1 can be computed
by the end of round-(4i+ 4).

By following a similar approach for each model it is clear that for neural network NNj , when
computing the gradient g(i)

j , a request will be issued by the server to the clients at the start of
round-(4i+ j) and the computation must be completed by the end of round-(4i+ j + 3). Thus our
interleaved approach is designed so that that each of the gradient vectors can be decoded within a
span of M = 4 rounds.

Our method can be viewed as a pipelined approach for training of multiple neural networks. Note
that in our current setting we assume that the parameters of only one model can be updated in
each round, which arises in resource constrained devices. Our method also naturally complements
other approaches for parallel training of multiple models and leverages on the temporal structure
of straggler patterns to achieve speedups. We also emphasize that we do not require the multiple
neural network models be trained on the same dataset. Each neural network model can be trained
on a different dataset. We also do not require that the architecture of the neural network models
being trained to be identical. Nevertheless we point out that our setting would be most efficient when
the compute time for the gradients for each model is approximately the same. We believe this is a
rather benign requirement. Finally we discuss a few applications where multiple-model training arise
naturally.

• In the training of deep learning models, we are often required to perform a search over
various hyperparameters and this is done through some form of a grid search (Bergstra et al.,
2011). Each choice of hyperparameter corresponds to a new model. Ultimately the ideal
hyperparameters are selected through a validation set.

• In ensemble learning (Zhou, 2012), a number of models need to be trained simultaneously.
Their predictions are then combined through some averaging mechanism.

• Since our approach can use completely different datasets for each of the models, it is also
applicable in settings of “multi-model learning” (Bhuyan et al., 2022; da Silva et al., 2022),
where multiple datasets are used for different models. For instance, sensors deployed in
time-varying or periodic environment (e.g., day/night camera images, orbiting satellite
data etc.) or collecting different modalities (speech, images etc.) would naturally generate
multiple datasets and different models should be trained for each one. Multi-model learning
has also been applied in real-time video surveillance applications (Wu et al., 2021).

J SELECTING CODING SCHEME PARAMETERS

This section discusses the parameter selection method used for our proposed sequential gradient
coding schemes, SR-SGC and M-SGC. We begin by noting that the total number of valid parameter
combinations for each of these schemes are too large for a grid search to be feasible, as evaluation
of each parameter combination requires training models for multiple rounds. Instead, we utilize
the observation that increasing the normalized load will linearly increase the average runtime of
the workers. Fig. 16 shows the average job completion time of 256 workers across 100 rounds for
multiple values of load in [0, 1].

We can exploit the observation above to estimate the delay profile corresponding to various coding
schemes with variable normalized loads. After estimating the slope of linear fit in Fig. 16 (let this

24

Published as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Load

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Av
g.

 r
un

 ti
m

e
(s

)

Linear Fit
Avg. Run times

Figure 16: Average run time (256 workers, 100 rounds) scales linearly with workers’ computational
load.

be α), we run our distributed training experiment for Tprobe = 80 jobs with no coding, and store the
observed runtime of workers across rounds (we call this the reference delay profile). Note that the
normalized worker load in case of no coding will be 1/n.

Next, consider a coding scheme with fixed parameters B,W, λ, and a fixed normalized load of L. We
can estimate the runtime of our coding scheme by feeding the reference delay profile to the master
node to simulate the run time of workers. Based on our previous discussion, we should take into
account the increase in the workers’ run time due to the increase of the load from 1/n to L, by adding
(L− 1/n)α seconds to our reference delay profile. Using this load-adjusted delay profile and the
considered coding scheme, the master node will try to resolve stragglers at each round, and if not, it
will wait out all the workers, resulting in a simulated total run time for the coding scheme.

Fig. 17 shows the estimated runtime of 80 rounds for different choices of parameters B,W, λ in
SR-SGC and M-SGC. For each of the two schemes, we select the parameters corresponding to the
smallest estimated training runtime, denoted by the blue circles on Fig. 17 and listed in Table 1.

J.1 SENSITIVITY TO PARAMETERS

The Fig. 17 also demonstrates sensitivity of the coding schemes to their parameters, where we can
observe smooth changes in training time with respect to coding parameters.

For SR-SGC, the normalized load varies significantly with the choice of parameters: L = s+1
n with

s = ⌈ Bλ
W−1+B ⌉. Specifically, the load is directly proportional to λ. As observed in Fig. 17 (left), for

each choice of B and W , increasing λ above a certain threshold leads to a significant increase in the
runtime. Therefore, λ should be chosen carefully as it will affect the load and runtime heavily.

On the other hand, the computational load in M-SGC is less dependent on selected parameters, as
the load is upper-bounded by 2/n (see Remark 3.3). Therefore, the choice of λ does not play a
crucial role as long as it is above the typical number of stragglers. Also, as observed in Fig. 17 (right),
runtime is fairly insensitive to the choice of B as long as W and B are close.

Remark J.1. Recommendations for selecting parameters of M-SGC and SR-SGC:

• Keeping W close to B seems to be the right rule of thumb for both schemes. Also, the
dependence of both schemes on B is less critical and increasing W is generally not preferred
as it reduces the straggler correction capability of the coding schemes.

• For M-SGC, the choice of λ is not critical as long as it is above a certain threshold, but for
SR-SGC it is an important consideration as it affects the load significantly.

25

Published as a conference paper at ICLR 2023

• Therefore, it is recommended to start with a fixed B, choose W as close as possible to
B, and find a large enough λ for M-SGC or a small enough λ for SR-SGC, based on the
straggler pattern.

Figure 17: Estimated runtime of 80 rounds for different choices of parameters B,W, λ. Left: SR-
SGC, Right: M-SGC. Blue dot marks the shortest runtime (selected parameters).

Next, we evaluate the sensitivity of parameter selection to the number of rounds used in the selection
process Tprobe. Table 3 lists the selected parameters using different values of Tprobe. For each unique
set of parameters, we performed the experiments discussed in Section 4.2 10 times and included the
average runtime as well. As expected, we observe a general trend of improvement in total training
time by increasing Tprobe. Moreover, for M-SGC even few number of rounds are enough to tune the
coding scheme, as M-SGC with parameters selected over only 10 rounds outperforms other coding
schemes across all other values of Tprobe.

26

Published as a conference paper at ICLR 2023

Table 3: Selected parameters using different values of Tprobe.

Scheme Tprobe Selected Parameter Load Runtime (avg. ± std.)

M-SGC (B,W, λ)

10 (1, 2, 24) 0.007512 872.78 ± 80.67 (s)
20 (1, 2, 24) 0.007512 872.78 ± 80.67 (s)
40 (1, 2, 27) 0.007543 871.99 ± 59.76 (s)
60 (1, 2, 27) 0.007543 871.99 ± 59.76 (s)
80 (1, 2, 27) 0.007543 871.99 ± 59.76 (s)

SR-SGC (B,W, λ)

10 (2, 3, 15) 0.035156 1226.90 ± 93.53 (s)
20 (2, 3, 15) 0.035156 1226.90 ± 93.53 (s)
40 (2, 3, 20) 0.042969 1060.61 ± 62.72 (s)
60 (2, 3, 22) 0.046875 964.06 ± 53.48 (s)
80 (2, 3, 23) 0.050781 984.37 ± 51.02 (s)

GC (s)

10 (9) 0.039062 1288.57 ± 94.15 (s)
20 (10) 0.042969 1261.61 ± 80.87 (s)
40 (11) 0.046875 1168.67 ± 77.60 (s)
60 (14) 0.058594 1142.01 ± 38.41 (s)
80 (15) 0.062500 1067.56 ± 40.92 (s)

K ANALYSIS OF OVERHEADS

In this section we discuss two overheads in proposed sequential gradient coding schemes, as well as
ways to effectively remove those overheads in practice.

K.1 DECODING TIME

At the end of each round, the master node decodes the task results obtained from a subset of workers
to calculate gradients. Both sequential coding methods proposed in this paper use GC as their core
coding/decoding method: SR-SGC with parameters {B,W, λ} uses an (n, ⌈ Bλ

W−1+B ⌉)-GC, and
M-SGC uses B independent (n, λ)-GC schemes. In (n, s)-GC, gradients are simply obtained by a
linear combination of task results from n − s workers (Tandon et al., 2017). Therefore, decoding
consists of two steps:

1. Finding the decoding coefficients based on the observed straggler pattern. This can be done
by solving a linear matrix equation.

2. Calculating the linear combination of task results from non-straggling workers, using the
coefficients from step 1.

Table 4 summarizes the decoding time for the main experiment presented in Section 4.2.

Table 4: Decoding time of different schemes

Scheme Parameters Decoding Time
(avg. ± std.)

Longest
Decoding

Fastest Round

M-SGC B = 1,W = 2, λ = 27 290 ± 18.7 ms 479 ms 1177 ms
SR-SGC B = 2,W = 3, λ = 23 309 ± 20.1 ms 401 ms 1349 ms
GC s = 15 204 ± 20.6 ms 408 ms 1379 ms

We would like to point out that if training of more than T + 1 models is pipelined, the decoding can
be done in the master’s idle time, and the decoding time will not add any overhead to the training
time. As stated in Remark 2.1 and further explained in Appendix I, when the decoding delay of the
sequential coding scheme is T rounds, training at least M = T + 1 models needs to be pipelined.
Specifically, with M models and decoding delay of T rounds, the gradient of each model is ready
to be decoded D = M − T − 1 rounds earlier than the next round of the model begins. In case
of M = T + 1, the gradients of a model are ready for decoding just before the next round for the
model begins (D = 0). However, when M > T + 1 , i.e. D > 0, the master node has at least one

27

Published as a conference paper at ICLR 2023

gap round to decode the gradients, and therefore can run the decoding at its idle time while workers
are performing their assigned tasks. We emphasize that this is indeed applicable to the experiments
presented in Section 4.2, where M = 4 and the delay of all models are smaller than M − 1 = 3.

As an example, let us consider the SR-SGC scheme with parameters {B = 2,W = 3, λ = 23}
discussed in Section 4.2, where M = 4 and T = 2. Calculations of gradients for model 1 start at
rounds t1 = 1, t2 = 5, t3 = 9, · · · . Calculating the first gradients of model 1 starts at round t1 = 1.
By the end of round t1+T = 3, the gradients are ready to be decoded. Note that the second gradients
of model 1 are to be calculated at round t2 = 5. Therefore, the master node can perform the decoding
during its idle time over round 4, when it is waiting for the worker nodes (note that as can be seen
from Table 4, the longest decoding time is shorter than the fastest round time). This way, the gradients
are decoded before round t2 = 5 begins and thus no decoding overhead is imposed.

K.2 PARAMETER SELECTION TIME

In Section J, we discussed the process of selecting parameters {B,W, λ} for the coding schemes.
This process requires running uncoded training for some number of rounds (Tprobe) and storing the job
completion time of workers. This delay profile is then used to search for the best coding parameters.
In the experiment section 4.2, we started coded training from round-1 (delay profile measurement
and selection of best parameters are done beforehand). However, in practice, one can opt to start
with uncoded training in round-1 and then switch to coded training after Tprobe uncoded rounds (a
few additional rounds will be needed to perform the exhaustive search for the best parameters as
well). This way, the time to be spent initially for delay profile measurements can be utilized towards
completion of jobs.

Fig. 18 demonstrates this method in which training starts uncoded, and after Tprobe = 40 rounds,
master node uses the observed delay profile from the past rounds to perform an exhaustive search for
the best parameters of the coding schemes. In this experiment, it took ∼ 8 seconds for SR-SGC, ∼ 2
seconds for M-SGC, and less than a second for GC to search over all valid parameters. The training
is then switched to coded mode after the search is over. Here, we still observe significant gains from
M-SGC compared to uncoded and GC methods.

searching
parameters

coded training starts

catches
uncoded

coding starts!

Figure 18: The same setup as in Section 4.2, but training starts uncoded and switches to coded mode
after Tprobe = 40 rounds. The delay profile measured from the initial 40 rounds is used to select the
coding parameters. Plot shows average ± std. over 10 independent trials. Transition to SR-SGC is
zoomed in.

28

Published as a conference paper at ICLR 2023

L TRAINING RESNET-18 ON CIFAR-100

Here, we present the results of concurrently training M = 4 ResNet-18 models on CIFAR-100 over
AWS Lambda, using the different coding schemes. ResNet-18 has 11,227,812 parameters and hence,
the size of model weights and gradient updates are roughly 22.5 MB in 16-bit floating point format.
This is much larger than the 6MB payload size limit of AWS Lambda (see Section H). This means
the master node and workers have to essentially use a shared storage (Amazon EFS) to communicate
the model weights and coded gradients at each round, as depicted in Fig. 19 (a). At each round, the
master node first uploads updated model weights to the dedicated shared storage and invokes Lambda
workers via an HTTP request. Lambda workers then read the model weights from the storage and
proceed to calculate the task results. Finally, each worker uploads the coded gradients to the shared
storage and signals the master node via the HTTP response.

AWS
Cloud

EFSLambda Workers

Master

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

(1) Upload Model Weights

(5) Signal End of the Job

(2) Invoke Workers

(3) Read Model
Weights

(4) Upload Task
Results

(a) (b)

Figure 19: (a) Communication between master and Lambda workers at each round. (b) Empirical
CDF of workers’ completion time, averaged over 100 rounds and 256 workers (shades represent
standard deviation. Each worker calculates gradients for a batch of 2 CIFAR-100 images on ResNet-
18, and uploads the gradients to EFS.
The process of uploading the task results to the shared storage will significantly increase the commu-
nication delay, given the write throughput limits of EFS. This is clearly observed in the empirical
CDF of workers’ completion time in Fig. 19 (b). Note that for the CNN model used in Section 4, the
task results were directly sent to the master node in the payload of the HTTP response. Therefore,
given the increased variance of workers’ completion time, we opt to choose a higher value of µ = 5
for this case to let more workers finish at each round.

We used n = 256 Lambda workers to train M = 4 models concurrently for 1000 rounds (250 rounds
for each classifier). A batch size of 512 samples and ADAM optimizer is used. Fig. 20 plots the the
number of completed jobs (for all M = 4 models) over time for the three coding schemes, as well as
uncoded training. Coding parameters are selected based on the method discussed in Section J using
Tprobe = 20 rounds. The results showed that M-SGC finishes training 11.6% faster than GC (while
maintaining a significantly smaller normalized load), and 21.5% faster than uncoded training.

0 5000 10000 15000 20000 25000
Time (s)

0

200

400

600

800

1000

N
um

be
r

of
 jo

bs
 d

on
e

MSGC (B=1, W=2, =230)
SRSGC (B=1, W=2, =205)
GC (s=114)
No Coding

Figure 20: Training 4 ResNet-18 models on CIFAR-100. Number of completed rounds (for all
M = 4 models) vs. time.

29

	Introduction
	Summary of contributions
	Related work

	Sequential gradient coding setting
	Straggler models

	Sequential gradient coding schemes
	Preliminaries: Gradient coding
	Selective-reattempt-sequential gradient coding (SR-SGC) scheme
	Multiplexed-sequential gradient coding (M-SGC) scheme
	Example
	General scheme

	Experimental results
	Analysis of response time
	Comparison of coding schemes

	Conclusion
	Summary of notations
	A brief overview on the use of coding for straggler mitigation in distributed computing systems
	On the use of Gilbert-Elliot model for stragglers
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Near-optimality of M-SGC scheme
	Gradient coding: Simplification for specific parameters
	AWS Lambda architecture
	Experimental Setup and Potential Applications
	Selecting coding scheme parameters
	 Sensitivity to Parameters

	Analysis of Overheads
	Decoding Time
	Parameter Selection Time

	Training ResNet-18 on CIFAR-100

