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ABSTRACT

Existing regression models tend to fall short in both accuracy and uncertainty
estimation when the label distribution is imbalanced. In this paper, we propose a
probabilistic deep learning model, dubbed variational imbalanced regression (VIR),
which not only performs well in imbalanced regression but naturally produces
reasonable uncertainty estimation as a byproduct. Different from typical variational
autoencoders assuming I.I.D. representations (a data point’s representation is not
directly affected by other data points), our VIR borrows data with similar regression
labels to compute the latent representation’s variational distribution; furthermore,
different from deterministic regression models producing point estimates, VIR pre-
dicts the entire normal-inverse-gamma distributions and modulates the associated
conjugate distributions to impose probabilistic reweighting on the imbalanced data,
thereby providing better uncertainty estimation. Experiments in several real-world
datasets show that our VIR can outperform state-of-the-art imbalanced regression
models in terms of both accuracy and uncertainty estimation.

1 INTRODUCTION

Deep regression models are currently the state of the art in making predictions in a continuous label
space and have a wide range of successful applications in computer vision (Yin et al., 2021), natural
language processing (Jiang et al., 2020), etc. However, these models fail however when the label
distribution in training data is imbalanced. For example, in visual age estimation (Moschoglou et al.,
2017), where a model infers the age of a person given her visual appearance, models are typically
trained on imbalanced datasets with overwhelmingly more images of younger adults, leading to poor
regression accuracy for images of children or elderly people (Yang et al., 2021). Such unreliability in
imbalanced regression settings motivates the need for both improving performance for the minority in
the presence of imbalanced data and, more importantly, providing reasonable uncertainty estimation
to inform practitioners on how reliable the predictions are (especially for the minority where accuracy
is lower).

Existing methods for deep imbalanced regression (DIR) only focus on improving the accuracy of
deep regression models by smoothing the label distribution and reweighting data with different
labels (Yang et al., 2021). On the other hand, methods that provide uncertainty estimation for deep
regression models operates under the balance-data assumption and therefore do not work well in the
imbalanced setting (Amini et al., 2020; Mi et al., 2022; Charpentier et al., 2022).

To simultaneously cover these two desiderata, we propose a probabilistic deep imbalanced regres-
sion model, dubbed variational imbalanced regression (VIR). Different from typical variational
autoencoders assuming I.I.D. representations (a data point’s representation is not directly affected by
other data points), our VIR assumes Neighboring and Identically Distributed (N.I.D.) and borrows
data with similar regression labels to compute the latent representation’s variational distribution.
Specifically, VIR first encodes a data point into a probabilistic representation and then mix it with
neighboring representations (i.e., representations from data with similar regression labels) to produce
its final probabilistic representation; VIR is therefore particularly useful for minority data as it can
borrow probabilistic representations from data with similar labels (and naturally weigh them using
our probabilistic model) to counteract data sparsity. Furthermore, different from deterministic regres-
sion models producing point estimates, VIR predicts the entire normal-inverse-gamma distributions
and modulates the associated conjugate distributions by the importance weight computed from the
smoothed label distribution to impose probabilistic reweighting on the imbalanced data. This allows
the negative log likelihood to naturally put more focus on the minority data, thereby balancing the
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accuracy for data with different regression labels. Our VIR framework is compatible with any deep
regression models and can be trained end to end.

We summarize our contributions as below:

1. While previous work has studied imbalanced regression and uncertainty estimation sepa-
rately, none of them has considered uncertainty estimation in the imbalanced setting. We
identify the problem of probabilistic deep imbalanced regression as well as two desiderata,
balanced accuracy and uncertainty estimation, for the problem.

2. We propose VIR to simultaneously cover these two desiderata and achieve state-of-the-art
performance compared to existing methods.

3. As a byproduct, we also provide strong baselines for benchmarking high-quality uncertainty
estimation and promising prediction performance on imbalanced datasets.

2 RELATED WORK
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Figure 1: Comparison on inference net-
works between typical VAE (Kingma &
Welling, 2014) and our VIR. In VAE
(left), a data point’s latent representation
(i.e. z) is affected only by itself, while
in VIR (right), neighbors participate to
modulate the final representation.

Variational Autoencoder. Variational autoencoder
(VAE) (Kingma & Welling, 2014) is an unsupervised learn-
ing model that aims to infer probabilistic representations
from data. However, as shown in Figure 1, VAE typically
assumes I.I.D. representations, where a data point’s rep-
resentation is not directly affected by other data points.
In contrast, our VIR borrows data with similar regression
labels to compute the latent representation’s variational
distribution.

Imbalanced Regression. Imbalanced regression is under-
explored in the machine learning community. Most exist-
ing methods for imbalanced regression are direct exten-
sions of the SMOTE algorithm (Chawla et al., 2002), a
commonly used algorithm for imbalanced classification,
where data from the minority classes is over-sampled. These algorithms usually synthesize augmented
data for the minority regression labels by either interpolating both inputs and labels (Torgo et al.,
2013) or adding Gaussian noise (Branco et al., 2017; 2018).

Such algorithms fail to the distance in continuous label space and fall short in handling high-
dimensional data (e.g., images and text). Recently, DIR (Yang et al., 2021) addresses these issues by
applying kernel density estimation to smooth and reweight data on the continuous label distribution,
achieving state-of-the-art performance. However, DIR only focuses on improving the accuracy,
especially for the data with minority labels, and therefore does not provide uncertainty estimation,
which is crucial to assess the predictions’ reliability. Ren et al. (2022) focuses on re-balancing the
mean squared error (MSE) loss for imbalanced regression, and Gong et al. (2022) introduces ranking
similarity for improving deep imbalanced regression. In contrast, our VIR provides a principled
probabilistic approach to simultaneously achieve these two desiderata, not only improving upon DIR
in terms of performance but also producing reasonable uncertainty estimation as a much-needed
byproduct to assess model reliability. There is also related work on imbalanced classification (Deng
et al., 2021), which is related to our work but focusing on classification rather than regression.

Uncertainty Estimation in Regression. There has been renewed interest in uncertainty estimation
in the context of deep regression models (Kendall & Gal, 2017; Kuleshov et al., 2018; Song et al.,
2019; Zelikman et al., 2020; Amini et al., 2020; Mi et al., 2022; van Amersfoort et al., 2021;
Liu et al., 2020; Gal & Ghahramani, 2016; Stadler et al., 2021; Snoek et al., 2019; Heiss et al.,
2022). Most existing methods either directly predict the variance of the output distribution as the
estimated uncertainty (Kendall & Gal, 2017; Zhang et al., 2019; Amini et al., 2020) or rely on
post-hoc confidence interval calibration (Kuleshov et al., 2018; Song et al., 2019; Zelikman et al.,
2020). Meanwhile, Posterior Networks methods Charpentier et al. (2020; 2022); Stadler et al. (2021)
consider conjugate distribution, pseudo-count interpretations, posterior updates, and variational
losses for fast and high-quality uncertainty estimation. Closest to our work is Deep Evidential
Regression (DER) (Amini et al., 2020), which attempts to estimate both aleatoric and epistemic
uncertainty (Kendall & Gal, 2017; Hüllermeier & Waegeman, 2019) on regression tasks by training
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the neural networks to directly infer the parameters of the evidential distribution, thereby producing
uncertainty measures. While Posterior Networks Charpentier et al. (2020; 2022) are designed for
general classification/regression tasks and achieve promising performance, they do not explicitly
consider imbalance in regression tasks, which is the focus of this paper. DER (Amini et al., 2020)
is designed for the data-rich regime and therefore fails to reasonably estimate the uncertainty if the
data is imbalanced; for data with minority labels, DER (Amini et al., 2020) tends produce unstable
distribution parameters, leading to poor uncertainty estimation (as shown in Sec. 4). In contrast,
our proposed VIR explicitly handles data imbalance in the continuous label space to avoid such
instability; VIR does so by modulating both the representations and the output conjugate distribution
parameters according to the imbalanced label distribution, allowing training/inference to proceed as
if the data is balance and leading to better performance as well as uncertainty estimation (as shown
in Sec. 4).

3 METHOD

In this section we introduce the problem setting, provide an overview of our VIR, and then describe
details on each of VIR’s key components.

3.1 PROBLEM SETTINGS

Assuming an imbalanced dataset in continuous space {xi, yi}Ni=1 where N is the total num-
ber of data points, xi ∈ Rd is the input, and yi ∈ Y ⊂ R is the corresponding label
from a continuous label space Y . In practice, Y is partitioned into B equal-interval bins
[y(0), y(1)), [y(2), y(2)), ..., [y(B−1), y(B)), with slight notation overload. To directly compare with
baselines, we use the same grouping index for target value b ∈ B as in (Yang et al., 2021).
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Figure 2: Overview of our VIR method.
Left: The inference model infers the la-
tent representations given input x’s in
the neighborhood. Right: The gener-
ative model reconstructs the input and
predicts the label distribution (including
the associated uncertainty) given the la-
tent representation.

We denote representations as zi, and use (z̃µi , z̃
Σ
i ) =

qϕ(z|xi; θ) to denote the probabilistic representations for
input xi generated by a probabilistic encoder parameter-
ized by θ. Similarly we use (ŷi, ŝi) to denote the mean
and variance of the predictive distribution generated by a
probabilistic predictor pθ(yi|z). Furthermore, we denote
z̄ as the mean of representation zi in each bins (i.e., letting
z̄ = 1

Nb

∑Nb

i=1 zi in a bin with Nb data points).

3.2 METHOD OVERVIEW

In order to achieve both desiderata in probabilistic deep
imbalanced regression (i.e., performance improvement
and uncertainty estimation), our proposed variational im-
balanced regression (VIR) operates on both the encoder
qϕ(zi|{xi}Ni=1) and the predictor pθ(yi|zi).
Typical VAE (Kingma & Welling, 2014) lower-bounds
input xi’s marginal likelihood; in contrast, VIR lower-bounds the marginal likelihood of input xi and
labels yi:

log pθ(xi, yi) = DKL
(
qϕ(zi|{xi}Ni=1)||pθ(zi|xi, yi)

)
+ L(θ, ϕ;xi, yi).

Note that our variational distribution qϕ(zi|{xi}Ni=1) (1) does not conditions on labels yi, since the
task is to predict yi and (2) conditions on all (neighboring) inputs {xi}Ni=1 rather than just xi. The
second term L(θ, ϕ;xi, yi) is VIR’s evidence lower bound (ELBO), which is defined as:

L(θ, ϕ;xi, yi) = Eq

[
log pθ(xi|zi)

]︸ ︷︷ ︸
LD

i

+Eq

[
log pθ(yi|zi)

]︸ ︷︷ ︸
LP

i

−DKL(qϕ(zi|{xi}Ni=1)||pθ(zi))︸ ︷︷ ︸
LKL

i

. (1)

where the pθ(zi) is the standard Gaussian prior N (0, I), following typical VAE (Kingma & Welling,
2014), and the expectation is taken over qϕ(zi|{xi}Ni=1), which infers zi by borrowing data with
similar regression labels to produce the balanced probabilistic representations, which is beneficial
especially for the minority (see Sec. 3.3 for details).
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Different from typical regression models which produce only point estimates for yi, our VIR’s
predictor, pθ(yi|zi), directly produces the parameters of the entire NIG distribution for yi and further
imposes probabilistic reweighting on the imbalanced data, thereby producing balanced predictive
distributions (more details in Sec. 3.4).

3.3 CONSTRUCTING q(zi|{xi}Ni=1)

To cover both desiderata, one needs to (1) produce balanced representations to improve performance
for the data with minority labels and (2) produce probabilistic representations to naturally obtain
reasonable uncertainty estimation for each model prediction. To learn such balanced probabilistic
representations, we construct the encoder of our VIR (i.e., qϕ(zi|{xi}Ni=1)) by (1) first encoding a data
point into a probabilistic representation, (2) computing probabilistic statistics from neighboring
representations (i.e., representations from data with similar regression labels), and (3) producing the
final representations via probabilistic whitening and recoloring using the obtained statistics.

Probabilistic Representations. We first encode each data point into a probabilistic representation.
Note that this is in contrast to existing work (Yang et al., 2021) that uses deterministic representations.
We assume that each encoding zi is a Gaussian distribution with parameters {zµi , zΣi }, which are
generated from the last layer in the deep neural network.

From I.I.D. to Neighboring and Identically Distributed (N.I.D.). Typical VAE (Kingma & Welling,
2014) is an unsupervised learning model that aims to learn a variational representation from latent
space to reconstruct the original inputs under the I.I.D. assumption; that is, in VAE, the latent value
(i.e., zi) is generated from its own input xi. This I.I.D. assumption works well for data with majority
labels, but significantly harms performance for data with minority labels. To address this problem,
we replace the I.I.D. assumption with the N.I.D. assumption; specifically, VIR’s variational latent
representations still follow Gaussian distributions (i.e., N (zµi , z

Σ
i ), but these distributions will be first

calibrated using data with neighboring labels. For a data point (xi, yi) where yi is in the b’th bin, i.e.,
yi ∈ [y(b−1), y(b)), we compute q(zi|{xi}Ni=1) ≜ N (zi; z̃

µ
i , z̃

Σ
i ) as

Mean and Covariance of Initial zi: zµi , z
Σ
i = I(xi), (2)

Statistics of Bin b’s Statistics: µµ
b ,µ

Σ
b ,Σ

µ
b ,Σ

Σ
b = A({zµi , z

Σ
i }

N
i=1), (3)

Smoothed Statistics of Bin b’s Statistics: µ̃µ
b , µ̃

Σ
b , Σ̃

µ
b , Σ̃

Σ
b = S({µµ

b ,µ
Σ
b ,Σ

µ
b ,Σ

Σ
b }

B
b=1), (4)

Mean and Covariance of Final zi: z̃µi , z̃
Σ
i = F(zµi , z

Σ
i ,µ

µ
b ,µ

Σ
b ,Σ

µ
b ,Σ

Σ
b , µ̃

µ
b , µ̃

Σ
b , Σ̃

µ
b , Σ̃

Σ
b ),

where the details of functions I(·), A(·), S(·), and F(·) are described below.

Function I(·): From Deterministic to Probabilistic Statistics. Different from deterministic
statistics in (Yang et al., 2021), our VIR’s encoder uses probabilistic statistics (i.e., statistics of
statistics). Specifically, VIR treats zi as a distribution with the mean and covariance (zµi , z

Σ
i ) = I(xi)

rather than a deterministic vector. As a result, all the deterministic statistics, µb, Σb, µ̃b, and Σ̃b

are replaced by distributions with the means and covariances, (µµ
b ,µ

Σ
b ), (Σ

µ
b ,Σ

Σ
b ), (µ̃

µ
b , µ̃

Σ
b ), and

(Σ̃
µ

b , Σ̃
Σ

b ), respectively (more details in the following three paragraphs on A(·), S(·), and F(·)).
Function A(·): Statistics of the current Bin b’s Statistics. As part of our probabilistic overall
statistics, the probabilistic overall mean becomes a distribution with the mean (letting µb = z̄) and
covariance (assuming diagonal covariance):

µµ
b = E[z̄] = 1

Nb

∑Nb

i=1
zµi , µΣ

b = V[z̄] = 1
N2

b

∑Nb

i=1
zΣi .

Similarly, our probabilistic overall covariance becomes a matrix-variate distribution (Gupta & Nagar,
2018) with the mean:

Σµ
b = 1

Nb

∑Nb

i=1
(zi − z̄)2 = 1

Nb

∑Nb

i=1

[
zΣi + (zµi )

2 −
(
[µΣ

b ]i + ([µµ
b ]i)

2
)]

,

since E[z̄] = µµ
b and V[z̄] = µΣ

b . Note that the covariance of Σb, i.e., ΣΣ
b , involves computing the

fourth-order moments, which is computationally prohibitive. Therefore in practice, we directly set
ΣΣ

b to zero for simplicity; empirically we observe that such simplified treatment already achieves
promising performance improvement upon the state of the art.
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Function S(·): Neighboring Data and Smoothed Statistics. Next, we can borrow data with
neighboring labels (from neighboring label bins) to compute the smoothed statistics of the current
bin b by applying a symmetric kernel k(·, ·) (e.g., Gaussian, Laplacian, and Triangular kernels).
Specifically, the probabilistic smoothed mean and covariance are (assuming diagonal covariance):

µ̃µ
b =

∑
b′∈B

k(yb, yb′)µ
µ
b′ , µ̃Σ

b =
∑

b′∈B
k2(yb, yb′)µ

Σ
b′ , Σ̃

µ

b =
∑

b′∈B
k(yb, yb′)Σb′ .

Function F(·): Probabilistic Whitening and Recoloring. We develop a probabilistic version of the
whitening and re-coloring procedure (Sun et al., 2016) used in (Yang et al., 2021). Specifically, we
produce the final probabilistic representation {z̃µi , z̃Σi } for each data point as:

z̃µi = (zµi − µµ
b ) ·

√
Σ̃

µ

b

Σµ

b

+ µ̃µ
b , z̃Σi = (zΣi + µΣ

b ) ·
√

Σ̃
µ

b

Σµ

b

+ µ̃Σ
b . (5)

Inspired by (Yang et al., 2021), we keep updating the probabilistic overall statistics, {µµ
b ,µ

Σ
b ,Σb},

and the probabilistic smoothed statistics, {µ̃µ
b , µ̃

Σ
b }, cross different epochs. The probabilistic repre-

sentation {z̃µi , z̃Σi } are then re-parameterized (Kingma & Welling, 2014) into the final representation
zi, and passed into the final layer (discussed in Sec. 3.4) to generate the prediction and uncertainty
estimation. Note that the computation of statistics from multiple x’s is only needed during training.
During testing, VIR directly uses these statistics and therefore does not need to re-compute them.

3.4 CONSTRUCTING p(yi|zi)

Our VIR’s predictor p(yi|zi) ≜ N (yi; ŷi, ŝi) predicts both the mean and variance for yi by first
predicting the NIG distribution and then marginalizing out the latent variables. It is motivated by
the following observations on label distribution smoothing (LDS) in (Yang et al., 2021) and deep
evidental regression (DER) in (Amini et al., 2020), as well as intuitions on effective counts in
conjugate distributions.

LDS’s Limitations in Our Probabilistic Imbalanced Regression Setting. The motivation of
LDS (Yang et al., 2021) is that the empirical label distribution can not reflect the real label distribution
in an imbalanced dataset with a continuous label space; consequently, reweighting methods for
imbalanced regression fail due to these inaccurate label densities. By applying a smoothing kernel
on the empirical label distribution, LDS tries to recover the effective label distribution, with which
reweighting methods can obtain ‘better’ weights to improve imbalanced regression. However, in
our probabilistic imbalanced regression, one needs to consider both (1) the performance for the data
with minority labels and (2) uncertainty estimation for each model. However, LDS only focuses on
improving the accuracy, especially for the data with minority labels, and therefore does not provide
uncertainty estimation, which is crucial to assess the predictions’ reliability.

DER’s limitations in Our Probabilistic Imbalanced Regression Setting. In DER (Amini et al.,
2020), the predicted labels with their correspond uncertainties are produced by the representation of
the posterior parameters in Normal Inverse Gamma (NIG) distribution NIG(γ, ν, α, β), while the
model is trained via minimizing the negative log-likelihood (NLL) of a Student-t distribution:

LDER
i = 1

2 log(
π
ν ) + (α+ 1

2 ) log((yi − γ)2ν +Ω)− α log(Ω) + log( Γ(α)

Γ(α+
1
2 )
), (6)

where Ω = 2β(1 + ν). It is therefore nontrivial to properly incorporate a reweighting mechanism
into the NLL. One straightforward approach is to directly reweight LDER

i for different data points
(xi, yi). However, this contradicts the formulation of NIG and often leads to poor performance, as we
verify in Sec. 4.

Intuition of Pseudo-Counts for VIR. To properly incorporate different reweighting methods, our
VIR relies on the intuition of pseudo-counts (pseudo-observations) in conjugate distributions (Bishop,
2006). Assuming Gaussian likelihood, the conjugate distributions would be an NIG distribu-
tion (Bishop, 2006), i.e., (µ,Σ) ∼ NIG(γ, ν, α, β), which means:

µ ∼ N (γ,Σ/ν), Σ ∼ Γ−1(α, β),

where Γ−1(α, β) is an inverse gamma distribution. With a NIG prior distribution
NIG(γ0, ν0, α0, β0), the posterior distribution of the NIG after observing n real data points are:

γn = γ0ν0+nΨ
νn

, νn = ν0 + n, αn = α0 +
n
2 , βn = β0 +

1
2 (γ

2
0ν0) + Φ, (7)
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where Ψ = x̄ and Φ = 1
2 (
∑

i x
2
i − γ2

nνn). Here ν0 and α0 can be interpreted as virtual observations,
i.e., pseudo-counts or pseudo-observations that contribute to the posterior distribution. Overall, the
mean of posterior distribution above can be interpreted as an estimation from (2α0 + n) observations,
with 2α0 virtual observations and n real observations. Similarly, the variance can be interpreted an
estimation from (ν + n) observations. This intuition is crucial in developing the predictor of our VIR.

From Pseudo-Counts to Balanced Predictive Distributions. Based on the intuition above, we
construct our predictor (i.e., p(yi|zi)) by (1) generating the parameters in the posterior distribution of
NIG, (2) computing re-weighted parameters by imposing the importance weights obtained from LDS,
and (3) producing the final prediction with corresponding uncertainty estimation.

Based on Eqn. 7, we feed the final representation {zi}Ni=1 generated from the Sec. 3.3 (Eqn. 5) into a
linear layer to output the intermediate parameters ni,Ψi,Φi for data point (xi, yi):

ni,Ψi,Φi = G(zi), zi ∼ q(zi|{xi}Ni=1) = N (zi; z̃
µ
i , z̃

Σ
i )

We then apply the importance weights
∑

b′∈B k(yb, yb′)
)− 1

2 calculated from the smoothed label
distribution to the pseudo-count ni to produce the re-weighted parameters of posterior distribution
of NIG. Along with the pre-defined prior parameters (γ0, ν0, α0, β0), we are able to compute the
parameters of posterior distribution NIG(γi, νi, αi, βi) for (xi, yi):

γ∗
i =

γ0ν0+
(∑

b
′∈B k(yb,yb′ )

)−
1
2 ·niΨi

ν∗
n

, ν∗i = ν0 +
( ∑
b′∈B

k(yb, yb′)
)− 1

2 · ni,

α∗
i = α0 +

( ∑
b′∈B

k(yb, yb′)
)− 1

2 · ni

2 , β∗
i = β0 +

1
2 (γ

2
0ν0) + Φi.

Based on the NIG posterior distribution, we can then compute final prediction and uncertainty
estimation as

ŷi = γ∗
i , ŝi =

β∗
i

ν∗
i (α

∗
i −1) .

We use an objective function similar to Eqn. 6, but with different definitions of (γ, ν, α, β), to
optimize our VIR model:

LP
i = Eqϕ(zi|{xi}Ni=1)

[
1
2
log( π

ν∗
i
) + (α∗

i + 1
2
) log((yi − γ∗

i )
2ν∗n +Ω)− α∗

i log(ω
∗
i ) + log(

Γ(α∗
i )

Γ(α∗
i +

1
2
)
)
]
, (8)

where ω∗
i = 2β∗

i (1 + ν∗i ). Note that LP
i is part of the ELBO in Eqn. 1. Similar to (Amini et al.,

2020), we use an additional regularization term to achieve better accuracy1:
LR
i = (ν + 2α) · |yi − ŷi|.

LP
i and LR

i together constitute the objective function for learning the predictor p(yi|zi).

3.5 FINAL OBJECTIVE FUNCTION

Putting together Sec. 3.3 and Sec. 3.4, our final objective function (to minimize) for VIR is:

LVIR =
∑N

i=1
LVIR
i , LVIR

i = λLR
i − L(θ, ϕ;xi, yi) = λLR

i − LP
i − LD

i + LKL
i ,

where L(θ, ϕ;xi, yi) = LP
i + LD

i − LKL
i is the ELBO in Eqn. 1. λ adjusts the importance of the

additional regularizer and the ELBO, and thus lead to a better result both on accuracy and uncertainty
estimation.

3.6 DISCUSSION ON I.I.D. AND N.I.D. ASSUMPTIONS

Generalization Error, Bias, and Variance. We could analyze the generalization error of our VIR by
bounding the generalization with the sum of three terms: (a) the bias of our estimator, (2) the variance
of our estimator, (3) model complexity. Essentially VIR uses the N.I.D. assumption increases our
estimator’s bias, but significantly reduces its variance in the imbalanced setting. Since the model
complexity is kept the same (using the same backbone neural network) as the baselines, N.I.D. will
lead to a lower generalization error (see more discussion in Sec. A of the Appendix).

1Note that in DER, the total evidence Φ has a value 2ν + α, but to the best of our knowledge, it would be
more reasonable to use ν + 2α as the total evidence for an NIG distribution (Bishop, 2006).
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4 RESULTS

Datasets. In this work, we evaluate our methods in terms of prediction accuracy and uncertainty
estimation on two imbalanced datasets2, AgeDB (Moschoglou et al., 2017), IMDB-WIKI (Rothe
et al., 2018). We follow the preprocessing procedures in DIR (Yang et al., 2021). Details for label
density distributions and levels of imbalance are discussed in DIR (Yang et al., 2021).

AgeDB-DIR: We use AgeDB-DIR constructed in DIR (Yang et al., 2021), which contains 12.2K
images for training and 2.1K images for validation and testing. The maximum age in this dataset is
101 and the minimum age is 0, and the number of images per bin varies between 1 and 353.

IMDB-WIKI-DIR: We use IMDB-WIKI-DIR constructed in DIR (Yang et al., 2021), which contains
191.5K training images and 11.0K validation and testing images. The maximum age is 186 and
minimum age is 0; the maximum bin density is 7149, and minimum bin density is 1.

STS-B-DIR: We use STS-B-DIR constructed in DIR (Yang et al., 2021), which contains 5.2K pairs
of training sentences and 1.0K pairs for validation and testing. This dataset is a collection of
sentence pairs generated from news headlines, video captions, etc. Each pair is annotated by multiple
annotators with a similarity score between 0 and 5.

Baselines. We use ResNet-50 (He et al., 2016) as our backbone network, and we describe the
baselines below.

Vanilla: We use the term VANILLA to denote a plain model without adding any approaches.

Synthetic-Sample-Based Methods: Various existing imbalanced regression methods are also included
as baselines; these include SMOTER (Torgo et al., 2013) and SMOGN (Branco et al., 2017). Further-
more, following DIR (Yang et al., 2021), in IMDB-WIKI-DIR, we also include another two methods:
MIXUP (Zhang et al., 2018) and M-MIXUP (Verma et al., 2019).

Cost-Sensitive Reweighting: As shown in DIR (Yang et al., 2021), the square-root weighting variant

(SQINV) baseline (i.e.
(∑

b′∈B k(yb, yb′)
)− 1

2 ) always outperforms Vanilla. Therefore, for simplicity
and fair comparison, all our experiments (for both baselines and VIR) use SQINV weighting. To use
SQINV in VIR, one simply needs to use the symmetric kernel k(·, ·) described in Sec. 3.3. To use
SQINV in DER, we replace the final layer in DIR (Yang et al., 2021) with the DER layer (Amini
et al., 2020) to produce the predictive distributions.

Evaluation Metrics - Accuracy. We follow the evaluation metrics in (Yang et al., 2021) to evaluate
the accuracy of our proposed methods; these include Mean Absolute Error (MAE), Mean Squared
Error (MSE), and Geometric Mean (GM). The formulas for these metrics are as follows:

MAE = 1
N

∑N

i=1
|yi − ŷi|, MSE = 1

N

∑N

i=1
(yi − ŷi)

2, GM =
[∏N

i=1
|yi − ŷi|

] 1
N
.

Evaluation Metrics - Uncertainty Estimation. We use typical evaluation metrics for uncertainty
estimation in regression problems to evaluate our produced uncertainty estimation; these include
Negative Log Likelihood (NLL), Area Under Sparsification Error (AUSE). Eqn. 8 shows the formula
for NLL, and more details regarding to AUSE can be found in (Ilg et al., 2018).

Evaluation Process. Following (Liu et al., 2019; Yang et al., 2021), for a data sample xi with its label
yi which falls into the target bins bi, we divide the label space into three disjoint subsets: many-shot
region {bi ∈ B | yi ∈ bi & |yi| > 100}, medium-shot region {bi ∈ B | yi ∈ bi & 20 ≤ |yi| ≤
100}, and few-shot region {bi ∈ B | yi ∈ bi & |yi| < 20}, where | · | denotes the cardinality of the
set. We report results on the overall test set and these subsets with the accuracy metrics discussed
above.

Implementation Details. We use ResNet-50 (He et al., 2016) for all experiments in AgeDB-DIR
and IMDB-WIKI-DIR. We use the Adam optimizer (Kingma & Ba, 2015) to train all models for 100
epochs, with same learning rate and decay by 0.1 and the 60-th and 90-th epoch, respectively. In order
to determine the optimal batch size for training, we try different batch sizes and achieve the same

2Among the five datasets proposed in (Yang et al., 2021), only four of them are publicly available. In this
paper we use the largest (IMDB-WIKI) and the smallest (AgeDB) among the four to evaluate our method.
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Table 1: Evaluation results of accuracy on AgeDB-DIR.

Metrics MSE ↓ MAE ↓ GM ↓
Shot All Many Med. Few All Many Med. Few All Many Med. Few

VANILLA (Yang et al., 2021) 101.28 78.40 131.17 256.32 7.79 6.70 9.42 13.98 5.18 4.53 6.75 11.54
DEEP ENSEMBLE (Lakshminarayanan et al., 2017) 100.94 79.30 129.95 249.18 7.73 6.62 9.37 13.90 4.87 4.37 6.50 11.35
SMOTER (Torgo et al., 2013) 114.34 93.35 129.89 244.57 8.16 7.39 8.65 12.28 5.21 4.65 5.69 8.49
SMOGN (Branco et al., 2017) 117.29 101.36 133.86 232.90 8.26 7.64 9.01 12.09 5.36 4.90 6.19 8.44
SQINV (Yang et al., 2021) 104.76 92.67 127.04 205.16 7.92 7.42 8.80 11.46 5.03 4.81 5.72 8.23
DER (Amini et al., 2020) 106.81 91.32 122.45 209.76 8.11 7.36 9.03 12.69 5.31 4.65 6.48 10.52
FDS (Yang et al., 2021) 109.78 93.99 124.96 216.97 8.12 7.52 8.68 12.25 5.13 4.80 5.97 8.85
LDS (Yang et al., 2021) 102.22 83.62 128.73 204.64 7.67 6.98 8.86 10.89 4.85 4.39 5.80 7.45
LDS + FDS (Yang et al., 2021) 102.16 86.99 128.04 199.18 7.82 7.19 9.08 11.24 5.01 4.56 6.10 7.02
FDS + RANKSIM (Gong et al., 2022) 83.51 71.99 99.14 149.05 7.02 6.49 7.84 9.68 4.53 4.13 5.37 6.89
LDS + FDS + RANKSIM (Gong et al., 2022) 84.96 74.27 93.64 161.92 7.03 6.54 7.68 9.92 4.45 4.07 5.23 6.35
LDS + FDS + DER (Yang et al., 2021; Amini et al., 2020) 112.62 94.21 140.03 210.72 8.18 7.44 9.52 11.45 5.30 4.75 6.74 7.68
VIR (OURS) 86.89 77.69 96.55 145.76 7.14 6.67 7.70 9.52 4.58 4.27 5.09 6.31

OURS VS. VANILLA +14.39 +0.71 +34.62 +110.56 +0.65 +0.03 +1.72 +4.46 +0.60 +0.26 +1.66 +5.23
OURS VS. SQINV +17.87 +14.98 +30.49 +59.40 +0.78 +0.75 +1.10 +1.94 +0.45 +0.54 +0.63 +1.92
OURS VS. DER +19.92 +13.63 +25.90 +64.00 +0.97 +0.69 +1.33 +3.17 +0.73 +0.38 +1.39 +4.21
OURS VS. LDS + FDS (SOTA IN DIR) +15.27 +9.30 +31.49 +53.42 +0.68 +0.52 +1.38 +1.72 +0.43 +0.29 +1.01 +0.71

conclusion as the DIR paper, i.e., the optimal batch size is 256 when other hyperparameters are fixed.
Therefore, we stick to the batch size of 256 through out the experiments in the paper. Meanwhile, we
use the same hyperparameters as in DIR (Yang et al., 2021).

We use PyTorch to implement our method. For fair comparison, we implemented a PyTorch version
for the official TensorFlow implementation of DER(Amini et al., 2020). To make sure we can obtain
the reasonable uncertainty estimations, we restrict the range for α to [1.5,∞) instead of [1.0,∞)
in DER. Besides, in the activation function SoftPlus, we set the hyperparameter beta to 0.1. As
discussed in Sec. 3.4, we implement a layer which produces the parameters n,Ψ,Ω. We assign 2
as the minimum number for n, and use the same hyperparameter settings for activation function for
DER layer.

To search for a combination hyperparameters of prior distribution {γ0, ν0, α0, β0} for NIG, we
combine grid search method and random search method (Bergstra & Bengio, 2012) to select the best
hyperparameters. We first intuitively assign a value and a proper range with some step sizes which
correspond to the hyperparameters, then, we apply grid search to search for the best combination for
the hyperparameters on prior distributions. After locating a smaller range for each hyperparameters,
we use random search to search for better combinations, if it exists. In the end, we find our best
hyperparameter combinations for NIG prior distributions.

4.1 RESULTS FOR IMBALANCED REGRESSION ACCURACY

We report the accuracy of different methods in Table 1 and Table 2 for AgeDB-DIR and IMDB-WIKI-
DIR, respectively3. In both tables, we can conclude that our methods outperform the baselines in
their categories. For ablation studies, see Table 5 and Table 6 of the Appendix. Note that to ensure
fair and solid comparison, we re-run the DIR methods based on our machine and software settings4.

Overall Performance. As shown in the last category (i.e., last four rows) of both tables, our proposed
method’s best variants compare favorably against the state of the art including DIR variants (Yang
et al., 2021) and DER (Amini et al., 2020), especially on the imbalanced data samples (i.e., in the
few-shot columns). This verifies the effectiveness of our methods in terms of overall performance.

4.2 RESULTS FOR IMBALANCED REGRESSION UNCERTAINTY ESTIMATION

Different from DIR (Yang et al., 2021) which only focuses on accuracy, we create a new benchmark
for uncertainty estimation in imbalanced regression. Table 3 and Table 4 show the results on
uncertainty estimation for two datasets AgeDB-DIR and IMDB-WIKI-DIR, respectively. Note that
most baselines from Table 1 and Table 2 are deterministic methods (as opposed to probabilistic

3Results for STS-B-DIR are reported in Table 7, Table 8, and Table 9 of the Appendix.
4We find that due to differences in PyTorch, GPU, and CUDA versions, as well as numbers of GPUs used for

parallel training, the results in DIR may vary. Furthermore, the randomness in multiple workers in the Dataloader
also affect the performance.
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Table 2: Evaluation results of accuracy on IMDB-WIKI-DIR.
Metrics MSE ↓ MAE ↓ GM ↓
Shot All Many Med. Few All Many Med. Few All Many Med. Few

VANILLA (Yang et al., 2021) 135.48 107.01 352.02 973.73 7.99 7.18 14.88 26.72 4.51 4.12 10.46 21.40
MIXUP (Zhang et al., 2018) 141.11 109.13 389.95 1037.98 8.22 7.29 16.23 28.11 4.68 4.22 12.28 23.55
M-MIXUP (Verma et al., 2019) 137.45 108.33 363.72 957.53 8.22 7.39 15.24 26.70 4.80 4.39 10.85 21.86
SMOTER (Torgo et al., 2013) 138.75 111.55 346.09 935.89 8.14 7.42 14.15 25.28 4.64 4.30 9.05 19.46
SMOGN (Branco et al., 2017) 136.09 109.15 339.09 944.20 8.03 7.30 14.02 25.93 4.63 4.30 8.74 20.12
SQINV (Yang et al., 2021) 134.36 111.23 308.63 834.08 7.87 7.24 12.44 22.76 4.47 4.22 7.25 15.10
DER (Amini et al., 2020) 133.81 107.51 332.90 916.18 7.85 7.18 13.35 24.12 4.47 4.18 8.18 15.18
FDS (Yang et al., 2021) 131.93 107.76 311.29 880.32 7.80 7.20 12.64 23.20 4.39 4.16 7.04 13.42
LDS (Yang et al., 2021) 133.93 109.70 320.26 830.81 7.91 7.30 13.02 22.41 4.48 4.22 7.72 13.75
LDS + FDS (Yang et al., 2021) 136.72 112.76 322.50 811.83 8.08 7.47 13.21 22.54 4.66 4.39 8.01 14.33
LDS + FDS + DER (Yang et al., 2021; Amini et al., 2020) 120.86 97.75 297.64 873.10 7.24 6.64 11.87 23.44 3.93 3.69 6.64 16.00
VIR (OURS) 119.60 99.25 298.85 809.34 7.23 6.66 11.90 21.78 3.90 3.68 6.51 13.34

OURS VS. VANILLA +15.88 +7.76 +53.17 +164.39 +0.76 +0.52 +2.98 +4.94 +0.61 +0.44 +3.95 +8.06
OURS VS. SQINV +14.76 +11.98 +9.78 +24.74 +0.64 +0.58 +0.54 +0.98 +0.57 +0.54 +0.74 +1.76
OURS VS. DER +14.21 +8.26 +34.05 +106.84 +0.62 +0.52 +1.45 +2.34 +0.57 +0.50 +1.67 +1.84
OURS VS. LDS + FDS (SOTA IN DIR) +17.12 +13.51 +23.65 +2.49 +0.85 +0.81 +1.31 +0.76 +0.76 +0.71 +1.50 +0.99

methods like ours) and cannot provide uncertainty estimation; therefore they are not applicable here.
To show the superiority of our VIR model, we create a strongest baseline by concatenating the DIR
variants (LDS + FDS) with the DER (Amini et al., 2020).

Table 3: Uncertainty estimation results on AgeDB-DIR.
Metrics NLL ↓ AUSE ↓
Shot All Many Med. Few All Many Med. Few

DEEP ENSEMBLE (Lakshminarayanan et al., 2017) 5.311 4.031 6.726 8.523 0.541 0.626 0.466 0.483
DER (Amini et al., 2020) 3.936 3.768 3.865 4.421 0.590 0.449 0.468 0.500
LDS + FDS + DER (Yang et al., 2021; Amini et al., 2020) 3.794 3.699 3.969 4.214 0.463 0.260 0.392 0.617
VIR (OURS) 3.703 3.598 3.805 4.196 0.437 0.474 0.319 0.413

OURS VS. DER +0.064 +0.071 +0.060 +0.225 +0.153 +0.026 +0.007 +0.036

Results show that VIR outperform the
baselines in all few-shot metrics. In
some categories, VIR may not per-
form better in the overall, many-shot
and median shot metrics, but the gap
tends to be minimal. Note that our pro-
posed methods mainly focus on the
imbalanced setting, therefore we also
focus on the few-shot metrics. Lastly, comparing our model variant with the best performance against
the baseline (DER), we can conclude that our methods successfully improve uncertainty estimation
in the probabilistic imbalanced regression setting.

Table 4: Uncertainty estimation results on IMDB-WIKI-DIR.
Metrics NLL ↓ AUSE ↓
Shot All Many Med. Few All Many Med. Few

DER (Amini et al., 2020) 3.850 3.699 4.997 6.638 0.813 0.802 0.650 0.541
LDS + FDS + DER (Yang et al., 2021; Amini et al., 2020) 3.683 3.602 4.391 5.697 0.784 0.670 0.455 0.483
VIR (OURS) 3.652 3.568 4.419 5.560 0.622 0.645 0.511 0.374

OURS VS. DER +0.198 +0.131 +0.578 +1.078 +0.191 +0.157 +0.202 +0.167

We also observe that the improve-
ments of the uncertainty estimation
on IMDB-WIKI are larger than those
on Age-DB. We suspect that this be-
cause IMDB-WIKI contains much
more training, validating and testing
data, therefore enjoying more stable
uncertainty estimation improvements brought by VIR compared to those in Age-DB.

5 CONCLUSION

We identify the problem of probabilistic deep imbalanced regression, which aims to both improve
accuracy and obtain reasonable uncertainty estimation in imbalanced regression. We propose VIR,
which can use any deep regression models as backbone networks. VIR borrows data with similar
regression labels to produce the probabilistic representations and modulates the conjugate distributions
to impose probabilistic reweighting on imbalanced data. Furthermore, we create new benchmarks for
uncertainty estimation on imbalanced regression. Experiments show that our methods outperform
state-of-the-art imbalanced regression models in terms of both accuracy and uncertainty estimation.
Future work may include (1) improving VIR by better approximating variance of the variances in
probability distributions, and (2) developing novel approaches that can achieve stable performance
even on imbalanced data with limited sample size, and (3) exploring techniques such as mixture
density networks (Bishop, 1994) to enable multi-modality in the latent distribution, thereby further
improving the performance.
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A DISCUSSION ON I.I.D. AND N.I.D. ASSUMPTIONS

Generalization Error, Bias, and Variance. We could analyze the generalization error of our VIR by
bounding the generalization with the sum of three terms: (a) the bias of our estimator, (2) the variance
of our estimator, (3) model complexity. Essentially VIR uses the N.I.D. assumption increases our
estimator’s bias, but significantly reduces its variance in the imbalanced setting. Since the model
complexity is kept the same (using the same backbone neural network) as the baselines, N.I.D. will
lead to a lower generalization error.

Variance of Estimators in Imbalanced Settings. In the imbalanced setting, one typically use inverse
weighting to produced an unbiased estimator (i.e., making the first term of the aforementioned bound
zero). However, for data with extremely low density, its inverse would be extremely large, therefore
leading to a very large variance for the estimator. Our VIR replaces I.I.D. with N.I.D. to “smooth
out” such singularity, and therefore significantly lowers the variance of the estimator (i.e., making the
second term of the aforementioned bound smaller), and ultimately lowers the generalization error.

B ADDITIONAL EXPERIMENT RESULTS

B.1 ABLATION STUDY ON VIR

In this section, we include ablation studies to verify that our VIR can outperform its counterparts in
DIR (i.e., smoothing on the latent space) and DER (i.e., NIG distribution layers).

Table 5: Ablation study on AgeDB-DIR in terms of accuracy.
Metrics MSE ↓ MAE ↓
Shot All Many Med. Few All Many Med. Few

FDS (Yang et al., 2021) 109.78 93.99 124.96 216.97 8.12 7.52 8.68 12.25
ENCODER-ONLY VIR (OURS) 95.99 81.89 121.78 157.92 7.57 6.97 8.72 10.03

DER (Amini et al., 2020) 106.81 91.32 122.45 209.76 8.11 7.36 9.03 12.69
PREDICTOR-ONLY VIR (OURS) 88.96 74.79 95.85 203.76 7.28 6.68 7.76 11.63

Ablation Study on q(zi|{xi}Ni=1).
To verify the effectiveness of VIR’s
encoder q(zi|{xi}Ni=1), we replace
VIR’s predictor p(yi|zi) with a lin-
ear layer (as in DIR). Table 5 shows
that compared to its counterpart,
FDS (Yang et al., 2021), our encoder-
only VIR still leads to a considerable
improvements even without generating the NIG distribution, therefore verifying the effectiveness of
our VIR’s q(zi|{xi}Ni=1).

Table 6: Ablation study on AgeDB-DIR in terms of uncer-
tainty estimation.

Metrics NLL ↓ AUSE ↓
Shot All Many Med. Few All Many Med. Few

DER Amini et al. (2020) 3.936 3.768 3.865 4.421 0.590 0.449 0.468 0.500
PREDICTOR-ONLY VIR (OURS) 3.887 3.755 3.854 4.394 0.443 0.387 0.390 0.407

Ablation Study on p(yi|zi). To ver-
ify the effectiveness of VIR’s pre-
dictor p(yi|zi), we replace VIR’s en-
coder q(zi|{xi}Ni=1) with a simple de-
terministic encoder as in DER (Amini
et al., 2020). Table 5 and Table 6 show
that compared to DER, the counter-
part of VIR’s predictor, our VIR’s predictor still outperforms than DER, demonstrating its effective-
ness; this verifies our claim (Sec. 3.4) that directly reweighting DER breaks NIG and leads to poor
performance.

B.2 RESULT ON STS-B-DIR DATASET

In this section, we report the accuracy and uncertainty evaluation on STS-B-DIR (more details for the
dataset is in DIR (Yang et al., 2021)). From Table 7, Table 8, and Table 9 below, we can conclude

Table 7: Evaluation results of accuracy on STS-B-DIR.

Metrics MSE ↓ MAE ↓ GM ↓
Shot All Many Med. Few All Many Med. Few All Many Med. Few

INV 1.031 0.930 1.426 1.152 0.825 0.783 1.004 0.850 0.567 0.537 0.744 0.535
DIR (YANG ET AL., 2021) 1.000 0.912 1.368 1.055 0.812 0.772 0.989 0.809 0.560 0.535 0.739 0.477
DIR + DER (YANG ET AL., 2021; AMINI ET AL., 2020) 1.007 0.880 1.535 1.086 0.812 0.757 1.046 0.842 0.558 0.518 0.765 0.574
VIR (OURS) 0.895 0.799 1.309 0.919 0.760 0.718 0.960 0.732 0.509 0.493 0.669 0.377

that our model also outperforms all baselines in terms of both accuracy metrics and uncertainty
estimation metrics in this NLP dataset; this verifies the superiority of our model for NLP datasets.
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Table 8: Evaluation results of accuracy on STS-B-DIR.
Metrics Pearson ↑ Spearman ↑
Shot All Many Med. Few All Many Med. Few

INV 0.718 0.701 0.612 0.705 0.723 0.678 0.530 0.685
DIR (YANG ET AL., 2021) 0.732 0.711 0.646 0.742 0.731 0.672 0.519 0.739
DIR + DER (YANG ET AL., 2021; AMINI ET AL., 2020) 0.729 0.714 0.635 0.731 0.730 0.680 0.526 0.699
VIR (OURS) 0.765 0.740 0.663 0.770 0.770 0.713 0.534 0.770

Table 9: Uncertainty estimation results on STS-B-DIR.
Metrics NLL ↓ AUSE ↓
Shot All Many Med. Few All Many Med. Few

DIR + DER (YANG ET AL., 2021; AMINI ET AL., 2020) 2.561 2.514 2.880 2.358 0.672 0.581 0.609 0.615
VIR (OURS) 1.996 1.810 2.754 2.152 0.591 0.575 0.602 0.510

B.3 DIFFERENCE BETWEEN DIR’S AND OUR REPRODUCED RESULTS

To reproduce the results on AgeDB, we use exactly the same settings as in DIR’s code (Yang et al.,
2021) (i.e., by directly running their code on our machines without modifying hyperparameters). for
each model in DIR we report, we use five different random seeds to produce five results. We then
report the performance by taking the average of them. Table 10 and Table 11 show the example for
SQINV and LDS+FDS on AgeDB-DIR. From the table we can see that under our hardware and

Table 10: Results of running SQINV for 5 different random seeds on AgeDB.

Metrics MSE ↓ MAE ↓ GM ↓
Shot All Many Med. Few All Many Med. Few All Many Med. Few

SQINV 1 107.02 90.71 131.5 193.39 8.04 7.40 9.01 11.33 5.15 4.73 8.81 8.22
SQINV 2 111.55 93.43 141.03 209.17 8.12 7.47 9.17 11.58 5.21 4.85 5.75 8.25
SQINV 3 114.33 96.83 134.56 223.86 8.21 7.59 9.01 11.81 5.17 4.74 5.85 8.27
SQINV 4 106.24 91.81 120.26 203.78 7.94 7.39 8.58 11.39 5.06 4.74 5.41 7.66
SQINV 5 104.73 90.24 127.33 208.05 7.99 7.47 8.98 11.49 5.07 4.79 5.68 7.98
SQINV AVG 108.77 92.60 130.94 207.65 8.06 7.46 8.95 11.52 5.13 4.77 6.30 8.08
SQINV STD 12.89 5.67 48.46 96.71 0.01 0.01 0.04 0.03 0.01 0.01 1.60 0.05
SQINV RESULTS FROM (YANG ET AL., 2021) 105.14 87.21 127.66 212.30 7.81 7.16 8.80 11.20 4.99 4.57 5.73 7.77

software environments, the SQINV model and LDS+FDS model (SOTA in DIR) could not perform
as well as it is reported in DIR Yang et al. (2021), therefore for fair comparison, we use our replicated
performance rather than theirs.

B.4 ABLATION STUDY ON λ

In this section, we include ablation studies on the λ in our objective function. For λ ∈
{10.0, 1.0, 0.1, 0.01, 0.001}, we run our VIR model on the AgeDB dataset. Table 12 shows the
results. We can conclude that when λ = 0.1, our model achieves the best performance.
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Table 11: Results of running LDS+FDS for 5 different random seeds on AgeDB.

Metrics MSE ↓ MAE ↓ GM ↓
Shot All Many Med. Few All Many Med. Few All Many Med. Few

LDS+FDS 1 104.33 88.67 128.99 194.06 7.87 7.26 8.97 10.88 5.02 4.60 5.87 7.51
LDS+FDS 2 104.59 94.63 125.60 200.14 7.98 7.44 8.77 11.16 5.00 4.71 5.62 7.81
LDS+FDS 3 110.17 95.97 123.24 208.11 8.07 7.54 8.71 11.41 5.09 4.73 5.71 7.48
LDS+FDS 4 102.68 98.20 126.41 201.16 8.02 7.50 8.82 11.34 5.08 4.63 5.74 7.56
LDS+FDS 5 105.77 91.07 127.00 185.85 7.93 7.35 8.80 10.96 5.07 4.74 5.52 7.73
LDS+FDS AVG 105.51 93.71 126.25 197.86 7.97 7.42 8.81 11.15 5.05 4.68 5.69 7.62
LDS+FDS STD 6.41 11.70 3.52 55.97 0.01 0.01 0.01 0.04 0.01 0.03 0.01 0.02
LDS+FDS RESULTS FROM (YANG ET AL., 2021) 99.46 84.10 112.20 209.27 7.55 7.01 8.24 10.79 4.72 4.36 5.45 6.79

Table 12: Ablation study on λ for VIR on AgeDB-DIR

Metrics MSE ↓ MAE ↓ NLL ↓
Shot All Many Med. Few All Many Med. Few All Many Med. Few

λ = 10.0 104.31 91.01 116.43 196.35 7.88 7.38 8.42 11.13 3.827 3.733 4.140 4.407
λ = 1.0 104.10 87.28 128.26 196.12 7.83 7.21 8.81 10.89 3.848 3.738 4.041 4.356
λ = 0.1 86.28 76.87 101.57 132.90 7.19 6.75 7.97 9.19 3.785 3.694 3.963 4.151
λ = 0.01 86.86 76.58 99.95 147.82 7.12 6.69 7.72 9.59 3.887 3.797 4.007 4.401
λ = 0.001 87.25 74.13 104.78 162.64 7.13 6.64 7.92 9.63 3.980 3.868 4.161 4.546
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