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Abstract

Modern-day deep learning models are trained efficiently at scale thanks to the
widespread use of stochastic optimizers such as SGD and ADAM. These optimizers
update the model weights iteratively based on a batch of uniformly sampled training
data at each iteration. However, it has been previously observed that the training
performance and overall generalization ability of the model can be significantly
improved by selectively sampling training data based on an importance criteria,
known as importance sampling. Previous approaches to importance sampling use
metrics such as loss, gradient norm etc. to calculate the importance scores. These
methods either attempt to directly compute these metric, resulting in increased
training time, or aim to approximate these metrics using an analytical proxy, which
typically have inferior training performance. In this work, we propose a new
sampling strategy called IMPON, which computes importance scores based on an
auxiliary linear model that regresses the loss of the original deep model, given the
current training context, with minimal additional computational cost. Experimental
results show that IMPON is able to achieve a significantly high test accuracy, much
faster than prior approaches.

1 Introduction

Modern machine learning systems are a complex network of sub-components such as data ingestion,
architecture search, hyper parameter optimization (HPO), model compression etc. Apart from data
ingestion component, all other components need some sort of model evaluation and selection. Model
selection typically involves running several iterations of training, often until full convergence, which
directly translates to increase in overall time taken to obtain an optimal model. This effect is only
exacerbated with increase in the size of the data and model. However, model selection often does
not require training until full convergence. For instance, in HPO we only compare the training
performance of several configurations of the same model. Therefore, if we can achieve highly
accurate models much earlier in the training, we can avoid training the model until full convergence
and subsequently reduce the model selection time. In this work we aim to achieve the same.

Deep learning models are often trained using stochastic “gradient-based” learning algorithms such
as SGD and Adam Kingma & Ba (2014). The convergence of these algorithms are often stymied
due to the uniform sampling strategy of the training data employed by these methods Katharopoulos
& Fleuret (2018, 2017). Recently, researchers have looked at importance sampling for directly
addressing this issue. Importance sampling chooses training samples that are important to the
prediction task at hand based on a predefined importance metric, so that examples that really matter
are learned by the model earlier in the training, resulting in reduced training times. However,
computing importance scores often incurs additional computational costs and their complexity can
vary based on the importance criteria.
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Existing works on importance sampling form a broad spectrum, in terms of their computational
complexity. On the one hand, there are methods Katharopoulos & Fleuret (2017); Jiang et al. (2019)
that use metrics such as training loss or gradient norms as importance scores, which are generally
expensive to compute, but are found to be good indicators of sample importance. In contrast, some
works have used other metrics such a model uncertainty Katharopoulos & Fleuret (2018) and other
proxies for training loss Chang et al. (2017), which are cheaper to compute but have been shown to
be not as effective.

In this work, we propose IMPON, a smart sampling technique that uses training loss as the importance
score. IMPON uses a simple online linear model to estimate the expected loss of a small bank of
training samples at each iteration. Important samples for a training batch are then chosen from
this data bank directly. In our experiments we see that IMPON is able to obtain higher validation
accuracies, significantly faster, with very minimal computational overhead.

2 Related works

Recently the idea of using techniques based on importance sampling, for improving convergence
rates of stochastic optimization algorithms, have received a lot of attention. Prior work such as Alain
et al. (2015); Loshchilov & Hutter (2015); Schaul et al. (2015); Bengio et al. (2009); Katharopoulos &
Fleuret (2018, 2017) have tried importance sampling for deep learning objectives. Alain et al. (2015);
Katharopoulos & Fleuret (2018) have proven that choosing examples proportional to the gradient
norm can enable faster convergence. However evaluating the gradient of each training example at
every iteration is computationally expensive.

Few other works like Katharopoulos & Fleuret (2017); Schaul et al. (2015); Loshchilov & Hutter
(2015) have used loss values as the importance scores. Despite the fact that training losses don’t
directly correspond to high gradients, loss values are much cheaper to compute than gradient norm,
and are a reasonable proxy for gradient norms. Having said that loss computation still requires a full
forward pass over the entire network. To address this issue, Schaul et al. (2015); Loshchilov & Hutter
(2015) maintain the history of input examples and its corresponding loss values and sample examples
based on its historical loss values. Katharopoulos & Fleuret (2017) has trained a LSTM model with
input examples and loss values to estimate the importance scores (losses). In a similar realm, Jiang
et al. (2019) propose the selective backpropagation method, where loss values are computed for all
the training examples, but backward pass is only computed for the important samples.

Few other works have aimed to predict importance scores with a computationally efficient strategy.
For instance, Chang et al. (2017) proposed a sampling strategy called P-SGD where he predicted
importance scores based on the average predicted probability across all previous epochs associated to
the ground truth of each sample: pti =
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)
+ ϵt, where pi is the importance

score of training example i, t is the current epoch, hk
θ(y|xi) is the prediction of the model for the input

example xi at epoch k, and ϵt is a smoothness constant. This approach avoids the extra forward passes
that is required in computing the importance score using loss values and can be computationally
efficient. Another similar approach Chang et al. (2017) selects samples that are closer to the decision
boundaries and chooses samples with higher uncertainty. They define importance as cti = pti×(1−pti).
However in hindsight, although computationally efficient, these methods don’t aggressively sample
examples that improve the model earlier on in the training. As a result, we observe that these methods
converge much slower than the previous methods.

In this work, we aim to reduce computational complexity while using loss values to estimate
importance scores, similar to Katharopoulos & Fleuret (2017, 2018). We avoid a full forward pass to
obtain loss values by estimating the loss values just like Katharopoulos & Fleuret (2017). However,
we train a simple linear online model instead of large sequence models as in Katharopoulos & Fleuret
(2017) to estimate the loss based on the current training context, thereby reducing the per-iteration
cost and overall training time.

3 Method

The overall training pipeline using the IMPON sampler is illustrated in Figure 1. IMPON has 3 major
components, which we detail below.
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Figure 1: The IMPON training pipeline. The IMPON sampler consists of a linear model that predicts
importance scores and a batch sampler.

• Data bank. A small memory bank, that holds a randomly sampled pool of examples on
which importance scores are computed. The size of the data bank N is typically much
smaller than the entire training data (in our experiments, we use a bank size of 200).

• Linear model. This is the most important component of IMPON. The linear model estimates
the expected loss of each sample in the data bank. The input to the linear model is the context
vector cxi , which is described as cxi = {xi; ||wi||F }, where xi is a feature representation of
an example from the data bank in iteration i and wi is the current weight matrix of the deep
model. The norm of wi, serves as a snapshot of the state of the deep model. The IMPON
model is trained by an SGD optimizer using the actual losses from the deep model after
performing a forward pass.

• Batch sampler. The Batch sampler, chooses b important samples, from the N samples in
the data bank, based on the importance scores (expected loss) computed by the linear model.
These b samples are provided as the training batch for training the deep model in iteration
i+ 1.

The training pipeline consists of the following steps:

1. At iteration i, randomly sample N samples from the training data to the data bank.
2. Construct the context vector cxi for samples in the data bank.
3. Predict the importance scores for all the samples in the data bank using the linear model.
4. Select b samples with the highest importance scores from the data bank and use that to

perform a single training iteration of the deep model (forward + backward pass) and observe
the training loss ℓxi , i ∈ {1, . . . , b}.

5. Use {cxi
, ℓxi

} to update the linear model in an online fashion.

Weight reset. Note that the linear model is updated by regressing against the actual training loss in
each iteration. In the earlier stages of training, this loss can be high and also quite noisy and as a
result the loss estimates learned by the online model can also be unreliable. In our experiments, we
observed that the linear model overfitted to these noisy losses in the first few epochs, and resulted
in the deep model converging with high loss too early. To alleviate this, we propose to reset the
weights of the linear model after every epoch of the deep model training. We note here that alternative
strategies for manipulating the weights of the linear model may be considered and might be more
effective. However, we observed that just resetting the weights resulted in a far more stable training.

4 Experiments

Dataset & Training details. To show the effectiveness of our proposed approach, we trained a
ResNet18 model on four image classification datasets: 1) SVHN Netzer et al. (2011) 2) CIFAR10
Krizhevsky et al. (2009) and 3) CIFAR100 Krizhevsky et al. (2009).

We followed the experimental setup of Arazo et al. (2021) and trained the ResNet18 model for about
30 iterations on the above mentioned datasets and observed the training loss in every iteration and
validation accuracies after every epoch. The learning rate for all the baseline models were set to
1e−1 for all the datasets, with a momentum of 0.9 for SGD-based optimizers. For IMPON, we are
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dealing with two separate optimizers, one for training the deep model and another for the IMPON
linear model. We observed that setting a high learning rate for training the deep model resulted in
overfitting of the downstream online model. So, we used learning rates of 1e−3 and 1e−6 for the
deep model and the linear model respectively.

Baselines. We compared IMPON with other optimizers that fall in one of the 3 categories: a)
Optimizers that do uniform sampling (vanilla SGD and Adam). b) Optimizers that do importance
sampling but incur a relatively “high” per-iteration sampling cost (selective backpropagation Jiang
et al. (2019)). c) Optimizers that do importance sampling but are computationally efficient (p-SGD
Katharopoulos & Fleuret (2018), c-SGD Chang et al. (2017). Additionally, we also included a version
of IMPON where we chose the examples with the least importance score as predicted by the linear
model in each iteration. We call this method IMPONwLowScores.

Results. The results on the image classification task are given in 3 and 2. IMPON is able to
outperform all the baselines across all the datasets comprehensively. The effect of our aggressive
importance sampling is especially pronounced in the first few epochs, where IMPON is able to
achieve close to 30% higher validation accuracy compared to the nearest competitor (Adam on
SVHN).

We like to point out that all the SGD-based optimizers eventually converge to similar validation
accuracies and training loss at the end of the training. This makes sense, as none of the importance
sampling methods modify the underlying optimizer (SGD), but tweak the sampling process. However,
IMPON excels at achieving a high accuracy much earlier on in the training.

IMPON hyperparameters. The IMPON block as shown in 1 has 2 parameters that can be tuned.
1) Learning rate of the optimizer for the IMPON linear model 2) Size of the data bank. Since the
IMPON linear model is trained jointly with the ResNet18 model, a high learning rate of the linear
model (especially earlier on in the learning cycle) resulted in overfitting. A similar effect is observed
with the size of the data bank, which is discussed in detail in Appendix 5.
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Figure 2: Validation accuracies on popular image classification datasets. IMPON reaches a high
validation accuracy in the first few training epochs compared to the baselines.

5 Ablation on the size of the data bank

The size of the data bank had a significant impact on the overall model performance. In general, we
observed that a bigger data bank negatively impacted the overall model performance, as shown in 4.
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Figure 3: Training losses on popular image classification datasets. IMPON attains a much lower
training loss in the first few training iterations compared to the baselines.

Particularly we saw that the model performance gets high in the first few epochs and then plateaus.
We hypothesize that with a higher data bank, the IMPON online model is able to confidently assign
importance scores to a large portion of the training data. In the earlier stages of training, such a
strategy could be detrimental as the training signals (loss values in our case) can be noisy in the
earlier iterations. This effect is ameliorated somewhat with a smaller data bank size.
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Figure 4: Ablation studies on the size of the data bank and its effect on the model performance
(validation accruracy).

6 Conclusion

We developed a novel sampling algorithm IMPON that achieves faster convergence with high accuracy
using an auxiliary linear model. A key principle that IMPON highlights is using a simple model
context to regress the expected loss is an effective strategy to learn the importance weights. In
the future, we would like to explore even simpler approximations of IMPON. IMPON’s training
principles can also be further refined by considering dynamic data bank sizes, ranking losses for
supervising the linear model etc.
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