
The Surprising Effectiveness of Latent World Models
for Continual Reinforcement Learning

Samuel Kessler 1,∗, Piotr Miłoś 2, Jack Parker-Holder 1 and Stephen J. Roberts 1

1University of Oxford 2Polish Academy of Sciences and Ideas NCBR

Abstract

We study the use of model-based reinforcement learning methods, in particular,
world models for continual reinforcement learning. In continual reinforcement
learning, an agent is required to solve one task and then another sequentially while
retaining performance and preventing forgetting on past tasks. World models offer
a task-agnostic solution: they do not require knowledge of task changes. World
models are a straight-forward baseline for continual reinforcement learning for
three main reasons. Firstly, forgetting in the world model is prevented by persisting
existing experience replay buffers across tasks, experience from previous tasks is
replayed for learning the world model. Secondly, they are sample efficient. Thirdly
and finally, they offer a task-agnostic exploration strategy through the uncertainty
in the trajectories generated by the world model. We show that world models
are a simple and effective continual reinforcement learning baseline. We study
their effectiveness on Minigrid and Minihack continual reinforcement learning
benchmarks and show that it outperforms state of the art task-agnostic continual
reinforcement learning methods.

1 Introduction

Previous Task
Current Task

Next Task

World Model
Learning

Task
Agnostic

Exploration

Policy learning
inside world

model

Policy guides
acquisition of
experience

Policy
remembers
all previous

tasks

Figure 1: Overview of CRL with world models.

There has been many recent successes in rein-
forcement learning (RL), such as in games [1],
robotics [2] and in scientific applications [3, 4].
However these successes showcase methods for
solving individual tasks. Looking beyond, it
is conjectured that truly scalable intelligent sys-
tems will additionally need to master many tasks
in a continual manner [5, 6, 7]. The field of
continual reinforcement learning (CRL) aims to
develop agents which can solve many tasks, one
and then another, continually while retaining
performance on all previously seen tasks [8].

This paper aims to explore the possibility of
using world models to solve CRL problems.
CRL is a multifaceted problem. We showcase a
method that satisfies the traditional CL desider-
ata: avoids catastrophic forgetting, achieves
high average performance, and is scalable. At
the same time it is task-agnostic, namely, it does
not require external task identification, neither

∗skessler@robots.ox.ac.uk

Deep RL Workshop, NeurIPS 2022

during training nor deployment. This is highly desirable from the practical point of view, and is also
an uncommon capability.

The proposed method is built on top of DreamerV2 [9]. Due to this, it inherits two important features:
excellent sample efficiency due to the model-based paradigm and implicit task detection via the
recurrent networks architecture. The latter enables that the method is task-agnostic [10]. The latent
model allows processing image observation with a relatively low computational cost. We further
propose to use replay memory [11, 12, 13] to reduce forgetting and a task agnostic exploration
method [14] to enable solving sparse reward and partially-observable tasks.

Such a method is straightforward to implement and tune. We verify that it successfully solves
a challenging suite of Minigrid and Minihack tasks. More generally, our work shows that the
model-based paradigm is a viable solution to continual reinforcement learning.

2 Preliminaries

2.1 Reinforcement Learning

The environments we consider are partially observable; the agent does not have access to the
environment state s ∈ S. A Partially Observable Markov Decision Process (POMDP [15]) is the
following tuple (S,A, P,R,Ω,O, γ). Here S and A are the sets of states and actions respectively,
such that for st, st+1 ∈ S and at ∈ A. P (st+1|st, at) is the transition distribution and R(at, st, st+1)
is the reward function. The discount factor is γ ∈ (0, 1). Ω is the set of observations, O : S ×A →
P (Ω) is an observation function which defines a distribution over observations. Actions at are
chosen using a policy π that maps observations to actions: Ω → A. Let us assume we have
access to the states st and we are working with a finite horizon H . Then the return from a state is
Rt =

∑H
i=t γ

(i-t)r(si, ai). In RL the objective is to maximize the expected return J = Eai∼π[R1|s0]
given an initial state s0.

One approach to maximizing expected return is to use a model-free approach to learn a policy
πϕ : S → A with a neural network parameterized by ϕ guided by an action-value function Qθ(st, at)
with parameters θ. Instead of learning a policy directly from experience we can employ model-based
RL (MBRL) and learn an intermediate model f , for instance a transition model st+1 = f(st, at)
from experience and learn our policy with additional experience generated from the model f [16].
Instead of working with the actual state st our methods consider the observations ot and recurrent
action-value functions and models to help better estimate states st [17].

2.2 Continual Supervised Learning

Continual Learning (CL) is a setting whereby a model must master a set of tasks sequentially
while maintaining performance across all previously learned tasks. In supervised CL, the model
is sequentially shown T tasks, denoted Tτ for τ = 1, . . . , T . Each task, Tτ , is comprised of a
dataset Dτ = {(xi, yi)}Nτ

i=1 which a neural network is required to learn from, to perform predictions.
More generally, a task is denoted by a tuple comprised of the conditional and marginal distributions,
{pτ (y|x), pτ (x)}. After task τ , the model will lose access to the training dataset for Tτ , however its
performance will be continually evaluated on all tasks Ti for i ≤ τ . For a comprehensive review of
CL scenarios see [18, 19].

2.3 Continual Reinforcement Learning

In continual RL the agent will have a budget of N interactions with each task environment Tτ . The
agent is then required to learn a policy to maximize rewards in this environment, before interacting
with a new environment and having to learn a new policy. Each task is defined as a new POMDP,
Tτ = (Sτ ,Aτ , Pτ , Rτ ,Ωτ ,Oτ , γτ). The agent is continually evaluated on all past and present tasks
and so it is desirable for the agent’s policy to transfer to new tasks while not forgetting how to perform
past tasks. CRL is not a new problem setting [20], however its definition has evolved over time
and some settings will differ from paper to paper, we employ the setting above which is related to
previous recent work in CRL [21, 22, 13, 23, 24, 10, 7].

2

3 Related Work

3.1 Continual Supervised Learning

One approach to CL, referred to as regularization approaches regularizes a NN’s weights to ensure
that optimizing for a new task finds a solution which is “close” to the previous task’s [21, 25, 26].
Working with functions can be easier than with NN weights and so task functions can be regularized
to ensure that learning new function mappings are “close” across tasks [27, 28, 29]. By contrast,
expansion approaches add new NN components to enable learning new tasks while preserving
components for specific tasks [30, 31]. Memory approaches replay data from previous tasks when
learning the current task. This can be performed with a generative model [32]. Or samples from
previous tasks (memories) [33, 34, 35].

3.2 Continual Reinforcement Learning

Seminal work in CRL, EWC [21] enables DQN [36] to be able to continually learn how to play
different Atari games with limited forgetting. EWC learns new Q-functions by regularizing the
L2 distance between the new task’s optimal weights and previous task’s optimal weights. EWC
requires additional supervision informing it of task changes to update its objective, select specific
Q-function head and select a task specific ϵ-greedy exploration schedule. Progress and Compress [22]
applies a regularization to policy and value function feature extractors for an actor-critic approach.
Alternatively LPG-FTW [37] learns an actor-critic that factorizes into task specific parameters and
shared parameters. Both methods require task supervision and make use of task-specific parameters
and shared parameters. Task agnostic methods like CLEAR [13] do not require task information
to perform CRL. CLEAR leverages experience replay buffers [11] to prevent forgetting: by using
an actor-critic with V-trace importance sampling [38] of past experiences from the replay buffer.
Model-based RL approaches to CRL have been demonstrated where the model weights are generated
from a hypernetwork which itself is conditioned a task embedding [39]. Recent work demonstrates
that recurrent policies for POMDPs can obtain good overall performance on continuous control CRL
benchmarks [10].

A number of previous works have studied transfer in multi-task RL settings where the goals within
an environment change [40, 41, 42]. In particular by incorporating the task definition directly into the
value function [41] and combining this with off-policy learning allows a CRL agent to solve multiple
tasks continually, and generalize to new goals [43].

3.3 Continual Adaptation

Instead of focusing on remembering how to perform all past tasks, another line of research investigates
quick adaptation to changes in environment. This can be captured by using a latent variable and
off-policy RL [44]. Alternatively, one can meta-learn a model such that it can then adapt quickly on
new changes in environment [45]. All these works use small environment changes such as reward
function changes or changes in gravity or mass of certain agent limbs for instance. The environments
which we consider contain different A, S and reward functions such as opening doors with keys
or avoiding lava or crossing a river which is quite different in comparison. Continual exploration
strategies which use curiosity [46] can be added as an intrinsic reward in the face of non-stationary
environments in infinite horizon MDPs [47]. Our proposed model uses Plan2Explore which has been
shown to outperform curiosity based methods [14].

Another related area of research is open-ended learning which aims to build agents which generalized
to unseen environments through a curriculum which starts off with easy tasks and then progresses to
harder tasks thereby creating agents which can generalize [48, 49, 50].

4 World Models for Continual Reinforcement Learning

We leverage world models for learning tasks sequentially without forgetting. We use DreamerV2 [9]
which introduces a discrete stochastic and recurrent world model that is state of the art on numerous
single-GPU RL benchmarks. This is a good choice for CRL since the world model is trained by
reconstructing state, action and reward trajectories from experience, we can thus leverage experience

3

replay buffers which persist across tasks to prevent forgetting in the world model. Additionally, we
can train a policy in the imagination or in the generated trajectories of the world model, similar to
generative experience replay methods in supervised CL which remember previous tasks by replaying
generated data [32]. Thus, using a world model is also sample efficient. Also, world models are task-
agnostic and do not require external supervision, without signaling to the agent that it is interacting
with a new task. Additionally, by generating rollouts in the world model’s imagination the uncertainty
in the world model’s predictions, more specifically the disagreement between predictions can be used
as a task-agnostic exploration bonus. To summarize, we propose using using model-based RL with
recurrent world models as a viable method for CRL, see Algorithm 1 for an overview, which we
instantiate using DreamerV2.

4.1 Learning the World Model

DreamerV2 learns a recurrent (latent) state-space world model (RSSM) which predicts the forward
dynamics of the environment. At each time step t the world model receives an observation ot and
is required to reconstruct the observations ôt conditioned on the previous actions a<t (in addition
to reconstructing rewards and discounts). The forward dynamics are modeled using an RNN,
ht = GRU(ht−1, zt, at) [51] where ht is the hidden state zt are the discrete probabilistic latent states
which condition the observation predictions p(ot|zt, ht). Trajectories are sampled from an experience
replay buffer and so persisting the replay buffer across different tasks should alleviate forgetting in
the world model [13].

4.2 Policy Learning inside the World Model

The policy π is learned inside the world model by using an actor-critic [52] while freezing the weights
of the RSSM world model. At each step t of the dream inside the RSSM world model a latent state
zt is sampled, zt and the RNN hidden state condition the actor ât ∼ π(· |zt, ht). The reward r̂t+1

is predicted by the world model. The policy, π is then used to obtain new trajectories in the real
environment. These trajectories are added to the experience replay buffer. An initial observation o1
is used to start generating rollouts for policy learning. This training regime ensures that the policy
generalizes to previously seen environments through the world model which imagines trajectories.

4.3 Task Agnostic Exploration

The policy learns using the imaged trajectories from the RSSM world model, so world model’s
predicted rewards are used as a signal for the agent’s policy and critic. The policy is also used to gain
experience inside the real environment. So trajectories which the world model is uncertain how to
predict indicate regions of the state and action space which should be prioritized by the policy when
exploring the true environment. Hence, the uncertainty in the world model’s trajectory prediction can
be used as an additional intrinsic reward. This idea underpins Plan2Explore [14] which naturally fits
with DreamerV2.

The world model quantifies the uncertainty in the next latent state prediction by using a deep ensemble;
multiple neural networks with independent weights. Deep ensembles are a surprisingly robust baseline
for uncertainty quantification [53] and the ensemble’s variance is used as an intrinsic reward. The
exploration neural networks in the ensemble are trained to predict the next RSSM latent features
[zt+1, ht+1]. The world model is frozen while the ensemble is trained.

The policy π observes the reward r = αiri + αere, where re is the extrinsic reward predicted by
the world model, ri is the intrinsic reward, the latent disagreement between the next latent state
predictions. The coefficients αi and αe are ∈ [0, 1]. Hence the policy π can be trained inside the
world model to seek regions in the state action space which the world model struggles to predict
and hence when the policy is deployed in the environment it will seek these same regions in the
state-action space to obtain new trajectories to train the RSSM world model. The exploration strategy
is significant for CRL since it is not task dependent unlike using DQN where each task needs an
ϵ-greedy schedule [21, 23] or SAC [54] which needs an entropy regularizer per task [7].

4

Algorithm 1 Continual Reinforcement Learning with World Models
1: Input: Tasks (environments) T1:T , world model M , policy π, experience replay buffer D.
2: for T1 to TT do
3: Train world model M on D.
4: Train π inside world model M .
5: Execute π in task Tτ to gather episodes and append to D.
6: end for

5 Experiments

To test the performance of DreamerV2 as a CRL method we consider a set of challenging problems.
Firstly we use 3 Minigrid tasks [55]. We also consider one CRL benchmark from the CORA
suite [24]: 8 Minihack tasks [56]. Code is available at https://anonymous.4open.science/r/
dv24crl-C594.We use two primary baselines. First, Impala which is a powerful deep RL method
not designed for CRL [38]. Second, we consider CLEAR [13] which uses Impala as a base RL
algorithm and leverages experience replay buffers to prevent forgetting and is task agnostic.

We evaluate our methods by measuring success rates over the course of learning, Fig. 2 and Fig. 3.
We also can use average performance, average forgetting and average forward transfer metrics [7] to
assess the effectiveness of our proposed baseline.

Average Performance. This measures how well a CRL method performs on all tasks at the end of
the task sequence. The task performance is pτ (t) = [−1, 1] for all τ < T . Since we have a reward of
+1 for completing the task and −1 for being killed by a monster or falling into lava. If each task is
seen for N environment steps and we have T tasks and the τ -th task is seen over the interval of steps
[(τ − 1)×N, τ ×N]. The average performance metric for our continual learning agent is defined as:

p(tf) =
1

T

T∑
τ=1

pτ (tf), (1)

where tf = N × T is the final timestep.

Forgetting. The average forgetting is the performance difference after interacting with a task versus
the performance at the end of the final task. The average forgetting across all tasks is defined as:

F =
1

T

T∑
τ=1

Fτ where Fτ = pτ (τ ×N)− pτ (tf). (2)

By definition the forgetting of the final T -th task is FT = 0. If a CRL agent has better performance
at the end of the task sequence compared to after τ -th task at time-step τ ×N then Fτ < 0.

Forward Transfer. The forward transfer is the difference in task performance during continual
learning compared to the single task performance. The forward transfer is defined as:

FT =
1

T

T∑
τ=1

FTτ where FTτ =
AUCτ − AUCrefτ

1− AUCτ
(3)

AUCτ =
1

N

∫ τ×N

(τ−1)×N

pτ (t)dt and AUCrefτ =
1

N

∫ N

0

prefτ (t)dt. (4)

FTτ > 0 means that the CRL agent achieves better performance on task τ during continual learning
versus in isolation. So this metric measures how well a CRL agent transfers knowledge from previous
tasks when learning a new task.

5.1 Minigrid

Minigrid [55] is a challenging image based, partially observable and sparse reward environment.
The agent, in red, will get a reward of +1 when it gets to the green goal, Fig. 2. The agent sees a
small region of the Minigrid environment as observation ot. We use 3 different tasks from Minigrid:

5

https://anonymous.4open.science/r/dv24crl-C594
https://anonymous.4open.science/r/dv24crl-C594

Figure 2: Performance of CRL agents on 3 Minigrid tasks. Grey shaded regions indicate the
environment which the agent is currently interacting with. All learning curves are a median and
inter-quartile range across 5 seeds. For Impala and CLEAR we use 10 seeds. On the right we pick a
random instantiation of the Minigrid environments that are being evaluated.

DoorKey-9x9, SimpleCrossing-SN9 and LavaCrossing-9x9. Each environment has a different
obstacle and so the tasks are diverse. Each method interacts with each task for 0.75M environment
interactions, as previously proposed in [23].

We continuously evaluate CRL agents on all tasks, see Fig. 2 for the success rates. The results
indicate that DreamerV2 is able to solve difficult exploration tasks like the DoorKey-9x9 which
involves the agent having to pick up a key and then use the key to open a door before accessing
the goal. Additionally, since DreamerV2 trains its policy inside the world model it is more sample
efficient than powerful baselines like CLEAR which need ×10 more environment interactions to
be able to solve the easier Minigrid tasks SimpleCrossing-SN9 and LavaCrossing-9x9, Table 1.
The addition of Plan2Explore enables DreamerV2 to solve these environments even more quickly,
see Fig. 2. DreamerV2 does exhibit some forgetting of the DoorKey-9x9 task and this indicates that
additional mechanisms to prevent forgetting might be needed.

From the metrics in Table 1 we can see that DreamerV2 has strong forward transfer. From the
learning curves for individual tasks Fig. 4 we can see that DreamerV2 struggles on independent
task learning over the course of 0.75M environment steps. In contrast, when learning continually
DreamerV2 is able to solve all tasks indicating that it transfer knowledge from previous tasks. This is
not entirely surprising since the levels look similar and so the world model will already be able to
reconstruct certain observations from one task to the next.

For DreamerV2 we use the model and hyperparameters from [9] with an experience replay buffer for
world model learning of size 2M. For DreamerV2 + Plan2Explore we set the reward coefficients to
αi = αe = 0.9 which was found by grid search of various single task Minihack environments over
αi = αi = {0.1, 0.5, 0.9} we use the same policy for exploration and evaluation and learn world
model by observation reconstruction only, rather than observation, reward and discount reconstruction.
We explore these design decisions using the Minihack benchmark in Appendix B.1. For CLEAR we
use an experience replay buffer size of 1M.

6

0.0 1.6 3.2 4.8 6.4 8.0
1e6

0.0

0.5

1.0
T1: Room-Random-15x15-v0

dreamer v2 dv2 + p2e impala clear

0.0 1.6 3.2 4.8 6.4 8.0
1e6

0.0

0.5

1.0
T2: Room-Monster-15x15-v0

0.0 1.6 3.2 4.8 6.4 8.0
1e6

0.0

0.5

1.0
T3: Room-Trap-15x15-v0

0.0 1.6 3.2 4.8 6.4 8.0
1e6

0.0

0.5

1.0
T4: Room-Ultimate-15x15-v0

0.0 1.6 3.2 4.8 6.4 8.0
Num frames 1e6

0.0

0.5

1.0
T5: River-Narrow-v0

0.0 1.6 3.2 4.8 6.4 8.0
Num frames 1e6

0.0

0.5

1.0
T6: River-v0

0.0 1.6 3.2 4.8 6.4 8.0
Num frames 1e6

0.0

0.5

1.0
T7: River-Monster-v0

0.0 1.6 3.2 4.8 6.4 8.0
Num frames 1e6

0.2

0.0

0.2

0.4

T8: HideNSeek-v0

Pr
op

or
tio

n
of

 su
cc

es
se

s (
hi

gh
 is

 b
et

te
r)

Figure 3: Performance of various CRL agents on 8 Minihack tasks. Grey shaded regions indicate
the environment which the agent is currently interacting with. All learning curves are a median and
inter-quartile range across 5 seeds, for Impala and CLEAR we use 10 seeds.

Avg. Performance (↑) Avg. Forgetting (↓) Avg. Forward Transfer (↑)

Impala 0.00± 0.00 0.00± 0.00 0.00± 0.00
CLEAR 0.03± 0.04 0.02± 0.02 0.01± 0.01

Impala×10 0.16± 0.16 0.06± 0.13 -
CLEAR×10 0.64± 0.20 0.00± 0.00 -

DreamerV2 0.75± 0.11 0.01± 0.14 0.45± 0.63
DreamerV2 + Plan2Explore 0.74± 0.02 −0.02± 0.03 1.06± 0.83

Table 1: Results on 3 Minigrid tasks. All metrics are an average and standard errors over 5 seeds. For
CLEAR and Impala we use 10 seeds. We use 0.75M interactions for each task, and 7.5M in methods
marked with ×10. ↑ indicates better performance with higher numbers, and ↓ the opposite.

5.2 Minihack

To test the limits of DreamerV2’s ability to remember previous tasks and its exploration mechanism
we look at a longer set of tasks which are harder to solve in the from of Minihack [56]. The effect of
using an additional exploration strategy is apparent as DreamerV2 + Plan2Explore is able to solve
harder tasks than the baselines. Additionally DreamerV2 + Plan2Explore is also able to achieve large
forward transfer similarly with the Minigrid experiments.

Minihack is a set of diverse image based, sparse reward tasks based on the game of Nethack [57].
We test DreamerV2 performance on 8 tasks from Minihack [56]. In particular we consider the fol-
lowing tasks Room-Random-15x15-v0, Room-Monster-15x15-v0, Room-Trap-15x15-v0,
Room-Ultimate-15x15-v0 River-Narrow-v0, River-v0, River-Monster-v0 and
HideNSeek-v0, which are a subset of the 12 Minihack tasks from the CORA CRL bench-
mark [24]. Each task is seen once and has a budget of 1M environment interactions.

DreamerV2 is able to solve the easier first three Room environments Room-Random-15x15-v0
Room-Monster-15x15-v0 Room-Trap-15x15-v0 however struggles to solve the harder later tasks
and is susceptible to forgetting. In contrast DreamerV2 + Plan2Explore is able to solve the harder
River-Narrow-v0, River-v0 and River-Monster-v0 tasks and is also susceptible to forgetting
of the initial Room tasks. CLEAR in contrast is really stable to remembers how to solve the Room
tasks with little forgetting, however is unable to solve the more difficult River tasks. For DreamerV2

7

Avg. Performance (↑) Avg. Forgetting (↓) Avg. Forward Transfer (↑)

Impala 0.14± 0.05 0.14± 0.04 0.22± 0.09
CLEAR 0.51± 0.07 −0.05± 0.05 1.05± 0.09

DreamerV2 0.09± 0.07 0.37± 0.07 0.56± 0.86
DreamerV2 + Plan2Explore 0.38± 0.03 0.22± 0.05 0.76± 0.25

Table 2: Results on 8 Minihack tasks. All metrics are an average and standard error over 5 seeds. For
CLEAR and Impala we use 10 seeds. ↑ indicates better performance with higher numbers, and ↓ the
opposite.

and DreamerV2 + Plan2Explore we use the same design choices as described for the Minigrid
experiments in Section 5.1. For CLEAR we use a replay buffer size of 1M transitions only. The
entire task sequence is 8M steps so CLEAR is effective in preventing forgetting with a relatively
small experience replay buffer.

From Table 2 we see that CLEAR has good performance, this can be explained from the learning
curves in Fig. 3 where only the simplest Minihack Room tasks are solved and remembered. CLEAR
like DreamerV2 + Plan2Explore is also similarly able to effectively transfer knowledge from other
tasks when learning a new task with impressive forward transfer. On the other hand DreamerV2
and DreamerV2 + Plan2Explore achieve worse average performance since it is more susceptible to
forgetting however they still have high forward transfer. An instance of forward transfer can be seen
by looking at the single task performance on Room-Trap-15x15-v0 Room-Monster-15x15-v0 and
River-Monster-v0 in Fig. 5 which isn’t as high as in the CRL setting. One simple design choice we
can make to alleviate forgetting further would simply be to increase the size of the experience replay
buffer, this decreases forgetting to 0.01± 0.11 and increases the average performance to 0.48± 0.09
for a replay buffer size of 8M, but at the same time this decreases forward transfer Fig. 6.

6 Discussion and Future Works

We have explored the use of world models as a CRL baseline. World models can be powerful CRL
agents as they train the policy inside the world model and can thus be sample efficient. World models
are trained by using experience replay buffers and so we can prevent forgetting of past tasks by
persisting the replay buffer from the current task to a new task and so on. Importantly, the world
model’s prediction uncertainty can be used as an additional intrinsic task agnostic reward to help
exploration and solve difficult tasks in a task-agnostic fashion [14]. Previous CRL exploration
strategies in the literature all require task information to be effective. We use DreamerV2 as the world
model [9] and we show that DreamerV2 is a powerful CRL method on two different difficult CRL
benchmarks.

We show that world models can be a strong baseline for CRL problems compared to state of the art
methods such as CLEAR [13]. DreamerV2 with Plan2Explore outperforms CLEAR on Minigrid. It
also can achieve comparable performance with CLEAR on Minihack. On the one hand it exhibits
more forgetting than CLEAR, on the other hand it can solve harder and more difficult exploration
tasks than CLEAR. Future work, will explore making world model less susceptible to forgetting.

References

[1] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre,
Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P.
Lillicrap, and David Silver. Mastering atari, go, chess and shogi by planning with a learned
model. CoRR, abs/1911.08265, 2019.

[2] OpenAI, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefowicz, Bob McGrew,
Jakub W. Pachocki, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex
Ray, Jonas Schneider, Szymon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech
Zaremba. Learning dexterous in-hand manipulation. CoRR, abs/1808.00177, 2018.

8

[3] V Nguyen, SB Orbell, Dominic T Lennon, Hyungil Moon, Florian Vigneau, Leon C Camenzind,
Liuqi Yu, Dominik M Zumbühl, G Andrew D Briggs, Michael A Osborne, et al. Deep
reinforcement learning for efficient measurement of quantum devices. npj Quantum Information,
7(1):1–9, 2021.

[4] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco
Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de Las Casas, et al. Mag-
netic control of tokamak plasmas through deep reinforcement learning. Nature, 602(7897):414–
419, 2022.

[5] Mark Bishop Ring. Continual learning in reinforcement environments. PhD thesis, University
of Texas at Austin, 1994.

[6] Demis Hassabis, Dharshan Kumaran, Christopher Summerfield, and Matthew Botvinick.
Neuroscience-inspired artificial intelligence. Neuron, 95(2):245 – 258, 2017.

[7] Maciej Wolczyk, Michal Zajac, Razvan Pascanu, Lukasz Kucinski, and Piotr Milos. Con-
tinual world: A robotic benchmark for continual reinforcement learning. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan,
editors, Advances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages
28496–28510, 2021.

[8] Khimya Khetarpal, Matthew Riemer, Irina Rish, and Doina Precup. Towards continual rein-
forcement learning: A review and perspectives. arXiv preprint arXiv:2012.13490, 2020.

[9] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. arXiv preprint arXiv:2010.02193, 2020.

[10] Massimo Caccia, Jonas Mueller, Taesup Kim, Laurent Charlin, and Rasool Fakoor. Task-
agnostic continual reinforcement learning: In praise of a simple baseline. arXiv preprint
arXiv:2205.14495, 2022.

[11] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and
teaching. Mach. Learn., 8(3–4):293–321, May 1992.

[12] David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[13] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experi-
ence replay for continual learning. In Advances in Neural Information Processing Systems 32,
pages 350–360. 2019.

[14] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak
Pathak. Planning to explore via self-supervised world models. In International Conference on
Machine Learning, pages 8583–8592. PMLR, 2020.

[15] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

[16] Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM
Sigart Bulletin, 2(4):160–163, 1991.

[17] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps.
In 2015 aaai fall symposium series, 2015.

[18] Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating con-
tinual learning scenarios: A categorization and case for strong baselines. arXiv preprint
arXiv:1810.12488, 2018.

[19] Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

[20] Sebastian Thrun and Tom M. Mitchell. Lifelong robot learning. Robotics and Autonomous
Systems, 15(1):25–46, 1995. The Biology and Technology of Intelligent Autonomous Agents.

9

[21] James Kirkpatrick, Razvan Pascanu, Neil C. Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic
forgetting in neural networks. CoRR, abs/1612.00796, 2016.

[22] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework
for continual learning. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
4535–4544. PMLR, 2018.

[23] Samuel Kessler, Jack Parker-Holder, Philip Ball, Stefan Zohren, and Stephen J Roberts. Same
state, different task: Continual reinforcement learning without interference. arXiv preprint
arXiv:2106.02940, 2021.

[24] Sam Powers, Eliot Xing, Eric Kolve, Roozbeh Mottaghi, and Abhinav Gupta. Cora: Benchmarks,
baselines, and metrics as a platform for continual reinforcement learning agents. arXiv preprint
arXiv:2110.10067, 2021.

[25] Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual
learning. In International Conference on Learning Representations, 2018.

[26] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual Learning Through Synaptic
Intelligence. In International Conference on Machine Learning, 2017.

[27] Zhizhong Li and Derek Hoiem. Learning without Forgetting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2017.

[28] Ari S Benjamin, David Rolnick, and Konrad P Kording. Measuring and Regularizing Networks
in Function Space. In International Conference on Learning Representations, 2019.

[29] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. Advances in neural
information processing systems, 33:15920–15930, 2020.

[30] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. CoRR,
abs/1606.04671, 2016.

[31] Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. A neural dirichlet process mixture
model for task-free continual learning. arXiv preprint arXiv:2001.00689, 2020.

[32] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual Learning with Deep
Generative Replay. In Advances in Neural Information Processing Systems, 2017.

[33] David Lopez-Paz and Marc ’ Aurelio Ranzato. Gradient Episodic Memory for Continual
Learning. In Advances in Neural Information Processing Systems, 2017.

[34] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. In Advances in Neural Information Processing Systems, 2019.

[35] Arslan Chaudhry, Marcus Rohrbach Facebook, A I Research, Mohamed Elhoseiny, Tha-
laiyasingam Ajanthan, Puneet K Dokania, Philip H S Torr, and Marc ’ Aurelio Ranzato. On
Tiny Episodic Memories in Continual Learning. arxiv.org:1902.10486, 2019.

[36] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 2015.

[37] Jorge A Mendez, Boyu Wang, and Eric Eaton. Lifelong Policy Gradient Learning of Factored
Policies for Faster Training Without Forgetting. In Advances in Neural Information Processing
Systems, 2020.

10

[38] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. IMPALA: Scalable distributed
deep-RL with importance weighted actor-learner architectures. In International Conference on
Machine Learning. 2018.

[39] Yizhou Huang, Kevin Xie, Homanga Bharadhwaj, and Florian Shkurti. Continual model-based
reinforcement learning with hypernetworks. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 799–805. IEEE, 2021.

[40] André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt,
and David Silver. Successor features for transfer in reinforcement learning. Advances in neural
information processing systems, 30, 2017.

[41] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function ap-
proximators. In International conference on machine learning, pages 1312–1320. PMLR,
2015.

[42] André Barreto, Diana Borsa, Shaobo Hou, Gheorghe Comanici, Eser Aygün, Philippe Hamel,
Daniel K Toyama, Jonathan J Hunt, Shibl Mourad, David Silver, et al. The option keyboard:
Combining skills in reinforcement learning. 2019.

[43] Daniel J Mankowitz, Augustin Žídek, André Barreto, Dan Horgan, Matteo Hessel, John Quan,
Junhyuk Oh, Hado van Hasselt, David Silver, and Tom Schaul. Unicorn: Continual learning
with a universal, off-policy agent. arXiv preprint arXiv:1802.08294, 2018.

[44] Annie Xie, James Harrison, and Chelsea Finn. Deep reinforcement learning amidst lifelong
non-stationarity. arXiv preprint arXiv:2006.10701, 2020.

[45] Anusha Nagabandi, Chelsea Finn, and Sergey Levine. Deep online learning via meta-learning:
Continual adaptation for model-based rl. arXiv preprint arXiv:1812.07671, 2018.

[46] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pages 2778–
2787. PMLR, 2017.

[47] Christian Steinparz, Thomas Schmied, Fabian Paischer, Marius-Constantin Dinu, Vihang Patil,
Angela Bitto-Nemling, Hamid Eghbal-zadeh, and Sepp Hochreiter. Reactive exploration to
cope with non-stationarity in lifelong reinforcement learning. arXiv preprint arXiv:2207.05742,
2022.

[48] Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer
(poet): Endlessly generating increasingly complex and diverse learning environments and their
solutions. arXiv preprint arXiv:1901.01753, 2019.

[49] Open Ended Learning Team, Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck,
Jakob Bauer, Jakub Sygnowski, Maja Trebacz, Max Jaderberg, Michael Mathieu, et al. Open-
ended learning leads to generally capable agents. arXiv preprint arXiv:2107.12808, 2021.

[50] Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktäschel. Evolving curricula with regret-based environment design.
arXiv preprint arXiv:2203.01302, 2022.

[51] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation
of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,
2014.

[52] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[53] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. Advances in neural information
processing systems, 30, 2017.

11

[54] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[55] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environ-
ment for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

[56] Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Hambro,
Fabio Petroni, Heinrich Kuttler, Edward Grefenstette, and Tim Rocktäschel. Minihack the
planet: A sandbox for open-ended reinforcement learning research. In Thirty-fifth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

[57] Heinrich Küttler, Nantas Nardelli, Alexander H. Miller, Roberta Raileanu, Marco Selvatici, Ed-
ward Grefenstette, and Tim Rocktäschel. The NetHack Learning Environment. In Proceedings
of the Conference on Neural Information Processing Systems (NeurIPS), 2020.

[58] Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin. The stability-plasticity dilemma:
Investigating the continuum from catastrophic forgetting to age-limited learning effects, 2013.

12

https://github.com/maximecb/gym-minigrid

0.0 0.2 0.4 0.6 0.8 1.0
Num frames 1e6

0.00

0.25

0.50

0.75

1.00
T1: DoorKey-9x9

0.0 0.2 0.4 0.6 0.8 1.0
Num frames 1e6

T2: SimpleCrossing-SN9

dv2 dv2 + p2e

0.0 0.2 0.4 0.6 0.8 1.0
Num frames 1e6

T3: LavaCrossing-SN9
Pr

op
or

tio
n

of
 su

cc
es

se
s

Figure 4: Single task performance of on individual tasks from the Minigrid CRL benchmark. All
curves are a median and inter-quartile range over 5 seeds.

0.00 0.25 0.50 0.75 1.00
Num frames 1e6

0.0

0.2

0.4

0.6

0.8

1.0
T1: Room-Random-15x15-v0

0.00 0.25 0.50 0.75 1.00
Num frames 1e6

T2: Room-Monster-15x15-v0

0.00 0.25 0.50 0.75 1.00
Num frames 1e6

T3: Room-Trap-15x15-v0

0.00 0.25 0.50 0.75 1.00
Num frames 1e6

T4: Room-Ultimate-15x15-v0

0.00 0.25 0.50 0.75 1.00
Num frames 1e6

T5: River-Narrow-v0

dv2 dv2 + p2e

0.00 0.25 0.50 0.75 1.00
Num frames 1e6

T6: River-v0

0.00 0.25 0.50 0.75 1.00
Num frames 1e6

T7: River-Monster-v0

0.00 0.25 0.50 0.75 1.00
Num frames 1e6

T8: HideNSeek-v0

Pr
op

or
tio

n
of

 su
cc

es
se

s

Figure 5: Single task performance of on individual tasks from the Minihack CRL benchmark. All
curves are a median and inter-quartile range over 5 seeds.

Supplementary Material
Appendix A Single Task experiments

To assess the forward transfer of DreamerV2 for CRL we need the performance of each task as a
reference Eq. (3). Single task learning curves for Minigrid are shown in Fig. 4 and single task learning
curves for all Minihack tasks in the CRL loop are shown in Fig. 5.

Appendix B Further Experiments

A couple further experiments are introduced which are referenced in the main paper. In Appendix B.1
we explore various design choices required for DreamerV2 + Plan2Explore to get the best performance
for CRL. Secondly, in Appendix B.2 we explore how increasing the size of the experience replay
buffer size affects performance in the Minihack CRL benchmark.

B.1 DreamerV2 Ablation Experiments

We explore various design choices which come from the implementations of DreamerV2 [9] and
Plan2Explore [14].

1. The use of Plan2Explore as an intrinsic reward.

2. World model learning by reconstructing the observations ôt only and not the observations,
rewards and discounts all together.

3. The use of the exploration policy at to evaluate the performance on all current and past tasks
rather than having a separate exploration and evaluation policy.

13

Plan2Explore ô reconstruction only πexp = πeval Avg. Performance (↑) Avg. Forgetting (↓) Avg. Forward Transfer (↑)

- - - 0.09± 0.07 0.37± 0.07 0.56± 0.86
✔ - - 0.28± 0.13 0.13± 0.08 0.11± 0.15
✔ ✔ - 0.39± 0.13 0.19± 0.16 0.87± 0.95
✔ ✔ ✔ 0.38± 0.03 0.22± 0.05 0.76± 0.25

Table 3: CRL metrics for different design decisions on DreamerV2 for the Minihack CRL benchmark
of 8 tasks. All metrics are an average and standard error over 5 seeds. ↑ indicates better performance
with higher numbers, and ↓ the opposite.

2M 4M 8M
Exp. Replay buffer sz

0.05

0.00

0.05

0.10

0.15

0.20

0.25

Av
g.

 F
or

ge
tti

ng

2M 4M 8M
Exp. Replay buffer sz

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
g.

 F
wd

 Tr
an

sf
er

2M 4M 8M
Exp. Replay buffer sz

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
g.

 Fi
na

l P
er

fo
rm

an
ce

Figure 6: CRL metrics for DreamerV2 + Plan2Explore for the Minihack benchmark of 8 tasks versus
the experience replay buffer size of the world model for DreamerV2 + Plan2Explore. All metrics are
median and inter-quartile range over 5 seeds.

The results are shown in Table 3. We decided to pick the model in the final line to report the results
in the main paper as they produce the good results on Minihack with relatively small standard errors.

B.2 Stability versus Plasticity: Increasing the Size of the Replay Buffer

By increasing the replay buffer size for world model learning for DreamerV2 + Plan2Explore we
see that forgetting and average performance increases, however the forward transfer simultaneously
decreases, Fig. 6. This is an instance of the stability-plasticity trade-off [58] in continual learning
neural network based systems.

14

	Introduction
	Preliminaries
	Reinforcement Learning
	Continual Supervised Learning
	Continual Reinforcement Learning

	Related Work
	Continual Supervised Learning
	Continual Reinforcement Learning
	Continual Adaptation

	World Models for Continual Reinforcement Learning
	Learning the World Model
	Policy Learning inside the World Model
	Task Agnostic Exploration

	Experiments
	Minigrid
	Minihack

	Discussion and Future Works
	Single Task experiments
	Further Experiments
	DreamerV2 Ablation Experiments
	Stability versus Plasticity: Increasing the Size of the Replay Buffer

