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ABSTRACT

We perform systematically and fairly controlled experiments with the 6-layer Trans-
former to investigate the hardness in conditional-language-modeling languages
which have been traditionally considered morphologically rich (AR and RU) and
poor (ZH). We evaluate through statistical comparisons across 30 possible language
directions from the 6 languages of the United Nations Parallel Corpus across 5 data
sizes on 3 representation levels — character, byte, and word. Results show that
performance is relative to the representational granularity of each of the languages,
not to the language as a whole. On the character and byte levels, we are able to
eliminate statistically significant performance disparity, hence demonstrating that a
language cannot be intrinsically hard. The disparity that mirrors the morphological
complexity hierarchy is shown to be a byproduct of word segmentation. Evidence
from data statistics, along with the fact that word segmentation is qualitatively inde-
terminate, renders a decades-long debate on morphological complexity (unless it is
being intentionally modeled in a word-based, meaning-driven context) irrelevant in
the context of computing. The intent of our work is to help effect more objectivity
and adequacy in evaluation as well as fairness and inclusivity in experimental
setup in the area of language and computing so to uphold diversity in Machine
Learning and Artificial Intelligence research. Multilinguality is real and relevant in
computing not due to canonical, structural linguistic concepts such as morphology
or “words” in our minds, but rather standards related to internationalization and
localization, such as character encoding — something which has thus far been
sorely overlooked in our discourse and curricula.

1 INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

Most current work on fairness in Machine Learning (ML) and Natural Language Processing (NLP)
focuses on the societal biases encoded in natural language data that are propagated and amplified
when they are used at scale for/as Artificial Intelligence (AI) solutions1. But little has been said or
questioned about the bias, as in, the favoring of certain outcomes, implicit in our theoretical/scientific
assumptions that results in the varying performance of different languages in computing.

Disparity in machine translation results For instance, results reported in Junczys-Dowmunt
et al. (2016) for Phrase-Based Statistical Machine Translation (PBSMT) (Koehn et al., 2003) and
Neural MT (Bahdanau et al., 2014) on the 6 official languages2 of the United Nations (UN) Parallel
Corpus (Ziemski et al., 2016) indicate a disparity between EN/ES/FR and AR/RU/ZH in BLEU
(Papineni et al., 2002) — translation performance in the latter group is generally worse, regardless
of the MT algorithm used. AR and RU are traditionally considered morphologically complex (see
e.g. Minkov et al. (2007), Seddah et al. (2010) and proceedings of related workshops in subsequent

1see e.g. work from conference (https://facctconference.org) and workshops in previous years
on “Fairness, Accountability, and Transparency” (FAccT)

2Arabic (AR), English (EN), Spanish (ES), French (FR), Russian (RU), and Chinese (ZH)
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years for Statistical Parsing of Morphologically Rich Languages), and ZH morphologically frugal
(for its lacking determiners and plural or tense markers) (Koehn, 2005). While Koehn (2005) found
translating into EN to be easier than into morphologically rich languages based on word-level BLEU
scores from PBSMT systems of 110 language directions from the 11 Europarl languages then,
Bugliarello et al. (2020) found it is easier to translate out of EN than into it based on 21 Europarl
languages in BPEs (Byte Pair Encodings) (Sennrich et al., 2016) with the Transformer (Vaswani et al.,
2017) in a new metric, cross-mutual information.

Disparity in language modeling results Disparate performances across different languages seem
to have been implicitly accepted in that it is often believed that some languages are harder to model
than others. Bender (2009) advocated the relevance of linguistic typology for the design of language-
universal NLP systems due to differences based on crosslinguistic structural notions, such as parts
of speech and morphological complexity. Cotterell et al. (2018) studied (monolingual) language
models (LMs) on the 21 Europarl languages using a word-level 7-gram standard Kneser & Ney
(1995) model and LSTM-LMs (Sundermeyer et al., 2012) with characters and lemmatized forms
in information-theoretic terms, and found morphological complexity to be the primary culprit for
the differences in performance. Mielke et al. (2019) extended the coverage to 69 languages with the
multilingual Bible corpus (Mayer & Cysouw, 2014), tested on RNN-LMs (an implementation of
LSTM (Hochreiter & Schmidhuber, 1997)) with characters and BPEs, but concluded that basic data
statistics in vocabulary size (|V |) and sequence length were the most predictive performance features.

We noticed, however, a discrepancy in the results from Mielke et al. (2019) for ZH — it came out
as the least difficult for the character model, but it is the 6th most difficult language for the BPE
model. As different input representations have been tested with different architectures with divergent
results in different metrics in previous studies, each of them only testing with one data size, we
decided to investigate the matter more systematically once again with statistical comparisons of score
distributions between languages.

1.2 RESEARCH QUESTIONS AND CONTRIBUTIONS

Research questions Are there any statistically significant differences in hardness when it comes
to Conditional-Language-Modeling (CLMing) languages which have been traditionally considered
morphologically rich (AR and RU) and poor (ZH) with the 6-layer Transformer? Is morphological
complexity inherent in language? When is the notion of morphological complexity relevant in
computing?

Summary of findings and insights Based on our bilingual CLMing setup with the UN Parallel
Corpus in the data size range from 102 to 106 lines on the character, byte, and word levels, we find:

1. Language has many finer-grained dimensions with different representations and learning patterns.
Hardness in modeling is relative to its representational granularity (representation relativity).

2. There is neutralization of source language instances, i.e. there are no statistically significant
differences between source language pairs. Only pairs of target languages differ significantly.

3. On the character and byte levels, hardness is correlated with statistical properties concerning
sequence length and |V | of a language, regardless of its morphological profile. As it is possible to
eliminate performance disparity by decomposing sequences into finer-grained units in characters
and bytes, we show that morphological complexity is not an intrinsic property of language.
Unless word-based methods are used, or unless we implement/model it explicitly, the notion of
morphological complexity is irrelevant in computing.

4. On the word level, hardness is correlated with |V |, and a complexity hierarchy arises through
the manual preprocessing step of word tokenization. This complexity/disparity effected by word
segmentation can be improved by subword tokenization but cannot be eliminated due to the
fundamental qualitative differences in the definition of a “word” being one that neither holds
universally nor is suitable/consistent for fair crosslinguistic comparisons.

5. Representational units of finer granularity can help close the gap in performance disparity.

Orthogonal to our main research questions, we also observed 2 types of sample-wise non-monotonicity
— Double Descent (Belkin et al., 2019; Nakkiran et al., 2020) and erraticity. For reasons due to length
and scope for this paper, we will defer discussions and analyses of these beyond what is addressed in
§ 5 to future work.
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Outline of the paper In § 2, we define our method and experimental setup. We present our results
and analysis on the primary representations in § 3 and those from the secondary set of controls in § 4
in a progressive manner to ease understanding. Meta analysis on performance disparity and other
discussions are in § 5.

2 METHOD AND DEFINITIONS

Conditional language modeling CLMing is the modeling of the probability of the next token,
given the history of the preceding tokens and conditioning context. In our case, such conditioning
context is a line from the source language. To explicitly focus on modeling the complexities that may
or may not be intrinsic to the languages, we study the more fundamental process of CLMing without
performing any translation. This allows us to eliminate confounds associated with generation and
other evaluation metrics. One could think of our setup as estimating conditional probabilities with
the Transformer, with a bilingual (one-to-one) setup where the perplexity (PP) of one target language
(ltrg) is estimated given the parallel data in one source language (lsrc), where lsrc ̸= ltrg. We focus on
the very basics and examine the first step in our pipeline — input representations, holding everything
else constant. Instead of measuring absolute cross-entropy scores at one data size, we evaluate the
relative differences between development (dev) set score distributions between languages.

Controlled experiments as basic research for scientific understanding of language data Using
the UN Parallel Corpus, the data from which the MT results in Junczys-Dowmunt et al. (2016) stem,
we perform a series of controlled experiments with the Transformer, holding the hyperparameter
settings for all 30 one-to-one language directions from the 6 languages constant. We control for size
(from 102 to 106 lines) and language with respect to representational granularity. We examine 3
primary representation types/levels — character, byte (UTF-8), and word, and upon encountering
some unusual phenomena, we perform a secondary set of controls with 5 alternate representations —
on the character level: Pinyin and Wubi (ASCII representations for ZH phones and character strokes,
respectively), on the byte level: code page 1256 (for AR) and code page 1251 (for RU), and on the
word level: BPE. These symbolic variants allow us to manipulate the statistical properties of the
representations, while staying as “faithful” to the language as possible. We adopt this symbolic data-
centric3 approach because we would like to more directly interpret the confounds, if any, that make
language data different from other data types. We operate on a smaller data size range as this is more
common in traditional language sciences and one of our higher goals is to bridge an understanding
between language sciences and engineering (the latter being the dominant focus in NLP), and between
traditional symbolic sciences and ML. We run statistical tests to identify the strongest correlates
of performance and to assess whether the differences between the mean performance of different
groups are indeed significant. We are concerned not with the absolute scores, but with the differences
between score distributions from different languages.

Fair evaluation with multitexts Multitexts are multiway parallel corpora. The UN Parallel Corpus
is a 6-way parallel corpus consisting of manually translated UN documents from the 25-year period
between 1990 and 2014. We use the UN Parallel Corpus because it contains languages conventionally
regarded as morphologically rich and poor, has quality and size sufficient for evaluation, and more
importantly, it comes as raw texts (untokenized), unlike both of the corpora that Mielke et al. (2019)
used. Detokenization (esp. the evaluation thereof) is not a trivial task.

Fair information-theoretic evaluation metric Most sequence-to-sequence models are optimized
using a cross-entropy loss, defined as:

H(t, s) = −
N∑
i=1

log2 p(ti | t<i, s) (1)

where t is the sequence of tokens to be predicted, ti refers to the ith token in that sequence, s is
the sequence of tokens conditioned on, and N = |t|. It is customary to report scores as PP, which
is 2

1
N H(t,s), i.e. 2 to the power of the cross-entropy averaged by the number of tokens in the dev

3Two testing/evaluation approaches — data-centric: hold the algorithm constant and tweak data, vs. algorithm-
centric: hold data constant and tweak the algorithm.
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data. Cotterell et al. (2018) proposed to use “renormalized” PP to evaluate LMs tokenwise fairly
by dividing the overall bits per utterance/sequence by one constant token count in any one arbitrary
language (e.g. so to arrive at “bits per character” in one language to evaluate all languages). But we
find that it is not necessary to assign a perspective that is centered on any one particular language,
when we can evaluate simply by the total number of bits for a larger portion of texts/sequences.
This can be a fairer, more general and flexible way of evaluating data that has not been or cannot be
perfectly segmented or aligned line by line. We hence used instead unnormalized PP, i.e. the total
number of bits needed to encode the dev set (3,077 lines per language, after length filtering, in our
case). As the implementation we used only reports PP, we transformed it back to entropy as defined
above via H(t, s) = log2 PP (t|s)×N .

Disparity/Inequality In the context of our CLMing experiments, we consider there to be “dis-
parity” or “inequality” between languages l1 and l2 if there are significant differences between the
performance distributions of these two languages with respect to each representation. Here, by
performance we mean the number of bits required to encode the held-out data using a trained CLM.
With 30 directions, there are 15 pairs of source languages (lsrc1, lsrc2) and 15 pairs of target languages
(ltrg1, ltrg2) possible. We compare the source languages among each other, and the target languages
among each other. Each lsrc or each ltrg consists of scores from all models trained across various sizes
and directions. To assess whether the differences are significant, we perform unpaired two-sided
significance tests with the null hypothesis that the score distributions for the two languages are not
different. Upon testing for normality with the Shapiro-Wilk test (Shapiro & Wilk, 1965; Royston,
1995), we use the parametric unpaired two-sample Welch’s t-test (Welch, 1947) (when normal) or the
non-parametric unpaired Wilcoxon test (Wilcoxon, 1945) (when not normal) for the comparisons.
We use the implementation in R (R Core Team, 2014) for these 3 tests. To account for the multiple
comparisons we are performing, we correct all p-values using Bonferroni correction (Benjamini &
Heller, 2008; Dror et al., 2017) and follow Holm’s procedure4 (Holm, 1979; Dror et al., 2017) to
identify the pairs of l1 and l2 with significant differences after correction. We report all 3 levels of
significance (α ≤ 0.05, 0.01, 0.001) for a more comprehensive overview. In contrast to Dror et al.
(2017), which aimed to compare the performance of different algorithms, we compare languages (in
the context of computing).

Experimental setup The systematic, identical treatment we give to our data is described as follows
with further preprocessing and hyperparameter details in Appendices A and B, respectively.

After filtering length to 300 characters maximum per line in parallel for the 6 languages, we made 3
subsets of the data with 1 million lines each — one having lines in the order of the original corpus
(dataset A) and two other randomly sampled (without replacement) from the full corpus (datasets
B & C). Lines in all datasets are extracted in parallel and remain fully aligned for the 6 languages.
For each run and each representation, there are 30 pairwise directions (i.e. one lsrc to one ltrg) that
result from the 6 languages. We trained all 150 (for 5 sizes) 6-layer Transformer models for each run
using the SOCKEYE Toolkit (Hieber et al., 2018). We optimize using PP and use early stopping if no
PP improvement occurs after 3 checkpoints up to 50 epochs maximum, taking the best checkpoint.
Characters and bytes are supposed to mitigate the out-of-vocabulary (OOV) problem on the word
level. In order to assess the effect of modeling with finer granularity more precisely, all vocabulary
items appearing once in the train set are accounted for (i.e. full vocabulary on train, as in Gerz
et al. (2018a;b)). But we allow our system to categorize all unknown items in the dev set to be
unknown (UNK) so to measure OOVs (open vocabulary on dev (Jurafsky & Martin, 2009)). To
identify correlates of performance, we compute Spearman’s correlation (Spearman, 1904) with some
basic statistical properties of the data (e.g. length, |V |, type-token-ratio, OOV rate) as metrics — a
complete list is provided in App. C. See App. D for sample construction for statistical comparisons.

3 EXPERIMENTAL RESULTS OF PRIMARY REPRESENTATIONS

Subfigures 1a, 1b, and 1c show the mean results across 12 runs of the 3 primary representations
— character, byte, and word, respectively. The x-axis represents data size in number of lines and
the y-axis the total conditional cross-entropy, measured in bits (Eq. 1). Each line connects 5 data
points corresponding to the number of bits the CLMs (trained with training data of 102, 103, 104,

4using implementation from https://github.com/rtmdrr/replicability-analysis-NLP
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(c) WORD
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Figure 1: Number of bits (the lower the better) across data size from 102 to 106 lines plotted for all 30 directions.
Subfigures 1a, 1b, and 1c show mean scores across 12 runs. Subfigures 1d, 1e, and 1f depict the corresponding
information respectively sorted in 6 facets by target language and with error bars. Legend in Subfigure 1g
shows the correspondence between colors and source languages, in Subfigure 1h between line types and target
languages. (These figures are also shown enlarged in Appendix F. Please note that results pertinent to our first
research question of this paper concerning statistically significant differences are summarized in Table 1, figures
are a visual aid only. We are not concerned with the absolute scores but the distances between scores, i.e. spaces
between the sets of lines by ltrg. The point here is to show the differences in Transformer’s overall learning
patterns relative to the representational granularity.)

105, and 106 lines) needed to encode the target language dev set given the corresponding text in
the source language. These are the same data in the same 30 language directions and 5 sizes with
the same training regime, just preprocessed/segmented differently. This confirms representation
relativity — hardness in modeling is relative to its representational granularity. Languages (or any
objects being modeled) need to be evaluated relative to their representation. “One size does not fit all”
(Durrani et al., 2019). Our conventional way of referring to “language” (as a socio-cultural product
or with traditional word-based approaches, or even for most multilingual tasks and competitions) is
too coarse-grained for computing (see also Fisch et al. (2019) and Ponti et al. (2020)).

Subfigures 1d, 1e, and 1f display the corresponding information sorted into facets by target language,
source languages represented as line types. Through these we see more clearly that results can be
grouped rather neatly by target language — as implicit in the Transformer’s architecture, the decoder
is unaware of the source language in the encoder. As shown in Table 1 in § 5 summarizing the number
of source and target language pairs with significant differences, there are no significant differences
across any source language pairs. The Transformer neutralizes source language instances. This
could explain why transfer learning or multilingual/zero-shot translation (Johnson et al., 2017) is
possible at all on a conceptual level.

In general, for character and byte models, most language directions do seem to converge at 104 lines
to similar values across all target languages, with few notable exceptions. There are some fluctuations
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past 104, indicating further tuning of hyperparameters would be beneficial due to our present setting
possibly working most favorably at 104. On the character level, target language ZH (ZHtrg) shows a
different learning pattern throughout. And on the byte level, ARtrg and RUtrg display highly unstable
behavior, which we refer to as erratic. Word models exhibit Double Descent across the board (note
the spike at 103), but overall, difficult/easy languages stay consistent, with AR and RU being the
hardest, followed by ES and FR, then EN and ZH. A practical takeaway from this set of experiments:
in order to obtain more robust training results, use bytes for ZH (as suggested in Li et al. (2019a)) and
characters for AR and RU (e.g. Lee et al. (2017)) — also if one wanted to avoid any “class” problems
in performance disparity with words. Performance disparity for these representations is reported in
Table 1 under “CHAR”, “BYTE”, and “WORD”. Do note, however, that the intrinsic performance
of ZH with word segmentation is not particularly subpar. But this often does not correlate with its
poorer downstream tasks results (recall results from Junczys-Dowmunt et al. (2016)). Since the
notion of word in ZH is highly contested and ambiguous — i) it is often aimed to align with that in
other languages so to accommodate academic theories and manual feature engineering5, ii) there is
great variation among different conventions, and iii) native ZH speakers identify characters as words
— there are reasons to rethink this procedure now that fairer and language-independent processing in
finer granularity is possible. Li et al. (2019b) questioned the necessity of CWS in Deep Learning
(DL)-based ZH NLP and presented evidence in favor of character-based processing, including results
from downstream NLP tasks. In Linguistics, Duanmu (2017) presented a summary on the contested
nature of wordhood in (Mandarin) ZH in relation to EN. A more native account of ZH, however,
despite a couple of dialects/varieties of it being considered a high-resource language, has not yet been
fully recognized and accepted in NLP.

4 UNDERSTANDING THE PHENOMENA WITH ALTERNATE REPRESENTATIONS

To understand why some languages show different results than others, we carried out a secondary set
of controlled experiments with representations targeting the problematic statistical properties of the
corresponding target languages.
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(a) Wubi
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(c) Pinyin
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(d) Pinyin by target

Figure 2: Character-level remedies for ZH: Wubi vs. Pinyin.

Character level We reduced the high |V | in ZH with representations in ASCII characters — Pinyin
and Wubi. We replaced the ZH data in these formats only on the target side and reran the experiments
involving ZHtrg on the character level. Results in Figure 2 and Table 1 show that the elimination of

5It is a “legacy interpretation” which stemmed from a practical compromise from the early days in ZH NLP
when the goal was to align with EN words for MT. Chinese word segmentation (CWS) has been a decades-long
issue in text processing. But even in EN, for computing, the variability in “word” counts (from the trivial
convention of whitespace tokenization) results in different bit counts, affecting file sizes. In NLP, such method of
“word” counting brings about a high |V |, hence different tokenization schemes have been designed to mitigate
this problem. For humans, there is no consensus about the definition of “words”. Even for a purely academic
account, it is held to be indeterminate (see Haspelmath (2011) and references therein from the past century).
Kilgarriff (1997; 2014) pointed out that “words” and “word senses” and the number thereof, in terms of lexical
entries for dictionaries, are contextual and arbitrary.
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(a) Code page 1256 & 1251
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Figure 3: Byte-level (Subfigures 3a & 3b) remedies with code page 1256 for target AR and 1251 for
target RU, and word-level (Subfigures 3c & 3d) remedy with BPE for all languages.

disparity on the character level is possible if ZH is represented through Pinyin (transliteration), as in
Subfigure 2c, though at the cost of the native script information. Models represented through Wubi,
an input algorithm that decomposes character-internal information into stroke shape and ordering
and matches these to 5 classes of radicals (Lunde, 2008), display a behavioral tendency unlike those
with other (phonetic) alphabetic scripts6 (Subfigure 2a), suggesting that this script/stroke pattern
decomposes differently. But ZH the language is not an outlier all around.

Byte level Length is the most salient statistical attribute that makes AR and RU outliers. To shorten
their sequence lengths, we tested with alternate encodings on ARtrg and RUtrg — code page 1256
and 1251, which provide 1-byte encodings specific to AR and RU, respectively. Results are shown in
Subfigures 3a and 3b. Not only is erraticity resolved, the number of 15 possible target language pairs
with significant differences reduces from 8 with the UTF-8 byte representation to 0 (Table 1 under
“ARRUt”), indicating that we eliminated disparity with this optimization heuristic. Since our heuristic
is a lossless and reversible transform, it shows that a complexity that is intrinsic and necessary
in language7 does not exist in computing, however diverse they may be, as our 6 are, from the
conventional linguistic typological, phylogenetic, historical, or geographical perspectives.

Word level The main difference between word and character/byte models is length not being a top
contributing factor correlating with performance, but instead |V | is. This is understandable as word
segmentation neutralizes sequence lengths. To remedy the OOV problem, we use BPE, which learns
a fixed vocabulary of variable-length character sequences (on word level, as it presupposes word
segmentation) from the training data. It is more fine-grained than word segmentation and is known to
better model subword units for morphologically complex languages. We use the same vocabulary of
30,000 as specified in Junczys-Dowmunt et al. (2016). This reduced our averaged OOV token rate by
89-100% across the 5 sizes. The number of language pairs with significant differences reduced to 7
from 8 for word models. While BPEs are still not as effective as our character/byte variants, their
results show how finer-grained modeling contributes positively to closing the disparity gap.

5 META RESULTS, ANALYSES, AND DISCUSSION

Performance disparity Table 1 lists the number of language pairs with significant differences
under the representations studied. Since it is possible for our character and byte models to effect no
performance disparity for the same languages on the same data, a complexity intrinsic to language
does not exist. In fact, the customary expectation that languages ought to perform differently is
created through our word segmentation practice. Furthermore, the order of AR/RU > ES/FR > EN/ZH
(Figure 1c) resembles the idea of morphological complexity. Considering there are character-internal

6which are sequences with an implicit/explicit pattern made up of consonants and vowels
7aside from its statistical properties related to length and vocabulary. To show something is not necessarily

true, only 1 counter observation is needed.
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Table 1: Disparity Table Number of language pairs out of 15 with significant differences, with respective
p-values. ARRUt refers to AR & RU being optimized only on the target side; whereas ARRUs,t denotes
optimization on both source and target sides (relevant for directions AR-RU and RU-AR).

CHAR Pinyin Wubi BYTE ARRUt ARRUs,t WORD BPE

p-value src trg src trg src trg src trg src trg src trg src trg src trg

0.05 0 7 0 4 0 8 0 9 0 4 0 4 0 11 0 10
0.01 0 5 0 2 0 6 0 8 0 3 0 4 0 8 0 8

� 0.001 0 3 0 0 0 5 0 8 0 0 0 2 0 8 0 7

Table 2: Target language pairs with significant differences indicate that the 2 languages are not equally/similarly
good or equally/similarly bad. 15 (non-directional) language pairs total possible from 30 language directions,
p=0.001.

LANGtrg PAIR CHAR Pinyin Wubi BYTE ARRUt ARRUs,t WORD BPE

AR-EN X X X

AR-ES
EN-ES X

AR-FR X
EN-FR X X
ES-FR

AR-RU X
EN-RU X X X X
ES-RU X
FR-RU X

AR-ZH X X X X X
EN-ZH X X
ES-ZH X X X
FR-ZH X X X X
RU-ZH X X X X X

meaningful units in languages with logographic script such as ZH (cf. Zhang & Komachi (2018))
that are rarely captured, studied, or referred to as “morphemes”, this goes to show that linguistic
morphology, along with its complexity, as it is practiced today8 and that which has occurred in the
NLP discourse thus far, has only been relevant on the “word” level, conceptually constrained by
unstandardizable units such as “words” (and “sentences”). The definition of word, however, has been
recognized as problematic for a very long time in the language sciences (cf. Footnote 5).

While the lack of significant differences between pairs of source languages would signify neutraliza-
tion of source language instances, it does not mean that source languages have no effect on the target.
For our byte solutions with code pages, we experimented also with source side optimization in the
directions that involve AR/RU as source. This affected the distribution of the disparity results for that
representation — with 2 pairs being significantly different (see Table 1 under “ARRUs,t”). We defer
further investigation on the nature of source language neutralization to future work.

Target language pairs with significant differences are summarized in Table 2. We show that mor-
phological complexity can be empirically eliminated in this one-setting-for-all configuration with a
6-layer network, no hyperparameter tuning, and a maximum line length of 300 characters (and its
corresponding equivalence in other representations) as constrained by our hardware and compute
time listed in App. A and current data availability. A more analytical solution can be obtained through
data statistics (see App. E). A conceptual solution lies in the definition of “words” and morphology.

Sample-wise Double Descent (DD) Sample-wise non-monotonicity/DD (Nakkiran et al., 2020)
denotes a degradation followed by an improvement in performance with increasing data size. We
notice word models and character models with ZHtrg, i.e. models with high target |V |, are prone

8But there are no reasons why we cannot adopt a statistical science of language in finer granularities
beyond/without “words”, with standardized units (characters/bytes) and/or continuous representations. Resources,
e.g. quality parallel data or contrast sets, can serve both data science and ML interpretation and evaluation well.
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to exhibit a spike at 103. A common pattern for these is the ratio of target training token count to
number of parameters falls into O(10−4) for 102 lines, O(10−3) at 103, O(10−2) at 104, and O(10−1)
for 105 lines and so on. But for more atomic units such as alphabetic (not logographic) characters
(may it be Latin, Cyrillic, or Abjad) and for bytes, this progression instead begins at O(10−3) at
102 lines. Instead of considering this spike of 103 as irregular, we may instead want to think of this
learning curve as shifted by 1 order of magnitude to the right for characters and bytes and/or the
performance at 102 lines for words and ZH-characters due to being overparameterized and hence
abnormal. This would also fit in with the findings by Belkin et al. (2019) and Nakkiran et al. (2020)
attributing DD to overparameterization. While almost all work attribute DD to algorithmic reasons,
findings from Chen et al. (2020) corroborate our observation and confirms that DD arises due to “the
interaction between the properties of the data and the inductive biases of learning algorithms”. Other
related work on the DD phenomenon and its development can also be found in their work.

Erraticity We observe another type of sample-wise non-monotonicity, one that signals irregular
and unstable performance across data sizes and runs. Within one run, erraticity can be observed
directly as changes in direction on the y-axis. Across runs, large variance can be observed, even with
the same dataset. Erraticity can also be observed indirectly through a negative correlation between
data size and performance. Much work on length bias in NMT have focused on solutions related to
search, e.g. Murray & Chiang (2018). Our experiments show that a kind of length bias can surface
already with CLMing, without generation taking place.

Additional related work That basic data statistics are the driver of success in performance in
multilingual modeling has so far only been explicitly argued for in Mielke et al. (2019). We go
beyond their work in monolingual LMs to study CLMs and evaluate also in relation to data size,
representational granularity, and quantitative and qualitative fairness. To the best of our knowledge,
there has been no prior work on demonstrating the neutralization of source language instances through
statistical comparisons, a numerical analysis on DD for sequence-to-sequence models, the meta
phenomenon of a sample-wise non-monotonicity (erraticity) being related to length.

6 CONCLUSION

Summary We investigate whether the performance disparity between languages which have been
traditionally considered morphologically rich (AR and RU) and poor (ZH) in the 6-layer Transformer
CLM due to morphological complexity is justified and find that it is not. Performance disparity can
be explained by data statistics and in the context of computing, it can be eliminated by optimization
on length and |V | through character/byte representations. In fact, morphological complexity is not
a necessary concept in computing because “word” is not a necessary concept in computing, unless
we make it so through word segmentation. A morphological complexity hierarchy can result simply
through word segmentation. Furthermore, there are many possible interpretations to “words” for
humans and since morphology is defined with the concept of “word”, there is no stable ground for
assessing this complexity. Representational units of finer granularity were shown to help eliminate
performance disparity though at the cost of longer sequence length, which can have a negative impact
on robustness. In addition, we found all word models and character models with ZHtrg to behave
similarly in their being prone to exhibit a peak (as sample-wise DD) around 103 lines in our setting.

Outlook ML has enabled greater diversity in NLP (Joshi et al., 2020). Fairness, in the elimination
of disparity, does not require big data. This paper made a pioneering attempt to bridge research in
NNs/DL, language sciences, and language engineering through a data-centric perspective. Multilin-
guality is real and relevant in computing not due to canonical, structural linguistic concepts such
as morphology or “words” in our minds, but rather standards related to internationalization and
localization, such as character encoding — something which has thus far been sorely overlooked in
our discourse and curricula. We also believe that a more fine-grained statistical data science can well
complement algorithmic analyses with a view that is more empirically robust (i.e. experimentally
verifiable) and more relevant to machine processing, contributing to a more generalizable and inter-
pretable pool of knowledge for ML/NNs/DL. A more comprehensive study can lead us not only to
new scientific frontiers, but also to better designs and evaluation, benefitting the development of a
more general, diverse and inclusive AI.
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ETHICS STATEMENT: FAIRNESS CONCERNS FOR MULTILINGUALITY

Clearer nomenclature If/When the intent is not to explicitly model linguistic morphology in
computing, one can simply describe languages and their statistical profiles with respect to their
representational granularity in characters or bytes (which are and/or can be exhaustively standardized
in computing), or refer to sequences as longer/shorter or having a higher/lower vocabulary size when
comparing them with each other, rather than “richer”/“poorer” based on concepts (e.g. “words”,
“sentences”) that can be ambiguous, contested, and inaccessible to many.

Accessibility Language communities who are unfamiliar with languages similar to dominant
languages or those who are reluctant to conform to one structurally similar interpretation should
not have to feel inadequate in processing their own language “from scratch”, if they so choose.
As technologists, we can help take equitable measures to make fairer data representations and
infrastructure available. A “word”-free view of language preempts linguistic/cultural hegemony and
such an interpretation would also help make the analyses of language data more objective and clearer.

Scarcity of quality and/or multiway data for science, evaluation, and documentation With
the rise of multilingual models comes an alleged decrease in reliance on parallel corpora for MT.
But data, esp. high-fidelity/quality9 textual and multimodal multiway parallel data, play not only
an important role in scientific research, but also one for historical/cultural documentation. And as
this paper shows, they can also serve as evaluation data for ML models for better understanding and
interpretation. As challenge sets, data for machine processing would need to be statistically diverse
and challenging. Parallel data from previous years have often come in the form of bitexts (2-way
parallel text data), usually “word”-tokenized where real length information has been compromised.
(The Bible data from Mayer & Cysouw (2014) came with another confound — the ZH numeral ‘一’
(“one”) is recognized as a dash (punctuation) and hence tokenized with surrounding whitespaces.) At
the time of our present study (2019-present), the UN Parallel Corpus was the only unperturbed, fully
multiway parallel data sufficient for reliable evaluation for our size range. Data for science, evaluation,
and documentation require long-term, stable platform(s) and support. There are many forms of data
science. But in terms of having a sustainable practice to collect and curate good data, and exercising
enough of a science with that data so to improve collective intelligence and mutual understanding,
instead of looking at data from an utilitarian point of view only for consumer application purposes,
there seems to be room for improvement still. We hope our work could help effect a positive change
in this direction.10
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Daniela Gerz, Ivan Vulić, Edoardo Ponti, Jason Naradowsky, Roi Reichart, and Anna Korhonen.
Language modeling for morphologically rich languages: Character-aware modeling for word-level
prediction. Transactions of the Association for Computational Linguistics, 6:451–465, 2018a. doi:
10.1162/tacl_a_00032. URL https://www.aclweb.org/anthology/Q18-1032.
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Ekaterina Shutova, and Anna Korhonen. Modeling language variation and universals: A survey on
typological linguistics for natural language processing, 2020.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2014. URL http://www.R-project.org/.

Patrick Royston. Remark as r94: A remark on algorithm as 181: The w-test for normality. Journal of
the Royal Statistical Society. Series C (Applied Statistics), 44(4):547–551, 1995. ISSN 00359254,
14679876. URL http://www.jstor.org/stable/2986146.

Djame Seddah, Sandra Kuebler, and Reut Tsarfaty (eds.). Proceedings of the NAACL HLT 2010
First Workshop on Statistical Parsing of Morphologically Rich Languages, Los Angeles, CA, USA,
June 2010. Association for Computational Linguistics. URL https://www.aclweb.org/
anthology/W10-1400.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725, Berlin, Germany, August 2016. Association
for Computational Linguistics. doi: 10.18653/v1/P16-1162. URL https://www.aclweb.
org/anthology/P16-1162.

S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality (complete samples)†.
Biometrika, 52(3-4):591–611, 12 1965. ISSN 0006-3444. doi: 10.1093/biomet/52.3-4.591. URL
https://doi.org/10.1093/biomet/52.3-4.591.

C. Spearman. The proof and measurement of association between two things. The American
Journal of Psychology, 15(1):72–101, 1904. ISSN 00029556. URL http://www.jstor.
org/stable/1412159.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. Lstm neural networks for language modeling.
In INTERSPEECH, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems 30, pp. 5998–6008. Curran Associates, Inc., 2017. URL http:
//papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

Ada Wan. A statistical typology of language in finer granularity with parallel data. 2022.

B. L. Welch. The Generalization of ‘Student’s’ Problem when Several Different Population Variances
are Involved. Biometrika, 34(1-2):28–35, 01 1947. ISSN 0006-3444. doi: 10.1093/biomet/34.1-2.
28. URL https://doi.org/10.1093/biomet/34.1-2.28.

Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80–83, 1945.
ISSN 00994987. URL http://www.jstor.org/stable/3001968.

Longtu Zhang and Mamoru Komachi. Neural machine translation of logographic language using
sub-character level information. In Proceedings of the Third Conference on Machine Translation:
Research Papers, pp. 17–25, Belgium, Brussels, October 2018. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/W18-6303.

Michał Ziemski, Marcin Junczys-Dowmunt, and Bruno Pouliquen. The United Nations Parallel
Corpus v1.0. In Nicoletta Calzolari (Conference Chair), Khalid Choukri, Thierry Declerck, Sara
Goggi, Marko Grobelnik, Bente Maegaard, Joseph Mariani, Helene Mazo, Asuncion Moreno, Jan
Odijk, and Stelios Piperidis (eds.), Proceedings of the Tenth International Conference on Language
Resources and Evaluation (LREC 2016), Paris, France, may 2016. European Language Resources
Association (ELRA). ISBN 978-2-9517408-9-1.

14

https://www.aclweb.org/anthology/P02-1040
https://www.aclweb.org/anthology/P02-1040
http://www.R-project.org/
http://www.jstor.org/stable/2986146
https://www.aclweb.org/anthology/W10-1400
https://www.aclweb.org/anthology/W10-1400
https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/P16-1162
https://doi.org/10.1093/biomet/52.3-4.591
http://www.jstor.org/stable/1412159
http://www.jstor.org/stable/1412159
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.1093/biomet/34.1-2.28
http://www.jstor.org/stable/3001968
https://www.aclweb.org/anthology/W18-6303


Published as a conference paper at ICLR 2022

APPENDICES

A DATA SELECTION AND PREPROCESSING DETAILS 16

B HYPERPARAMETER SETTING 17

C CORRELATION STATISTICS 18

D STATISTICAL COMPARISONS 19

E DATA STATISTICS 20

F ENLARGED FIGURES FOR ALL 30 LANGUAGE DIRECTIONS (AGGREGATE RESULTS
FROM ALL RUNS) 24

15



Published as a conference paper at ICLR 2022

A DATA SELECTION AND PREPROCESSING DETAILS

The UN Parallel Corpus v1.0 (Ziemski et al., 2016) consists of manually translated UN documents
from 1990 to 2014 in the 6 official UN languages. Therein is a subcorpus that is fully aligned
by line, comprising the 6-way parallel corpus we use. We tried to have as little preprocessing or
filtering as necessary to eliminate possible confounds. But as the initial runs of our experiment failed
due to insufficient memory on a single GPU with 12 GB VRAM11, we filtered out lines with more
than 300 characters in any language in lockstep with one another for all the 6 languages such that
the subcorpora would remain parallel, thereby keeping the material of each language semantically
equivalent to one another. 8,944,859 lines for each language were retained as our training data which
cover up to the 75th percentile in line length for all 6 languages. In order to monitor the effect of data
size, we made subcorpora of each language in 5 sizes by heading the first 102, 103, 104, 105, 106
lines12. We refer to this as dataset A. In addition, to better understand and verify the consistency
of the phenomena observed, we made 2 supplemental datasets by shuffling the 8,944,859 lines two
different times randomly and heading the number of lines in our 5 sizes for each language, again in
lockstep with one another (datasets B and C).

The systematic training regime that we gave to our language directions is identical for all and we
controlled also for seeds. For each of the 3 primary representations — character, byte, and word, we
performed:

• 5 runs in 5 sizes (102 − 106 lines): A0 (seed=13), B0 (13), C0 (9948), A1 (9948), A2 (265), and
• 7 more runs in 4 sizes (102 − 105 lines): A3 (777), A4 (42), A5 (340589), A6 (1000), A7

(83146), B1 (9948), & C1 (13).

Figure 1 shows results from all 12 runs in all sizes for the primary representations.

For the alternate/secondary representations, we performed 3 runs each in 5 sizes (102-106 lines) (A0,
B0, & C0). Due to limitations in computing resources, we were not able to perform as many runs as
the primary representations. But important for our statistical comparisons is that we evaluate based
on an equal number of runs and on the same data for all candidates. Tables 1 & 2 are the results.

For each run and each size, there are 30 pairwise directions (i.e. 1 source language to 1 target language,
e.g. AR-EN for Arabic to English) that result from the 6 languages. We trained all 150 jobs (30
directions x 5 sizes) for each run and representation using the Transformer model (Vaswani et al.,
2017) as supported by the SOCKEYE Toolkit (Hieber et al., 2018) (version 1.18.85), based on MXNet
(Chen et al., 2015). A detailed description of the architecture of the Transformer can be found in
(Vaswani et al., 2017). The same set of hyperparameters applies to all and its values are listed in
Appendix B.

For character modeling, we used a dummy symbol to denote each whitespace. For byte, we turned
each UTF-8-encoded character into a byte string in decimal value, such that each token is a number
between 0 and 255, inclusive. For word, we followed (Junczys-Dowmunt et al., 2016) and used
the Moses tokenizer (Koehn et al., 2007) as is standard in NMT practice when word tokenization is
applied and Jieba13 for segmentation in ZH.

Pinyin is a romanization of ZH characters based on their pronunciations and Wubi an input algorithm
that decomposes character-internal information into stroke shape and ordering and matches these
to 5 classes of radicals (Lunde, 2008). For Pinyin, we used the implementation from https:
//github.com/lxyu/pinyin in the numerical format such that each character/syllable is

11GPUs used for experiments in this paper range from a NVIDIA TITAN RTX (24 GB), NVIDIA GeForce
RTX 2080 Ti (11 GB), a GTX Titan X (12 GB), to a GTX 1080 (8 GB). All jobs were run on a single GPU
setting. Some word-level experiments involving ARtrg or RUtrg at 106 had to be run on a CPU as 24 GB VRAM
were not sufficient. Models with higher maximum sequence lengths (e.g. byte models) were trained with 24 GB
VRAM. Difference in equipment does not necessarily lead to degradation/improvement in scores.

12The terms “line” and “sentence” have been used interchangeably in the NLP literature. We use “line” to
denote a sequence that ends with a newline character and “sentence” as one with an ending punctuation. Most
parallel corpora, such as ours, are aligned by line, as a line may be part of a sentence or without an ending
punctuation (e.g. a header/title). Using a standardized unit such as “line” would also be a fairer measure to
linguae/scriptiones continuae (languages/scripts with no explicit punctuation).

13https://github.com/fxsjy/jieba
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followed by a single digit indicating its lexical tone in Mandarin. For Wubi, we used the dictionary
from the implementation from https://github.com/arcsecw/wubi.

We have implemented all representations such that they would be reversible even when the se-
quence contains code-mixing. Additional code will be made available at https://github.com/
dadasci.

We used the official dev set as provided in (Ziemski et al., 2016), 3,077 lines per language remained
from 4,000 after filtering line length to 300 characters. Data statistics is provided in Appendix E for
reference.

Notes on training time Each run of 30 directions in 5 sizes took approximately 8-12 days for
character and byte models. Byte models generally took longer — hence training time is positively
correlated with length (concurring with observations by Cherry et al. (2018) as they compared
character with BPE models). A maximum length of 300 characters entails a maximum length of
at least 300 bytes in UTF-8. Each run of word models (30 directions, 5 sizes) took about 6 days
(excluding the training of some 7-9 directions out of 30 per run involving ARtrg or RUtrg at 106 on
word level which took about 12-18 hours each direction to train on a CPU as these required more
space and would run out of memory (OOM) on our GPUs otherwise). These figures do not include
the additional probing experiments described in § 4.

B HYPERPARAMETER SETTING

• encoder transformer;
• decoder transformer;
• num-layers 6:6;
• num-embed 512:512;
• transformer-model-size 512;
• transformer-attention-heads 8;
• transformer-feed-forward-num-hidden 2048;
• transformer-activation-type relu;
• transformer-positional-embedding-type fixed;
• transformer-preprocess d; transformer-postprocess drn;
• transformer-dropout-attention 0.1;
• transformer-dropout-act 0.1;
• transformer-dropout-prepost 0.1;
• batch-size 15;
• batch-type sentence;
• max-num-checkpoint-not-improved 3;
• max-num-epochs 50;
• optimizer adam;
• optimized-metric perplexity;
• optimizer-params epsilon: 0.000000001, beta1: 0.9, beta2: 0.98;
• label-smoothing 0.0;
• learning-rate-reduce-num-not-improved 4;
• learning-rate-reduce-factor 0.001;
• loss-normalization-type valid;
• max-seq-len 300 for character, word, and BPE, 672 for all bytes, 688 for Wubi, 680 for Pinyin;
• checkpoint-frequency/interval 4000.

(For smaller datasets, the end of 50 epochs is often reached before the first checkpoint. Since SOCKEYE
only outputs scores at checkpoints, we adjusted the checkpoint frequency as follows to get a score outputted
by the end of 50 epochs: 1000 for 100 lines for all character & byte instances, 400 for 100 lines for word
and 500 for 100 lines BPE, 3450 for 1000 lines for word & BPE. For the very few cases that this default
does not suffice due to bucketing of similar length sequences, we manually set the checkpoint frequency to
the last batch.)
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C CORRELATION STATISTICS

Best correlating metrics, i.e. the union of top 3 metrics for all representations.
For each representation, the top 3 metrics are boldfaced.
All correlations are highly significant (p < 10−30), except for min source length for WORD (p ≈ 0.0001) and
min target length for WORD (p ≈ 0.3861).

Metric CHAR Pinyin Wubi BYTE ARRUt ARRUs,t WORD BPE

minimum length (target) 0.84 0.85 0.86 0.60 0.84 0.84 −0.02 0.65

minimum length (source) 0.82 0.84 0.85 0.57 0.84 0.84 0.10 0.64

number of tokens (source) −0.78 −0.81 −0.82 −0.60 −0.81 −0.81 −0.59 −0.83

TTR (target) 0.83 0.83 0.84 0.48 0.81 0.81 0.61 0.83

|V | (source) −0.54 −0.51 −0.51 −0.50 −0.67 −0.68 −0.63 −0.86

data size in lines −0.80 −0.83 −0.83 −0.59 −0.81 −0.81 −0.62 −0.86

OOV token rate (target) 0.69 0.66 0.66 0.47 0.67 0.68 0.66 0.62

OOV type rate (target) 0.70 0.71 0.72 0.47 0.69 0.70 0.65 0.62

TTR (source) 0.67 0.71 0.71 0.60 0.81 0.81 0.56 0.82

The full list of metrics used for the correlation analysis is:

1. minimum length (source),
2. minimum length (target),
3. maximum length (source),
4. maximum length (target),
5. median length (source),
6. median length (target),
7. mean length (source),
8. mean length (target),
9. length std (source),

10. length std (target),
11. data size in lines,
12. number of parameters,
13. number of types (|V |) (source),
14. number of types (|V |) (target),
15. number of tokens (source),
16. number of tokens (target),
17. type-token-ratio (TTR) (source),
18. type-token-ratio (TTR) (target),
19. OOV type rate (source),
20. OOV type rate (target),
21. OOV token rate (source),
22. OOV token rate (target),
23. token ratio,
24. target type-to-parameter ratio,
25. target token-to-parameter ratio,
26. distance between the TTRs of source and target = (1 - TTRsrc/TTRtrg )2,
27. token-to-parameter ratio (i) = (median length source * median length target * num_lines) / num_parameters,
28. token-to-parameter ratio (ii) = (num_source_tokens * num_target_tokens) / num_parameters.
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D STATISTICAL COMPARISONS

Recall the definition and method for our Disparity/Inequality assessment from § 2:

In the context of our CLMing experiments, we consider there to be “disparity”
or “inequality” between languages l1 and l2 if there are significant differences
between the performance distributions of these two languages with respect to each
representation. Here, by performance we mean the number of bits required to
encode the held-out data using a trained CLM. With 30 directions, there are 15
pairs of source languages (lsrc1, lsrc2) and 15 pairs of target languages (ltrg1, ltrg2)
possible. We compare the source languages among each other, and the target
languages among each other. Each lsrc or each ltrg consists of scores from all models
trained across various sizes and directions. To assess whether the differences
are significant, we perform unpaired two-sided significance tests with the null
hypothesis that the score distributions for the two languages are not different. Upon
testing for normality with the Shapiro-Wilk test (Shapiro & Wilk, 1965; Royston,
1995), we use the parametric unpaired two-sample Welch’s t-test (Welch, 1947)
(when normal) or the non-parametric unpaired Wilcoxon test (Wilcoxon, 1945)
(when not normal) for the comparisons. We use the implementation in R (R Core
Team, 2014) for these 3 tests. To account for the multiple comparisons we are
performing, we correct all p-values using Bonferroni’s correction (Benjamini &
Heller, 2008; Dror et al., 2017) and follow Holm’s procedure14 (Holm, 1979; Dror
et al., 2017) to identify the pairs of l1 and l2 with significant differences after
correction. We report all 3 levels of significance (α ≤ 0.05, 0.01, 0.001) for a more
comprehensive overview. In contrast to Dror et al. (2017), which aimed to compare
the performance of different algorithms, we compare languages (in the context of
computing).

To get samples for the statistical comparison results for the Disparity Table (Table 1):

For each representation, we used 3 runs (A0, B0, C0) in 5 sizes (102-106 lines) for each lsrc and each
ltrg. There are:

6 lsrc (ARsrc, ENsrc, ESsrc, FRsrc, RUsrc, ZHsrc) and
6 ltrg (ARtrg, ENtrg, EStrg, FRtrg, RUtrg, ZHtrg).

We compare pairwise among the lsrc. The 15 pairs are:

ARsrc-ENsrc, ARsrc-ESsrc, ARsrc-FRsrc, ARsrc-RUsrc, ARsrc-ZHsrc,
ENsrc-ESsrc, ENsrc-FRsrc, ENsrc-RUsrc, ENsrc-ZHsrc,
ESsrc-FRsrc, ESsrc-RUsrc, ESsrc-ZHsrc,
FRsrc-RUsrc, FRsrc-ZHsrc,
RUsrc-ZHsrc.

Likewise 15 pairs among the ltrg.

For example, for the character (primary) representation to compare between ARsrc and ENsrc, we
construct the sample for ARsrc (sampleARsrc) and the sample for ENsrc (sampleENsrc) as follows:

Out of the 30 CHAR directions, there are 5 directions involving ARsrc trained for each run and data
size (i.e. the directions: AR-EN, AR-ES, AR-FR, AR-RU, AR-ZH).

For each direction, there are 15 models trained (3 runs x 5 sizes). We take all 75 CHAR models (15
models x 5 directions) involving ARsrc as sampleARsrc. That’s a sample of size 75.

Likewise, for ENsrc (5 directions: EN-AR, EN-ES, EN-FR, EN-RU, EN-ZH), we also have 75 data
points for sampleENsrc. (Likewise also for all 6 lsrc and all 6 ltrg.)

For the comparisons, we compare pairwise, i.e. with two samples each time, but with unpaired
two-sample Welch’s t-test (when normal) or the non-parametric unpaired Wilcoxon test (when not
normal) because sampleARsrc and sampleENsrc have one direction that is not paired: AR-EN and
EN-AR. Other directions can be seen as paired, e.g. AR-ES and EN-ES as both having the same ltrg.

14using implementation from https://github.com/rtmdrr/replicability-analysis-NLP
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F ENLARGED FIGURES FOR ALL 30 LANGUAGE DIRECTIONS (AGGREGATE RESULTS

FROM ALL RUNS)
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Figure 4: CHAR: character models
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Figure 4: CHAR: character models (target language as facet)
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Figure 5: CHAR with Pinyin for ZHtrg
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Figure 5: CHAR with Pinyin for ZHtrg (target language as facet)
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Figure 6: CHAR with Wubi for ZHtrg
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Figure 6: CHAR with Wubi for ZHtrg (target language as facet)
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Figure 7: BYTE models with UTF-8 encoding
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Figure 7: BYTE models with UTF-8 encoding (target language as facet)
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Figure 8: BYTE with ARtrg & RUtrg optimized with code pages 1256 & 1251 (ARRUtrg)
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Figure 8: BYTE with ARtrg & RUtrg optimized with code pages 1256 & 1251 (target language as
facet)
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Figure 9: BYTE with directions AR-RU & RU-AR optimized on both source and target sides
(ARRUsrc,trg)
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Figure 9: BYTE with directions AR-RU & RU-AR optimized on both source and target sides (target
language as facet)
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Figure 10: WORD models
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Figure 10: WORD models (target language as facet)
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Figure 11: BPE models
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Figure 11: BPE models (target language as facet)

39



Published as a conference paper at ICLR 2022

Fairness in Representation for Multilingual NLP: Insights from Controlled Experiments on Condi-
tional Language Modeling

Version 1.1

ICLR 2022 camera-ready copy (20220510)

40


	Introduction
	Background and motivation
	Research questions and contributions

	Method and definitions
	Experimental results of primary representations
	Understanding the phenomena with alternate representations
	Meta results, analyses, and discussion
	Conclusion
	 
	Data selection and preprocessing details
	Hyperparameter setting
	Correlation statistics
	Statistical comparisons
	Data statistics
	Enlarged figures for all 30 language directions (aggregate results from all runs)


