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Abstract

It has been shown that machine translation001
models usually generate poor translations for002
named entities that are infrequent in the train-003
ing corpus. Earlier named entity translation004
methods mainly focus on phonetic transliter-005
ation, which ignores the sentence context for006
translation and is limited in domain and lan-007
guage coverage. To address this limitation,008
we propose DEEP, a DEnoising Entity Pre-009
training method that leverages large amounts010
of monolingual data and a knowledge base011
to improve named entity translation accuracy012
within sentences. Besides, we investigate a013
multi-task learning strategy that finetunes a014
pre-trained neural machine translation model015
on both entity-augmented monolingual data016
and parallel data to further improve entity trans-017
lation. Experimental results on three language018
pairs demonstrate that DEEP results in signifi-019
cant improvements over strong denoising auto-020
encoding baselines, with a gain of up to 1.3021
BLEU and up to 9.2 entity accuracy points for022
English-Russian translation.023

1 Introduction024

Proper translation of named entities is critically im-025

portant for accurately conveying the content of text026

in a number of domains, such as news or encyclope-027

dic text (Knight and Graehl, 1998; Al-Onaizan and028

Knight, 2002a,b). In addition, a growing number029

of new named entities (e.g., person, location) ap-030

pear every day, therefore many of these entities may031

not exist in the parallel data traditionally used to032

train MT systems. As a result, even state-of-the-art033

MT systems struggle with entity translation. For034

example, Laubli et al. (2020) note that a Chinese-035

English news translation system that had allegedly036

reached human parity still lagged far behind human037

translators on entity translations, and this issue will038

be further exacerbated in the cross-domain transfer039

settings or in the case of emerging entities.040

Because of this, there have been a number of041

methods proposed specifically to address the prob- 042

lem of translating entities. As noted by Liu (2015), 043

earlier studies on named entity translation largely 044

focused on rule-based methods (Wan and Verspoor, 045

1998), statistical alignment methods (Huang et al., 046

2003, 2004) andWebmining methods (Huang et al., 047

2005; Wu and Chang, 2007; Yang et al., 2009). 048

However, thesemethods have twomain issues. First, 049

as they generally translate a single named entity 050

without any context in a sentence, it makes it diffi- 051

cult to resolve ambiguity in entities using context. 052

In addition, the translation of entities is often per- 053

formed in a two-step process of entity recognition 054

then translation, which complicates the translation 055

pipeline and can result in cascading errors (Huang 056

et al., 2003, 2004; Chen et al., 2013). 057

In this paper, we focus on a simple yet effec- 058

tive method that improves named entity translation 059

within context. Specifically, we do so by devis- 060

ing a data augmentation method that leverages two 061

data sources: monolingual data from the target lan- 062

guage and entity information from a knowledge 063

base (KB). Our method also adopts a procedure of 064

pre-training and finetuning neural machine trans- 065

lation (NMT) models that is used by many recent 066

works (Luong and Manning, 2015; Neubig and Hu, 067

2018; Song et al., 2019; Liu et al., 2020). In par- 068

ticular, pre-training methods that use monolingual 069

data to improve translation for low-resource and 070

medium-resource languages mainly rely on a de- 071

noising auto-encoding objective that attempt to re- 072

construct parts of text (Song et al., 2019) or the 073

whole sentences (Liu et al., 2020) from noised in- 074

put sentences without particularly distinguishing 075

named entities and other functional words in the 076

sentences. In contrast, our method exploits an entity 077

linker to identify entity spans in the monolingual 078

sentences and link them to a KB (such as Wiki- 079

data (Vrandečić and Krötzsch, 2014)) that contains 080

multilingual translations of these entities. We then 081

generate noised sentences by replacing the extracted 082
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Krasnodar (Q3646)
Language Label Description
English Krasnodar capital of Krasnodar region (Krai) in Southern Russia
Russian Краснодар город на юге России, административный центр

Краснодарского края::

Language Label ...
English Saratov ...
Russian Саратов ...

::

Saratov (Q5332)
Language Label ...
English Ulyanovsk ...
Russian Ульяновск ...

::

Ulyanovsk (Q5627)

Магазины нового формата заработали в Краснодарe , Саратовe и Ульяновскe .

Entity Recognition and Linking

Pre-training with DEEP

Магазины нового формата заработали в Краснодарe , Саратовe и Ульяновскe .

[MT] These new format stores have opened for business in Krasnodar, Saratov, and Ulyanovsk.

Multi-task Finetuning

Магазины нового формата заработали в Краснодарe , Саратовe и Ульяновскe .

[DEEP] Магазины нового формата заработали в Krasnodar , Saratov и Ulyanovsk .

[DEEP] Магазины нового формата заработали в Krasnodar , Saratov и Ulyanovsk .

Figure 1: General workflow of our method. Entities in a sentence is extracted and linked to Wikidata, which
includes their translations in many languages. DEEP uses the noise function 5 (H,KB) that replaces entities with
the translations for pre-training. DEEP is also employed during finetuning in a multi-task learning manner.

entity spans with their translations in the knowledge083

base and pre-train our NMT models to reconstruct084

the original sentences from the noised sentences.085

To further improve the entity translation accuracy086

and avoid forgetting the knowledge learned from087

pre-training, we also examine a multi-task learning088

strategy that finetunes the NMT model using both089

the denoising task on the monolingual data and the090

translation task on the parallel data.091

In the experiments on English-Russian, English-092

Ukrainian and English-Nepali translations, DEEP093

outperforms the strong denoising auto-encoding094

baseline with respect to entity translation accuracy,095

and obtains comparable or slightly better overall096

translation accuracy as measured by BLEU. A fine-097

grained analysis shows that our multi-task finetun-098

ing strategy improves the translation accuracy of099

the entities that do not exist in the finetuning data.100

2 Denoising Auto-Encoding (DAE)101

Given a set of monolingual text segments for pre-102

training, i.e., H ∈ D. , a sequence-to-sequence de-103

noising auto-encoder is pre-trained to reconstruct a104

text segment H from its noised version corrupted by105

a noise function 6(·). Formally, the DAE objective106

is defined as follows:107

LDAE(D. , \) =
∑
H∈D.

log %(H | 6(H); \), (1)108

where \ denotes the model’s learning parameters. 109

For notation simplicity, we drop \ in the rest of 110

the sections. This formulation encompasses sev- 111

eral different previous works in data augmentation 112

for MT, such as monolingual data copying (Currey 113

et al., 2017), where 6(·) is the identity function, 114

back translation (Sennrich et al., 2016), where 6(·) 115

is a backwards translation model, as well as heuris- 116

tic noise functions (Song et al., 2019; Lewis et al., 117

2020; Liu et al., 2020) that randomly sample noise 118

according to manually devised heuristics. 119

In particular, as our baseline we focus on the 120

mBART method (Liu et al., 2020), a recently pop- 121

ular method with two type of heuristic noise func- 122

tions being used sequentially on each text segment. 123

The first noise function randomly masks spans of 124

text in each sentence. Specifically, a span length is 125

first randomly sampled from a Poisson distribution 126

(_ = 0.35) and the beginning location for a span in H 127

is also randomly sampled. The selected span of text 128

is replaced by a mask token. This process repeats 129

until 35% of words in the sentence are masked. The 130

second noise function is to permute the sentence 131

order in each text segment with a probability. 132

3 Denoising Entity Pre-training 133

Our method adopts a procedure of pre-training and 134

finetuning for neural machine translation. First, 135

we apply an entity linker to identify entities in a 136
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monolingual corpus and link them to a knowledge137

base (§3.1). We then utilize entity translations in138

the knowledge base to create noisy code-switched139

data for pre-training (§3.2). Finally, we examine a140

multi-task learning strategy to further improve the141

translation of low-frequency entities (§3.3).142

3.1 Entity Recognition and Linking143

The goal of this part is to identify entities in144

each monolingual segment and obtain their transla-145

tions. To this end, we use Wikidata (Vrandečić and146

Krötzsch, 2014) a public multilingual knowledge147

base that covers 94M entities.1 Each entity is repre-148

sented in surface forms from different languages in149

which a Wikipedia article exists. Therefore, linking150

an entity mention C in a target-language segment H151

to an entity 4 in Wikidata allows us to obtain the152

multilingual translations of the entity, that is,153

∀C ∈ H, ∃4 ∈ KB : )4 = surface(4,KB), C ∈ )4154

where)4 denotes a set of multilingual surface forms155

of 4. We can define the translate operation as:156

B = lookup()4, -) which simply looks for the sur-157

face form of 4 in the source language - . Note that158

this strategy relies on the fact that translations in159

higher-resource languages are included in)4, which160

we adopt by using English in our experiments. In161

general, however, )4 does not universally cover all162

the languages of interest. For entity recognition and163

linking, we use SLING (Ringgaard et al., 2017),2164

which builds an entity linker for arbitrary languages165

available in Wikipedia.166

3.2 Entity-based Data Augmentation167

After obtaining entity translations from the KB, we168

attempt to explicitly incorporate these translations169

into the monolingual sentences for pre-training. To170

do so, we design a entity-based noise function that171

takes in a sentence H and the KB, i.e., 5 (H,KB).172

First, we replace all detected entity spans in the173

sentence by their translations from the KB:174

replace(H,KB) = swap(B, C, H), ∀C ∈ H (2)175

where the swap() function swaps occurrences of176

one entity span C in H with its translation B in the177

source language. For example, in the second box178

of Figure 1, the named entities “Краснодаре, Са-179

ратове and Ульяновске” in Russian are replaced180

1June 14, 2021. Creative Commons CC0 License
2https://github.com/google/sling, Apache-

2.0 License

by “Krasnodar, Saratov, and Ulyanovsk” in English. 181

After the replacement, we create a noised code- 182

switched segment which explicitly include the trans- 183

lations of named entities in the context of the target 184

language. For some segments that contain fewer 185

entities, their code-switched segments may be sim- 186

ilar to them, which potentially results in a easier 187

denoising task. Therefore, we further add noise 188

to these code-switched segments. To do so, if the 189

word count of the replaced entity spans is less than 190

a fraction (35%) of the word count in the segment, 191

we randomly mask the other non-entity words to en- 192

sure that about 35% of the words are either replaced 193

or masked in the noised segment. Finally, we follow 194

Liu et al. (2020) to randomly permute the sentence 195

order in H. We then train a sequence-to-sequence 196

model to reconstruct the original sentence H from 197

its noised code-switched sentence as follows: 198

LDEEP(D. ,KB) =
∑
H∈D.

log %(H | 5 (H,KB)) 199

3.3 Multi-task Finetuning 200

After pre-training, we continue finetuning the pre- 201

trained model on a parallel corpus (G, H) ∈ D-. 202

for machine translation. 203

LMT(D-. ) =
∑

(G,H) ∈D-.

log %(H | G) (3) 204

To avoid forgetting the entity information learned 205

from the pre-training stage, we examine a mutli- 206

task learning strategy to train the model by both the 207

pre-training objective on the monolingual data and 208

the translation objective on the parallel data. Since 209

monolingual segments are longer text sequences 210

than sentences in D-. and the size of D. is usu- 211

ally larger than that of D-. , simply concatenating 212

both data for multi-task finetuning leads to bias 213

toward denoising longer sequences rather than ac- 214

tually translating sentences. To balance the two 215

tasks, in each epoch we randomly sample a subset 216

of monolingual segments D ′
.
from D. , where the 217

total subword count of D ′
.
equals to that of D-. , 218

i.e.,
∑

H∈D′H |H | =
∑
(G,H) ∈D-.

max( |G |, |H |). We 219

then examine the multitask finetuning as follows: 220

LMulti-task = LMT(D-. ) + LPre-train(D ′. ) (4) 221

where the pre-training objective LPre-train is either 222

DAE or DEEP with DEEP having an additional in- 223

put of a knowledge base. Notice that with the sam- 224

pling strategy for the monolingual data, we double 225

the batch size in the multi-task finetuning setting 226

3
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Lang. Token Para. Entity

Type Count N

Ru 775M 1.8M 1.4M 337M 123
Uk 315M 654K 524K 140M 149
Ne 19M 26K 17K 2M 34

Table 1: Statistics ofWikipedia corpora in Russian (Ru),
Ukrainian (Uk) and Nepali (Ne) for pre-training. # de-
notes the average subword count of entity spans in a se-
quence of 512 subwords.

with respect to that in the single-task finetuning set-227

ting. Therefore, we make sure that the models are228

finetuned on the same amount of parallel data in229

both the single-task and multi-task settings, and the230

gains from the mutlitask setting sorely come from231

the additional task on the monolingual data.232

To distinguish the tasks during finetuning, we re-233

place the start token ([BOS]) in a source sentence234

or a noised segment by the corresponding task to-235

kens for the translation or denoising task ([MT],236

[DAE] or [DEEP]). We initialize these task em-237

beddings by the start token embedding and append238

them to the word embedding matrix of the encoder.239

4 Experimental Setting240

Pre-training Data: We conduct our experiments241

on three language pairs: English-Russian, English-242

Ukrainian and English-Nepali. We use Wikipedia243

articles as the monolingual data for pre-training and244

report the data statistics in Table 1. We tokenize the245

text using the same sentencepiece model as Liu et al.246

(2020), and train on sequences of 512 subwords.247

Finetuning & Test Data: We use the news com-248

mentary data from the English-Russian translation249

task in WMT18 (Specia et al., 2018) for finetuning250

and evaluate the performance on the WMT18 test251

data from the news domain. For English-Ukrainian,252

we use the TED Talk transcripts from July 2020 in253

the OPUS repository (Tiedemann, 2012) for fine-254

tuning and testing. For English-Nepali translation,255

we use the FLORES dataset in Guzmán et al. (2019)256

and follow the paper’s setting to finetune on parallel257

data in the OPUS repository. Table 2 shows the data258

statistics of the parallel data for finetuning. Notice259

that from the last four columns of Table 2, the en-260

tities in the pre-training data cover at least 87% of261

the entity types and 91% of the entity counts in both262

finetuning and test data except the En-Ne pair.263

Architecture: We use a standard sequence-to-264

sequence Transformer model (Vaswani et al., 2017)265

Lang. Train Dev Test Coverage (F) Coverage (T)

Type Count Type Count

En-Ru 235K 3.0K 3.0K 88% 94% 88% 91%
En-Uk 200K 2.3K 2.5K 87% 94% 91% 94%
En-Ne 563K 2.6K 2.8K 35% 25% 44% 27%

Table 2: Statistics of the parallel train/dev/test data for
finetuning. Coverage (F/T) represent the percentage of
entity types and counts in the Finetuning (Test) data
that are covered by the pre-training data.

with 12 layers each for the encoder and decoder. 266

We use a hidden unit size of 512 and 12 attention 267

heads. Following Liu et al. (2020), we add an addi- 268

tional layer-normalization layer on top of both the 269

encoder and decoder to stabilize training at FP16 270

precision. We use the same sentencepiece model 271

and the vocabulary from Liu et al. (2020). 272

Methods in Comparison: We compare methods 273

in the single task and multi-task setting as follows: 274

• Random→MT: We include a comparison with 275

a randomly initializedmodel without pre-training 276

and finetune the model for each translation task. 277

• DAE→MT:We pre-train amodel byDAE using 278

the two noise functions in Liu et al. (2020) and 279

finetune the model for each translation task. 280

• DEEP→MT: We pre-train a model using our 281

proposed DEEP objective and finetune the model 282

on the translation task. 283

• DAE→ DAE+MT: We pre-train a model by the 284

DAE objective and finetune the model for both 285

the DAE task and translation task. 286

• DEEP→ DEEP+MT: We pre-train a model by 287

the DEEP objective and finetune the model for 288

both the DEEP task and translation task. 289

Learning & Decoding: We pre-train all models 290

for 50K steps using the default parameters in Liu 291

et al. (2020) except that we use a smaller batch of 292

64 text segments, each of which has 512 subwords. 293

We use Adam (n=1e-6, V2=0.98) and a polynomial 294

learning rate decay scheduling with a maximum 295

step at 500K. All models are pre-trained on one 296

TPUv3 (128GB) for about 12 hours for 50K steps.3 297

We apply the noise function on the monolingual 298

data on the fly for each epoch, and this takes only a 299

few minutes by multiprocessing in Fairseq (Ott 300

et al., 2019). We then reset the learning rate sched- 301

uler and finetune our pre-trained models on the MT 302

3As we show in Figure 4, models pre-trained for 50K steps
provide a reasonably good initialization.
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parallel data for 40K steps. Single-task (multi-task)303

finetuning takes about 16 (32) hours on 2 RTX 3090304

GPUs. We set the maximum number of tokens in305

each batch to 65,536 in the single task setting and306

double the batch size in the multi-task setting to307

ensure that models in both settings are trained on an308

equal amount of parallel data, and thus any perfor-309

mance gain can only be attributed to monolingual310

data during finetuning. We use 2,500warm-up steps311

to reach a maximum learning rate of 3e-5, and use312

0.3 dropout and 0.2 label smoothing. After training,313

we use beam search with a beam size of 5 and report314

the results in sacreBLEU (Post, 2018) following the315

same evaluation in Liu et al. (2020).316

5 Discussion317

5.1 Corpus-level Evaluation318

In Table 3, we compare all methods in terms of319

BLEU (Papineni et al., 2002) and chrF (Popović,320

2015) on the test data for three language pairs. First,321

we find that all pre-training methods significantly322

outperform the random baseline. In particular, our323

DEEP method obtains a gain of 3.5 BLEU points in324

the single task setting for the low-resource En-Ne325

translation. Second, we compute statistical signifi-326

cance of the BLEU and chrF scores with bootstrap327

resampling (Koehn, 2004), and we observe signifi-328

cant improvements with the multi-task finetuning329

strategy over the single-task finetuning for En-Ru330

and En-Ne. Our DEEP method outperforms the331

DAE method for En-Ru translation by 1.3 BLEU332

points in the multi-task setting. It is also worth not-333

ing that DEEP obtains higher BLEU points than334

DAE at the beginning of the multi-task finetuning335

process, however the gap between both methods de-336

creases as the finetuning proceeds for longer steps337

(See Appendix A). One possible reason is that mod-338

els trained by DEEP benefit from the entity trans-339

lations in the pre-training data and obtain a good340

initialization for translation at the beginning of the341

finetuning stage. As the multitask finetuning pro-342

ceeds, the models trained by both DAE and DEEP343

rely more on the translation task than the denoising344

task for translating a whole sentence. Thus the nu-345

ance of the entity translations might not be clearly346

evaluated according to BLEU or chrF.347

5.2 Entity Translation Accuracy348

Since corpus-level metrics like BLEU or chrFmight349

not necessarily reveal the subtlety of named en-350

tity translations, in the section we perform a fine-351

grained evaluation by the entity translation accu- 352

racy which counts the proportion of entities cor- 353

rectly translated in the hypotheses. Specifically, we 354

first use SLING to extract entities for each pair of 355

a reference and a hypothesis. We then count the 356

translation accuracy of an entity as the proportion 357

of correctly mentioning the right entity in the hy- 358

potheses, followed bymacro-averaging to obtain the 359

average entity translation accuracy. We also show 360

the accuracy scores in Table 3. First, our method 361

in both single- and multi-task settings significantly 362

outperformed the other baselines. In particular, the 363

gains from DEEP are much clear for the En-Uk 364

and En-Ru translations. One possible reason is that 365

Russian or Ukrainian entities extracted from the 366

pre-training data have a relatively higher coverage 367

of the entities in both the finetuning and test data 368

as reported in Table 2. However, SLING might not 369

detect as many entities in Nepali as in the other lan- 370

guages. We believe that future advances on entity 371

linking in low-resource languages could potentially 372

improve the performance of DEEP further. We 373

leave this as our future work. 374

5.3 Fine-grained Analysis on Entity 375

Translation Accuracy 376

In this section, we further analyze the effect on 377

different categories of entities using our method. 378

Performance of Entity Groups over Finetuning: 379

The model is exposed to some entities more often 380

than others at different stages: pre-training, finetun- 381

ing and testing, which raises a question: how is the 382

entity translation affected by the exposure during 383

each stage? To answer this question, we divide the 384

entities appearing in the test data into three groups: 385

• PFT: entities appearing in the pre-training, fine- 386

tuning, and test data. 387

• PT: entities only in the pre-training and test data. 388

• FT: entities only in the finetuning and test data. 389

We show the English-to-Russian entity transla- 390

tion accuracy for each group over finetuning steps 391

in Figure 2. Overall, accuracies are higher for the 392

entities in the finetuning data (PFT, FT), which is 393

due to the exposure to the finetuning data. Our pro- 394

posed method consistently outperformed baseline 395

counterparts in both single- and multi-task settings. 396

The differences in accuracy are particularly large at 397

earlier finetuning steps, which indicates the utility 398

of our method in lower-resource settings with little 399

finetuning data. The effect of multi-task finetun- 400

ing is most notable for entities in PT. Multi-task 401
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Pre-train→ Finetune BLEU chrF Entity Translation Acc.

En-Uk En-Ru En-Ne En-Uk En-Ru En-Ne En-Uk En-Ru En-Ne

Random→MT 17.1 15.0 7.7 37.0 36.8 24.3 49.5 31.1 20.9
DAE→MT 19.5 18.5 10.5 39.2 40.4 26.8 56.7 37.7 26.0
DEEP→MT 19.4 18.5 11.2∗ 39.2 40.7∗ 27.7∗ 57.7 40.6∗ 28.6∗

DAE→ DAE+MT 19.4 18.5 11.2 39.1 41.0 27.8 58.8 47.2 27.9
DEEP→ DEEP+MT 19.7 19.6∗ 11.5 39.1 42.4∗ 28.2∗ 61.9∗ 56.4∗ 28.3

Table 3: BLEU, Entity translation accuracy, and chrF in single- and multi-task settings. Largest numbers in each
column are bold-faced. ∗ indicates statistical significance of DEEP with ? < 0.05 to DAE in the respective settings.
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Figure 2: Entity translation accuracy scores in different entity sets for Russian. PFT, PT, FT correspond to entities
appearing in (i) pre-training, finetuning and test data, (ii) pre-training and test data (iii) finetuning and test data.

finetuning continuously exposes the model to the402

pre-training data, which prevents the model from403

forgetting the learned entity translations from PT.404

Performance according to Entity Frequency:405

We further analyze the entity translation accuracy406

scores using entity frequencies in each group intro-407

duced above. This provides a more fine-grained per-408

spective on how frequent or rare entities are trans-409

lated. To do so, we take Russian hypotheses from410

a checkpoint with 40K steps of finetuning, bin the411

set of entities in three data (i.e. PFT, PT, FT) ac-412

cording to frequencies in each of the data. We then413

calculate the entity translation accuracy within each414

bin by comparing them against reference entities in415

the respective sentences. Figure 3 shows the accu-416

racy gain of each pre-training methodologies from417

Random→MT (i.e. no pre-training) on test data,418

grouped by the entity frequency bins in pre-training419

and finetuning data. Note that leftmost column and420

the bottom row represent PT, FT, respectively. As421

observed earlier, the proposed method improves422

more over most frequency bins, with greater differ-423

ences on entities that are less frequent in finetuning424

data. This tendency is observed more significantly425

for the multi-task variant (DEEP→DEEP +MT),426

where the gains are mostly from entities that never427

appeared in finetuning data (i.e. leftmost column). 428

Multi-task learning with DEEP therefore prevents 429

the model from forgetting the entity translations 430

learned at pre-training time. Analytical results on 431

Ukrainian and Nepali are in Appendix B. 432

5.4 Optimization Effects on DEEP 433

Finetuning Data Size vs Entity Translation: 434

While DEEP primarily focuses on a low-resource 435

setting, the evaluation with more resources can 436

highlight potential use in broader scenarios. To 437

this end, we expand the finetuning data for English- 438

Russian translation with an additional 4 million 439

sentence pairs from ParaCrawl (Bañón et al., 2020), 440

a parallel data collected from web pages. Although 441

web pages might contain news text, the ParaCrawl 442

data cover more general domains. We finetune 443

models on the combined data and evaluate with 444

BLEU and entity translation accuracy. Table 4 445

shows the comparisons across different finetuning 446

data sizes. When the model is initialized with pre- 447

training methods, we observed decreased BLEU 448

points and the increased entity translation accuracy 449

scores. This is partly due to the discrepancy of 450

domains between our finetuning data (news) and 451

ParaCrawl. Regardless, DEEP is consistently equal 452

to or better than DAE in all tested settings. 453
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Figure 3: Gain from Random→MT in entity translation accuracy for each model.

Methods 0.24M 4.25M

BLEU Acc. BLEU Acc.

Random→MT 15.0 31.1 15.7 39.4
DAE→MT 18.5 37.7 16.3 53.7
DEEP→MT 18.5 40.6 17.2 53.9

Table 4: Model comparisons across different finetun-
ing data sizes. The results on the right are obtained af-
ter finetuning on the combined news commentary and
ParaCrawl data.

Pre-training Steps vs Entity Translation:454

Since DEEP leverages entity-augmented monolin-455

gual data, the model trained by DEEP revisits more456

entities in different context as the pre-training steps457

increase. To analyze the efficiency of learning458

entity translations during pre-training, we focus459

on the question: how many pre-training steps are460

needed for named entity translation? To do so, we461

take the saved checkpoints trained by DEEP from462

various pre-training steps, and apply the single-task463

finetuning strategy on the checkpoints for another464

40K steps. We plot the entity translation accuracy465

and BLEU on the test data in Figure 4. We find that466

the checkpoint at 25K steps has already achieved a467

comparable entity translation accuracy with respect468

to the checkpoint at 150K steps. This shows that469

DEEP is efficient to learn the entity translations as470

early as in 25K steps. Besides, both the BLEU and471

entity translation accuracy keep improving as the472

pre-training steps increase to 200K steps.473

5.5 Qualitative Analysis474

In this section, we select two examples that con-475

tain entities appearing only in the pre-training and476

testing data. The first example contains three loca-477

tion names. We find that the model trained by the478

single-task DAE predicts the wrong places which479
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Figure 4: English-to-Russian BLEU and Entity transla-
tion accuracy scores after finetuning from variable pre-
training steps. Finetuning is performed for 40K steps.

provide the wrong information in the translated 480

sentence. In addition, the model trained by the mul- 481

titask DAE just copies the English named entities 482

(i.e., “Krasnodar”, “Saratov” and “Ulyanovsk”) to 483

the target sentence without actual translation. In 484

contrast, our method predicts the correct translation 485

for “Krasnodar” in both single-task and multi-task 486

setting, while the multi-task DEEP translates all en- 487

tities correctly. In the second example, although our 488

method in the single-task setting predicts wrong for 489

all the entities, the model generates partially correct 490

translations such as “Барнале” for “Барнауле” and 491

“Красно @-@ Молгскиском” for “Красноармей- 492

ском”. Notice that DEEP in the multi-task setting 493

translates the correct entities “asphalt” and “Kras- 494

noarmeyskiy” which convey the key information in 495

this sentence. In contrast, the translation produced 496

by the multi-task DAEmethod literally means “Бар- 497

наул (Barnaul), новый (new) миф (myth) на (at) 498

Krasnoarmey Prospekt, выращивающий (grow) 499

Krasnoarmeski.”, which is incomprehensible due 500

to the entity translation errors. 501
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Src: These new format stores have opened for business in Krasnodar, Saratov, and Ulyanovsk.
Ref: Магазины нового формата заработали в Краснодаре, Саратове и Ульяновске.

1© Эти новые форматовые магазины открылись для бизнеса в Анридаре, Кристофе и Куьянме.
2© Эти новые формат @-@ магазины открылись для бизнеса в Краснодаре, Сараабане и в Уругянском университете.
3© Эти новые магазины форматов открылись для бизнеса в Krasnodar, Saratov и Ulyanovsk.
4© Эти новые форматные магазины открылись для бизнеса в Краснодаре, Саратове и Ульяновске.

Src: In Barnaul, the new asphalt on Krasnoarmeyskiy Prospekt is being dug up
Ref: В Барнауле вскрывают новый асфальт на проспекте Красноармейском

1© В Барнауле новое, как разворачивающееся на железнополярном Происсе, растет.
2© В Барнале, новое, как разразилось на Красно @-@Молгскиском Просвещении, растет.
3© Барнаул, новый миф на Krasnoarmey Prospekt, выращивающий Krasnoarmeski.
4© В Барнауле новый асфальт на Красноармейском проспекте выращивание растет.

Table 5: Qualitative comparison among four pre-training methods on named entity translations. 1©: DAE→ MT,
2©: DEEP→MT, 3©: DAE→ DAE+MT, 4©: DEEP→ DEEP+MT.

6 Related Work502

Named Entity Translation has been extensively503

studied for decades (Arbabi et al., 1994; Knight and504

Graehl, 1998). Earlier studies focus on rule-based505

methods using phoneme or grapheme (Wan and506

Verspoor, 1998; Al-Onaizan and Knight, 2002b),507

statistical methods that align entities in parallel508

corpus (Huang et al., 2003, 2004; Zhang et al.,509

2005) and Web mining methods built on top of510

a search engine (Huang et al., 2005; Wu and Chang,511

2007; Yang et al., 2009). Recently, Finch et al.512

(2016); Hadj Ameur et al. (2017); Grundkiewicz513

and Heafield (2018) used NMT to transliterate514

named entities without any sentence context. An-515

other line of research (Ugawa et al., 2018; Li et al.,516

2018; Torregrosa et al., 2020; Modrzejewski et al.,517

2020; Zhou et al., 2020) only performs entity recog-518

nition and uses entity tags (e.g., person) which519

are not directly informative to the translation task,520

in contrast to the entity translations obtained by521

entity linking in our work. Besides, these meth-522

ods modify model architecture to integrate entity523

tag embeddings or knowledge graph entity embed-524

dings (Moussallem et al., 2019), which also require525

extracting entity information for both training and526

test data. In contrast, we focus on data augmentation527

methods to improve name entity translation within528

context, so our method is easily applicable to any529

architectures and test data without preprocessing.530

Pre-training of Neural Machine Translation has531

been shown effective by many recent works (Con-532

neau and Lample, 2019; Song et al., 2019; Liu et al.,533

2020; Lin et al., 2020), where different pre-training534

objectives are proposed to leverage monolingual535

data for translation. These methods adopt a denois-536

ing auto-encoding framework, which encompasses537

several different works in data augmentation on538

monolingual data for MT (Lambert et al., 2011; 539

Currey et al., 2017; Sennrich et al., 2016; Hu et al., 540

2019). However, named entity translations during 541

pre-training is under-explored. We fill this gap by 542

integrating named entity recognition and linking to 543

the pre-training of NMT. Moreover, while recent 544

work shows that continue finetuning a pre-trained 545

encoder with the pre-training objective improves 546

language understanding tasks (Gururangan et al., 547

2020), this finetuning paradigm has not been ex- 548

plored for pre-training of a sequence-to-sequence 549

model. Besides, previous works on multitask learn- 550

ing for MT focus on language modeling (Gulcehre 551

et al., 2015; Zhang and Zong, 2016; Domhan and 552

Hieber, 2017; Zhou et al., 2019), while we examine 553

a multi-task finetuning strategy with an entity-based 554

denoising task in this work and demonstrate sub- 555

stantial improvements for named entity translations. 556

7 Conclusion 557

In this paper, we propose an entity-based pre- 558

training method for neural machine translation. Our 559

method improves named entity translation accu- 560

racy as well as BLEU score over strong denois- 561

ing auto-encoding baselines in both single-task and 562

multi-task setting. Despite the effectiveness, sev- 563

eral challenging questions remain open. First, re- 564

cent works on integrating knowledge graphs (Zhao 565

et al., 2020a,b) in NMT have shown promising re- 566

sults for translation. Our method links entities to a 567

multilingual knowledge base which contains rich 568

information of the entities such as entity descrip- 569

tion, relation links, alias. How to leverage these 570

richer data sources to resolve entity ambiguity de- 571

serves further investigation. Second, finetuning pre- 572

trained models on in-domain text data is a potential 573

way to improve entity translations across domains. 574
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Appendix805

A Finetuning BLEU Curves806

We report BLEU score for three language pairs calculated from checkpoints at different finetuning steps in807

Figure 5. For all language pairs, all pre-training methods result in a significant increase in terms of BLEU808

throughout the finetuning in both single-task and multi-task setting. In particular, the differences in BLEU809

between DEEP and the other baselines are most significant at the beginning of the finetuning stage.810
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Figure 5: BLEU scores for 3 language pairs over various finetuning steps.

B Entity Translation Accuracy for other languages811

We show the entity translation accuracy performance over various finetuning steps for Ukrainian and812

Nepali in Figure 6, 7, and show the gains of three pre-training methods over the random baseline with813

respect to the entity frequencies in Figure 8, 9. Empty cells in the heatmaps are due to no entities that814

meet the conditions in those cells.815

Ukrainian: As seen in Figure 6, the general trend for the entity translation accuracy according to entity816

groups are similar to that of Russian. While DEEP achieves the highest accuracy in FT, the results for817

FT is less reliable due to a small sample size of entities in FT. In terms of the gain from Random→818

MT according to the entity frequency, we observe a consistent improvement of our multi-task DEEP on819

translating low-frequent entities in the finetuning data (See the left bottom of Figure 8).820

Nepali: While outperforming at the beginning of finetuning, Figure 7 shows that DEEP→ DEEP+MT821

eventually under-performed for translations of entities in PFT data. Moreover, the accuracy is considerably822

lower on entities in PT, which suggests that the degree of forgetting is much more conspicuous in Nepali.823

The gain fromRandom→MTwith respect to the entity frequency exhibited a different trend from Russian824

and Ukrainian. Figure 9 shows the results. In the single-task setting, DEEP improve the translations of825

frequent entities appearing in both the pre-training and finetuning data. Despite the multi-task learning826

that introduces additional exposure to entities that are more frequent in the pre-training data, the largest827

gain comes from entities that are less frequent in the pre-training data but frequent in the finetuning data.828

C Scientific Artifacts829

In Table 6, we provide the detailed information about the scientific artifacts (e.g., data, code, tools) used830

in our paper. We have checked the data used in this work to make sure that we do not intentionally use831

private or sensitive information or offensive content for deriving the observations and conclusions from832

our work. Although WikiData may contain the name of some individual people (e.g., famous people that833

have Wikipedia webpages), we do not use their sensitive information in our analysis.834
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Figure 6: Entity translation accuracy aggregated over different entity sets for Ukrainian.
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Figure 7: Entity translation accuracy aggregated over different entity sets for Nepali.
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Figure 9: Gain from Random→MT in entity translation accuracy for Nepali for each model.

Artifact License/Term Documentation

WikiData (Vrandečić and Krötzsch, 2014) Creative Commons CC0 This resource is a free knowledge base that supports various research and projectw.
Sling (Ringgaard et al., 2017) Apache-2.0 This tool is intended to use for analyze WikiData and Wikipedia articles.
WMT18 En-Ru Data (Specia et al., 2018) Open-sourced This dataset is intended to be used for MT on news texts.
OPUS Data (Tiedemann, 2012) Open-sourced This data resource is intended to be used for MT.
FLORES Data (Guzmán et al., 2019) CC-BY-SA-4.0 License This dataset is intended to be used for low-resource MT.
Fairseq (Ott et al., 2019) MIT License This tool is intended to facilitate deep learning research.

Table 6: Detail information about scientific artifacts used in this paper.
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