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Abstract

In the predict-then-optimize framework, the objective is to train a predictive model,
mapping from environment features to parameters of an optimization problem,
which maximizes decision quality when the optimization is subsequently solved.
Recent work on decision-focused learning shows that embedding the optimization
problem in the training pipeline can improve decision quality and help generalize
better to unseen tasks compared to relying on an intermediate loss function for
evaluating prediction quality. We study the predict-then-optimize framework in the
context of sequential decision problems (formulated as MDPs) that are solved via
reinforcement learning. In particular, we are given environment features and a set
of trajectories from training MDPs, which we use to train a predictive model that
generalizes to unseen test MDPs without trajectories. Two significant computa-
tional challenges arise in applying decision-focused learning to MDPs: (i) large
state and action spaces make it infeasible for existing techniques to differentiate
through MDP problems, and (ii) the high-dimensional policy space, as parameter-
ized by a neural network, makes differentiating through a policy expensive. We
resolve the first challenge by sampling provably unbiased derivatives to approxi-
mate and differentiate through optimality conditions, and the second challenge by
using a low-rank approximation to the high-dimensional sample-based derivatives.
We implement both Bellman–based and policy gradient–based decision-focused
learning on three different MDP problems with missing parameters, and show that
decision-focused learning performs better in generalization to unseen tasks.

1 Introduction

Predict-then-optimize [5, 9] is a framework for solving optimization problems with unknown parame-
ters. Given such a problem, we first train a predictive model to predict the missing parameters from
problem features. Our objective is to maximize the resulting decision quality when the optimization
problem is subsequently solved with the predicted parameters [25, 28]. Recent work on the decision-
focused learning approach [7, 36] embeds the optimization problem [1, 3, 4] into the training pipeline
and trains the predictive model end-to-end to optimize the final decision quality. Compared with a

∗This work was done while the author was at Harvard University.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



more traditional “two-stage” approach which maximizes the predictive accuracy of the model (rather
than the final decision quality), the decision-focused learning approach can achieve a higher solution
quality and generalize better to unseen tasks.

This paper studies the predict-then-optimize framework in sequential decision problems, formulated
as Markov decision processes (MDPs), with unknown parameters. In particular, at training time, we
are given trajectories and environment features from “training MDPs.” Our goal is to learn a predictive
model which maps from environment features to missing parameters based on these trajectories that
generalizes to unseen test MDPs that have features, but not trajectories. The resulting “predicted”
training and test MDPs are solved using deep reinforcement learning (RL) algorithms, yielding
policies that are then evaluated by offline off-policy evaluation (OPE) as shown in Figure 1. This fully
offline setting is motivated by real-world applications such as wildlife conservation and tuberculosis
treatment where no simulator is available. However, such domains offer past ranger patrol trajectories
and environmental features of individual locations from conservation parks for generalization to other
unpatrolled areas. These settings differ from those considered in transfer-RL [21, 24, 29, 31] and
meta-RL [8, 10, 33, 35, 40] because we generalize across different MDPs by explicitly predicting
the mapping function from features to missing MDPs parameters, while transfer/meta RL achieve
generalization by learning hidden representation of different MDPs implicitly with trajectories.

The main contribution of this paper is to extend the decision-focused learning approach to MDPs with
unknown parameters, embedding the MDP problems in the predictive model training pipeline. To
perform this embedding, we study two common types of optimality conditions in MDPs: a Bellman-
based approach where mean-squared Bellman error is minimized, and a policy gradient-based
approach where the expected cumulative reward is maximized. We convert these optimality conditions
into their corresponding Karush–Kuhn–Tucker (KKT) conditions, where we can backpropagate
through the embedding by differentiating through the KKT conditions. However, existing techniques
from decision-focused learning and differentiating through KKT conditions do not directly apply as
the size of the KKT conditions of sequential decision problems grow linearly in the number of states
and actions, which are often combinatorial or continuous and thus become intractable.

We identify and resolve two computational challenges in applying decision-focused learning to
MDPs, that come up in both optimality conditions: (i) the large state and action spaces involved in
the optimization reformulation make differentiating through the optimality conditions intractable
and (ii) the high-dimensional policy space in MDPs, as parameterized by a neural network, makes
differentiating through a policy expensive. To resolve the first challenge, we propose to sample
an estimate of the first-order and second-order derivatives to approximate the optimality and KKT
conditions. We prove such a sampling approach is unbiased for both types of optimality conditions.
Thus, we can differentiate through the approximate KKT conditions formed by sample-based deriva-
tives. Nonetheless, the second challenge still applies—the sampled KKT conditions are expensive
to differentiate through due to the dimensionality of the policy space when model-free deep RL
methods are used. Therefore, we propose to use a low-rank approximation to further approximate the
sample-based second-order derivatives. This low-rank approximation reduces both the computation
cost and the memory usage of differentiating through KKT conditions.

We empirically test our decision-focused algorithms on three settings: a grid world with unknown
rewards, and snare-finding and Tuberculosis treatment problems where transition probabilities are
unknown. Decision-focused learning achieves better OPE performance in unseen test MDPs than two-
stage approach, and our low-rank approximations significantly scale-up decision-focused learning.

Related Work

Differentiable optimization Amos et al. [2] propose using a quadratic program as a differentiable
layer and embedding it into deep learning pipeline, and Agrawal et al. [1] extend their work to convex
programs. Decision-focused learning [7, 36] focuses on the predict-then-optimize [5, 9] framework
by embedding an optimization layer into training pipeline, where the optimization layers can be
convex [7], linear [22, 36], and non-convex [26, 34]. Unfortunately, these techniques are of limited
utility for sequential decision problems because their formulations grow linearly in the number of
states and actions and thus differentiating through them quickly becomes infeasible. Amos et al. [3]
avoid this issue by studying model-predictive control but limited to quadratic-form actions, reducing
the dimensionality. Karkus et al. [16] differentiate through an algorithm by unrolling and relaxing
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Figure 1: We consider learning a predictive model to map from features to unknown MDP parameters
and obtaining a policy by solving the predicted MDP with RL. Two-stage learning learns the
predictive model by minimizing a predictive loss function, whereas decision-focused learning is
trained end-to-end to maximize the final off-policy evaluation performance.

all the strict operators by soft operators. Futoma et al. [11] deal with large optimality conditions by
differentiating through the last step of the value-iteration algorithm only. Instead, our approach does
not rely on any MDP solver structure. We combine sampling and a low-rank approximation to form
an unbiased estimate of the optimality conditions to differentiate through, and show that the approach
of Futoma et al. [11] is included in ours as a special case.

Predict-then-optimize and offline reinforcement learning The idea of planning under a predicted
MDP arises in model-based RL as certainty equivalence [19]. It has been extended to offline
settings [17, 39], who learn a pessimistic MDP before solving for the policy. Our setting differs
because of the presence of features and train-test split—our test MDPs are completely fresh without
any trajectories. Our setting also resembles meta RL (e.g., [8, 10, 33, 35, 40]) and transfer RL (e.g.,
[21, 24, 29, 31].) Meta RL focuses on training a “meta policy” for a distribution of tasks (MDPs),
leveraging trajectories for each. Transfer RL works by extracting transferable knowledge from source
MDPs to target MDPs using trajectories. In contrast to these two paradigms, ours explicitly trains a
predictive model (which maps problem features to missing MDP parameters) to generalize knowledge
learned from the training set to the testing set using problem features, not trajectories.

2 Problem Statement

In this paper, we consider learning a predictive model to infer the missing parameters in a sequential
decision-making task (formulated as MDPs) using the predict-then-optimize framework. Each MDP
is defined by a tuple (S, s0,A, T,R) with an initial state s0, a possibly infinite state space S and
possibly infinite action space A. We assume some parameters are missing in each MDP, which
could be any portion of the transition function T and the reward function R. We denote the missing
parameters vector by θ∗. Additionally, we assume there are problem features x associated with each
MDP, where (θ∗, x) is correlated and drawn from the same unknown, but fixed, distribution2.

We are given a set of training MDPs and a set of test MDPs, each with missing parameters θ∗ and
features x. Each training MDP is accompanied by a set of trajectories T performed by a behavior
policy πbeh, consisting of a sequence of states, actions and rewards. In the test MDPs, trajectories
from the behavior policy are hidden at test time. These testing MDPs are considered fresh instances
that we have to generate a policy without using any trajectories. Thus, at training time, we learn a
predictive model mw to map from features to missing parameters; at test time, we apply the same
model to make predictions and plan accordingly without using trajectories.

Formally, our goal is to learn a predictive model mw to predict the missing parameters θ = mw(x).
The predicted parameters are used to solve the test MDPs, yielding the policy π∗(mw(x)) where our
offline off-policy evaluation (OPE) metric is maximized. This framework is illustrated in Figure 1.

2Examples of the missing parameters θ∗ include the poaching risk of different locations in wildlife conser-
vation and the transition probability of patients’ healthiness in healthcare problems, where the corresponding
problem features are terrain features of different locations and the characteristics of different patients that are
correlated to the missing parameters, respectively. These correlated features allow us to predict the missing
parameters even if we do not have any trajectories of the MDP.

3



Offline off-policy evaluation We evaluate a policy π in a fully offline setting with trajectories
T = {τi}, τi = (si1, ai1, ri1, · · · , sih, aih, rih) generated from the MDP using behavior policy πbeh.
We use an OPE metric used by Futoma et al. [11] — we evaluate a policy π and trajectories T as:

EvalT (π) := V CWPDIS(π)− λESS/
√

ESS(π) (1)

where V CWPDIS(π) :=
∑h
t=1 γ

t
∑
i ritρit(π)∑
i ρit(π)

and ESS(π) :=
∑h
t=1

(
∑
i ρit)

2∑
i ρ

2
it

, and ρit(π) is the ratio of

the proposed policy and the behavior policy likelihoods up to time t: ρit(π) :=
∏t
t′=1

π(ait′ |sit′ )
πbeh(ait′ |sit′ )

.

Optimization formulation Given a set of training features and trajectories Dtrain =
{(xi, Ti)}i∈Itrain , our goal is to learn a predictive model mw to optimize the training performance:

maxw E(x,T )∈Dtrain [EvalT (π∗(mw(x)))] (2)

The testing performance is evaluated on the unseen test set Dtest = {(xi, Ti)}i∈Itest with trajectories
hidden from training, and only used for evaluation: E(x,T )∈Dtest [EvalT (π∗(mw(x)))].

3 Two-stage Learning

To learn the predictive model mw from trajectories, the standard approach is to minimize an expected
predictive loss, which is defined by comparing the prediction θ = mw(x) with the trajectories T :

minw E(x,T )∼Dtrain L(θ, T ) where L(θ, T ) = Eτ∼T `θ(τ), θ = mw(x) (3)

For example, when the rewards are missing, the loss could be the squared error between the predicted
rewards and the actual rewards we see in the trajectories for each individual step. When the transition
probabilities are missing, the loss could be defined as the negative log-likelihood of seeing the
trajectories in the training set.

In the first stage, to train the predictive model, we run gradient descent to minimize the loss function
defined in Equation (3) and make prediction on the model parameter θ = mw(x) of each problem. In
the second stage, we solve each MDP problem with the predicted parameter θ using an RL algorithm
to generate the optimal policy π∗(θ). However, predictive loss and the final evaluation metric are
commonly misaligned especially in deep learning problems with imbalanced data [6, 14, 15, 20].
This motivates us to learn the predictive model end-to-end and therefore avoid the misalignment.

4 Decision-focused Learning

In this section, we present our main contribution, decision-focused learning in sequential decision
problems, as illustrated in Figure 1. Decision-focused learning integrates an MDP problem into the
training pipeline to directly optimize the final performance. Instead of relying on a predictive loss
to train the predictive model mw, we can directly optimize the objective in Equation (2) by running
end-to-end gradient descent to update the predictive model mw:

d Eval(π∗)
dw

=
d Eval(π∗)

dπ∗
dπ∗

dθ

dθ

dw
(4)

We assume the policy π∗(θ) is either stochastic and smooth with respect to the change in the
parameter θ, which is common in settings with continuous state or action spaces, or that an appropriate
regularization term [12, 13] is used to improve the smoothness of the policy. More discussions about
the smoothness can be found in Appendix B.1.

This gradient computation requires us to back-propagate from the final evaluation through the MDP
layer to the predictive model mw that we want to update. The major challenge in Equation (4) is to
compute dπ∗

dθ , which involves differentiating through an MDP layer solved by an RL algorithm. In
the following section, we first discuss two different optimality conditions in MDPs, which are later
used to convert into KKT conditions and differentiate through to compute dπ∗

dθ . We then discuss two
computational challenges associated with the derivative computation.
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4.1 Optimality Conditions in MDPs

When the predicted model parameter θ = mw(x) is given, the MDP can be solved by any RL
algorithm to get an optimal policy π∗. Here we discuss two common optimality conditions in MDPs,
differing by the use of policy gradient or Bellman equation:
Definition 1 (Policy gradient-based optimality condition). Defining Jθ(π) to be the expected cumu-
lative reward under policy π, the optimality condition of the optimal policy π∗ is:

π∗ = argmaxπ Jθ(π) where Jθ(π) := Eτ∼π,θ Gθ(τ) (5)

where Gθ(τ) is the discounted value of trajectory τ given parameter θ, and the expectation is taken
over the trajectories following the optimal policy and transition probability (as part of θ).
Definition 2 (Bellman-based optimality condition). Defining Jθ(π) to be the mean-squared Bellman
error3 under policy π, the optimality condition of the optimal policy π∗ (valuation function) is:

π∗ = argmin
π
Jθ(π) where Jθ(π) := Eτ∼π,θ

1

2
δ2θ(τ, π) (6)

where δθ(τ, π) =
∑

(s,a,s′)∈τ Qπ(s, a)− Rθ(s, a)− γ Ea′∼π Qπ(s′, a′) is the total Bellman error
of a trajectory τ , and each individual term δθ(τ, π) can depend on the parameter θ because the
Bellman error depends on the immediate reward Rθ, which can be a part of the MDP parameter
θ. The expectation in Equation (6) is taken over all the trajectories generated from policy π and
transition probability (as part of θ).

4.2 Backpropagating Through Optimality and KKT Conditions

To compute the derivative of the optimal policy π∗(θ) in an MDP with respect to the MDP parameter
θ, we differentiate through the KKT conditions of the corresponding optimality conditions:
Definition 3 (KKT Conditions). Given objective Jθ(π) in an MDP problem, since the policy param-
eters are unconstrained, the necessary KKT conditions can be written as: ∇πJθ(π∗) = 0.

In particular, computing the total derivative of KKT conditions gives:

0 =
d

dθ
∇πJθ(π∗)=

∂

∂θ
∇πJθ(π∗) +

∂

∂π
∇πJθ(π∗)

dπ∗

dθ
=∇θπJθ(π∗)+∇2

πJθ(π
∗)
dπ∗

dθ

=⇒ dπ∗

dθ
= −(∇2

πJθ(π
∗))−1∇2

θπJθ(π
∗) (7)

We can use Equation (7) to replace the term dπ∗

dθ in Equation (4) to compute the full gradient to
back-propagate from the final evaluation to the predictive model parameterized by w:

d Eval(π∗)
dw

= −d Eval(π∗)
dπ∗

(∇2
πJθ(π

∗))−1∇2
θπJθ(π

∗)
dθ

dw
(8)

4.3 Computational Challenges in Backward Pass

Unfortunately, although we can write down and differentiate through the KKT conditions analytically,
we cannot explicitly compute the second-order derivatives∇2

πJθ(π
∗) and∇2

θπJθ(π
∗) in Equation (8)

due to the following two challenges:

Large state and action spaces involved in optimality conditions The objectives Jθ(π∗) in Defi-
nition 1 and Definition 2 involve an expectation over all possible trajectories, which is essentially an
integral and is intractable when either the state or action space is continuous. This prevents us from
explicitly verifying optimality and writing down the two derivatives∇2

πJθ(π
∗) and∇2

θπJθ(π
∗).

High-dimensional policy space parameterized by neural networks In MDPs solved by model-
free deep RL algorithms, the policy space π ∈ Π is often parameterized by a neural network,
which has a significantly larger number of variables than standard optimization problems. This
large dimensionality makes the second-order derivative∇2

πJθ(π
∗) ∈ Rdim(π)×dim(π) intractable to

compute, store, or invert.
3We use the same notation J to denote both the expected cumulative reward and the expected Bellman error

to simplify the later analysis of decision-focused learning.
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5 Sampling Unbiased Derivative Estimates

In both policy gradient–based and Bellman–based optimality conditions, the objective is implicitly
given by an expectation over all possible trajectories, which could be infinitely large when either
state or action space is continuous. This same issue arises when expressing such an MDP as a linear
program — there are infinitely many constraints, making it intractable to differentiate through.

Inspired by the policy gradient theorem, although we cannot compute the exact gradient of the
objective, we can sample a set of trajectories τ = {s1, a1, r1, . . . , sh, ah, rh} from policy π and
model parameter θ with finite time horizon h. Denoting pθ(τ, π) to be the likelihood of seeing
trajectory τ , we can compute an unbiased derivative estimate for both optimality conditions:
Theorem 1 (Policy gradient-based unbiased derivative estimate). We follow the notation of Defini-
tion 1 and define Φθ(τ, π) =

∑h
i=1

∑h
j=i γ

jRθ(sj , aj) log π(ai|si). We have:

∇πJθ(π) = Eτ∼π,θ [∇πΦθ(τ, π)] =⇒
∇2
πJθ(π) = Eτ∼π,θ

[
∇πΦθ · ∇π log p>θ +∇2

πΦθ
]

∇2
θπJθ(π) = Eτ∼π,θ

[
∇πΦθ · ∇θ log p>θ +∇2

θπΦθ
] (9)

Theorem 2 (Bellman-based unbiased derivative estimate). We follow the notation in Definition 2 to
define Jθ(π) = 1

2 Eτ∼π,θ
[
δ2θ(τ, π)

]
. We have:

∇πJθ(π) = Eτ∼π,θ
[
δ∇πδ +

1

2
δ2∇π log pθ

]
=⇒ ∇2

πJθ(π) = Eτ∼π,θ
[
∇πδ∇πδ> +O(δ)

]
∇2
θπJθ(π)=Eτ∼π,θ

[
∇πδ∇θδ>+

(
∇πδ∇θ log p>θ +∇π log pθ∇θδ>+∇2

θπδ
)
δ +O(δ2)

]
(10)

For the latter, we apply the fact that at the near-optimal policy, the Bellman error is close to 0 and
thus each individual component δ(τ, π) is small to simplify the analysis. Refer to the appendix for
the full derivations of Equations (9) and (10).

Equations (9) and (10) provide a sampling approach to compute the second-order derivatives, avoiding
computing an expectation over the large trajectory space. We can use the optimal policy derived
in the forward pass and the predicted parameters θ to run multiple simulations to collect a set of
trajectories. These trajectories from predicted parameters can be used to compute each individual
derivative in Equations (9) and (10).

6 Resolving High-dimensional Derivatives by Low-rank Approximation

Section 5 provides sampling approaches to compute an unbiased estimate of second-order derivatives.
However, since the dimensionality of the policy space dim(π) is often large, we cannot explicitly
expand and invert∇2

πJθ(π
∗) to compute∇2

πJθ(π
∗)−1∇2

θπJθ(π
∗), which is an inevitable step toward

computing the full gradient of decision-focused learning in Equation (8). In this section, we discuss
various ways to approximate ∇2

πJθ(π
∗) and how we use low-rank approximation and Woodbury

matrix identity [37] to efficiently invert the sampled Hessian without expanding the matrices. Let
n := dim(π) and k � n to be the number of trajectories we sample to compute the derivatives.

6.1 Full Hessian Computation

In Equations (9) and (10), we can apply auto-differentiation tools to compute all individual derivatives
in the expectation. However, this works only when the dimensionality of the policy space π ∈ Π
is small because the full expressions in Equations (9) and (10) involve computing second-order
derivatives , e.g.,∇2

πΦθ in Equation (10), which is still challenging to compute and store when the
matrix size n× n is large. The computation cost is O(n2k) +O(nω) dominated by computing all
the Hessian matrices and the matrix inversion with 2 ≤ ω ≤ 2.373 the complexity order of matrix
inversion.

6.2 Approximating Hessian by Constant Identity Matrix

One naive way to approximate the Hessian∇2
πJθ(π

∗) is to simply use a constant identity matrix cI .
We choose c < 0 for the policy gradient–based optimality in Definition 1 because the optimization

6



Algorithm 1: Decision-focused Learning for MDP Problems with Missing Parameters
1 Parameter: Training set Dtrain = {(xi, Ti)}i∈Itrain , learning rate α, regularization λ = 0.1
2 Initialization: Initialize predictive model mw : X → Θ parameterized by w
3 for epoch ∈ {1, 2, . . . }, each training instance (x, T ) ∈ Dtrain do
4 Forward: Make prediction θ = mw(x). Compute two-stage loss L(θ, T ). Run model-free

RL to get an optimal policy π∗(θ) on MDP problem using parameter θ.
5 Backward: Sample a set of trajectories under θ, π∗ to compute ∇2

πJθ(π
∗),∇2

θπJθ(π
∗)

6 Gradient step: Set ∆w = d EvalT (π∗)
dw − λdL(θ,T )

dw by Equation (8) with predictive loss L as
regularization. Run gradient ascent to update model: w ← w + α∆w

7 Return: Predictive model mw.

problem is a maximization problem and thus is locally concave at the optimal solution, whose
Hessian is negative semi-definite. Similarly, we choose c > 0 for the Bellman–based optimality in
Definition 2. This approach is fast, easily invertible. Moreover, in the Bellman version, Equation (8)
is equivalent to the idea of differentiating through the final gradient of Bellman error as proposed by
Futoma et al. [11]4. However, this approach ignores the information provided by the Hessian term,
which can often lead to instability as we later show in the experiments. In this case, the computation
complexity is dominated by computing∇2

θπJθ(π
∗), which requires O(nk).

6.3 Low-rank Hessian Approximation and Application of Woodbury Matrix Identity

A compromise between the full Hessian and using a constant matrix is approximating the second-
order derivative terms in Equations (9) and (10) by constant identity matrices, while computing the
first-order derivative terms with auto-differentiation. Specifically, given a set of k sampled trajectories
{τ1, τ2, · · · , τk}, Equations (9) and (10) can be written and approximated in the following form:

∇2
πJθ(π) ≈

1

k

∑k

i=1

(
uiv
>
i +Hi

)
≈ 1

k

∑k

i=1

(
uiv
>
i + cI

)
= UV > + cI (11)

where U = [u1, u2, · · · , uk]/
√
k ∈ Rn×k, V = [v1, v2, · · · , vk]/

√
k ∈ Rn×k and ui, vi ∈ Rn

correspond to the first-order derivatives in Equations (9) and (10), andHi corresponds to the remaining
terms that involve second-order derivatives. We use a constant identity matrix to approximate Hi,
while explicitly computing the remaining parts to increase accuracy.

However, we still cannot explicitly expand UV > ∈ Rn×n since the dimensionality is too large.
Therefore, we apply Woodbury matrix identity [37] to invert Equation (11):

(∇2
πJθ(π))

−1 ≈ (UV > + cI)−1 =
1

c
I − 1

c
U(cI − V >U)−1V > (12)

where V >U ∈ Rk×k can be efficiently computed with much smaller k � n. When we compute
the full gradient for decision-focused learning in Equation (8), we can then apply matrix-vector
multiplication without expanding the full high-dimensional matrix, which results in a computation
cost of O(nk + kω) that is much smaller than the full computation cost O(n2k + nω).

The full algorithm for decision-focused learning in MDPs is illustrated in Algorithm 1.

7 Example MDP Problems with Missing Parameters

Gridworld with unknown cliffs We consider a Gridworld environment with a set of training and
test MDPs. Each MDP is a 5×5 grid with a start state located at the bottom left corner and a safe
state with reward drawn from N (5, 1) located at the top right corner. Each intermediate state has a
reward associated with it, where most of them give the agent a reward drawn from N (0, 1) but 20%
of the them are cliffs and give N (−10, 1) penalty to the agent. The agent has no prior information

4The gradient of Bellman error can be written as∇πJθ(π∗) where the policy π is the parameters of the value
function approximator and J is defined as the expected Bellman error. The derivative of the final gradient can be
written as∇w(∇πJθ(π∗)) = ∇2

θπJθ(π
∗) dθ
dw

by chain rule, which matches the last three terms in Equation 8
when the Hessian is approximated by an identity matrix.
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Table 1: OPE performances of different methods on the test MDPs averaged over 30 independent runs.
Decision-focused learning methods consistently outperform two-stage approach, with some exception
using identity matrix based Hessian approximation which may lead to high gradient variance.

Gridworld Snare Tuberculosis

Trajectories Random Near-optimal Random Near-optimal Random Near-optimal

TS −12.0±1.3 4.2±0.8 0.8±0.3 3.7±0.3 35.8±1.5 38.7±1.6
PG-Id −11.7±1.2 5.7±0.8 −0.1±0.3 3.6±0.3 38.4±1.5 40.7±1.7
Bellman-Id −9.6±1.4 4.6±0.7 0.7±0.4 3.6±0.3 39.1±1.7 40.8±1.7
PG-W −11.2±1.2 5.5±0.8 1.2±0.4 4.8±0.3 38.4±1.5 40.8±1.7
Bellman-W −11.3±1.4 4.8±0.8 1.5±0.4 4.3±0.3 38.6±1.6 41.1±1.7

about the reward of each grid cell (i.e., the reward functions of the MDPs are unknown), but has
a feature vector per grid cell correlated to the reward, and a set of historical trajectories from the
training MDPs. The agent learns a predictive model to map from the features of a grid cell to its
missing reward information, and the resulting MDP is used to plan. Since the state and action spaces
are both finite, we use tabular value-iteration [30] to solve the MDPs.

Partially observable snare-finding problems with missing transition function We consider a
set of synthetic conservation parks, each with 20 sites, that are vulnerable to poaching activities. Each
site in a conservation park starts from a safe state and has an unknown associated probability that a
poacher places a snare at each time step. Motivated by [38], we assume a ranger who can visit one
site per time step and observes whether a snare is present. If a snare is present, the ranger removes it
and receives reward 1. Otherwise, the ranger receives reward of −1. The snare can stay in the site if
the ranger does not remove it, which makes the snare-finding problem a sequential problem rather
than a multi-armed bandit problem. As the ranger receives no information about the sites that they
do not visit, the MDP belief state is the ranger’s belief about whether a snare is present. The ranger
uses the features of each site and historical trajectories to learn a predictive model of the missing
transition probability of a snare being placed. Since the belief state is continuous and the action space
is discrete, given a predictive model of the missing transition probability, the agent uses double deep
Q-learning (DDQN) [32] to solve the predicted MDPs.

Partially observable patient treatment problems with missing transition probability We con-
sider a version of the Tuberculosis Adherence Problem explored in [23]. Given that the treatment for
tuberculosis requires patients to take medications for an extended period of time, one way to improve
patient adherence is Directly Observed Therapy, in which a healthcare worker routinely checks in on
the patient to ensure that they are taking their medications. In our problem, we consider 5 synthetic
patients who have to take medication for 30 days. Each day, a healthcare worker chooses one patient
to intervene on. They observe whether that patient is adhering or not, and improve the patient’s
likelihood of adhering on that day, where we use the number of adherent patients as the reward
to the healthcare worker. Whether a patient actually adheres or not is determined by a transition
matrix that is randomly drawn from a fixed distribution inspired by [18]. The aim of the prediction
stage is to use the features associated with each patient, e.g., patient characteristics, to predict the
missing transition matrices. The aim of the RL stage is then to create an intervention strategy for the
healthcare worker such that the sum of patient adherence over the 30-day period is maximised. Due
to partial observability, we convert the problem to its continuous belief state equivalence and solve it
using DDQN.

Please refer to Appendix C for more details about problem setup in all three domains.

8 Experimental Results and Discussion

In our experiments, we compare two-stage learning (TS) with different versions of decision-focused
learning (DF) using two different optimality conditions, policy gradient (PG) and Bellman equation-
based (Bellman), and two different Hessian approximations (Identity, Woodbury) defined in Sec-
tion 6. Computing the full Hessian (as in Section 6.1) is computationally intractable. Across all three
examples, we use 7 training MDPs, 1 validation MDP, and 2 test MDPs, each with 100 trajectories.
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Figure 2: Learning curves of Gridworld problem with near-optimal trajectories. Two-stage minimizes
the predictive loss in Figure 2(a), but this does not lead to good training performance in Figure 2(b).
Figure 3(c) shows the backpropagation runtime per gradient step per instance of three Hessian
approximations, which becomes intractable when trained for multiple instances and multiple epochs.
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Figure 3: Learning curves of snare finding problems with random trajectories. Two-stage achieves
both low predictive loss in Figure 3(a) and high training OPE in Figure 3(b), but the test performance
is poor in Table 1. Figure 3(c) plots the backpropagation runtime per gradient step per instance.

The predictive model is trained on the training MDP trajectories for 100 epochs. Performance is eval-
uated under the Off-Policy Evaluation (OPE) metric of Equation (1) with respect to the withheld test
trajectories. In the following, we will discuss how DF variants work compared with TS methods, and
explore why some methods are better. We use two different trajectories, random and near-optimal,
in the training MDP to model different imbalanced information given to train the predictive model.
The results are shown in Table 1.

Decision-focused learning with the Woodbury matrix identity outperforms two-stage learning
Table 1 summarizes the average OPE performance on the test MDPs. We can see that in all of the
three problem settings, the best performances are all achieved by decision-focused learning. However,
when Hessian approximation is not sufficiently accurate, decision-focused learning can sometimes
perform even worse than two-stage (e.g., PG-Id and Bellman-Id in the snare problem). In contrast,
decision-focused methods using a more accurate low-rank approximation and Woodbury matrix
identity (i.e., PG-W and Bellman-W), as discussed in Section 6.3, dominate two-stage performance
in the test MDPs across all settings.

Low predictive loss does not imply a winning policy In Figures 2(a), 3(a), we plot the predictive
loss curve in the training MDPs over different training epochs of Gridworld and snare problems. In
particular, two-stage approach is trained to minimize such loss, but fails to win in Table 1. Indeed, low
predictive loss on the training MDPs does not always imply a high off-policy evaluation on the training
MDPs in Figure 2(b) due to the misalignment of predictive accuracy and decision quality, which is
consistent with other studies in mismatch of predictive loss and evaluation metric [6, 14, 15, 20].

Comparison between different Hessian approximations In Table 1, we notice that more inaccu-
rate Hessian approximation (identity) does not always lead to poorer performance. We hypothesize
that this is due to the non-convex off-policy evaluation objective that we are optimizing, where higher
variance might sometimes help escape local optimum more easily. The identity approximation is
more unstable across different tasks and different trajectories given. In Table 1, the performance of
Bellman-Identity and PG-Identity sometimes lead to wins over two stage and sometimes losses.
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Comparison between policy gradient and Bellman-based decision-focused learning We ob-
serve that the Bellman-based decision-focused approach consistently outperforms the policy gradient-
based approach when the trajectories are random, while the policy gradient-based decision-focused
approach mostly achieves better performance when near-optimal trajectories are present. We hy-
pothesize that this is due to the different objectives considered by different optimality conditions.
The Bellman error aims to accurately cover all the value functions, which works better on random
trajectories; the policy gradient aims to maximize the expected cumulative reward along the optimal
policy only, which works better with near-optimal trajectories that have better coverage in the optimal
regions.

Computation cost Lastly, Figures 2(c) and 3(c) show the backpropagation runtime of the policy-
gradient based optimality condition per gradient step per training instance across different Hessian
approximations and different problem sizes in the gridworld and snare finding problems. To train
the model, we run 100 epochs for every MDP in the training set, which immediately makes the full
Hessian computation intractable as it would take more than a day to complete.

Analytically, let n be the dimensionality of the policy space and k � n be the number of sampled
trajectories used to approximate the derivatives. As shown in Section 6, the computation cost of full
Hessian O(n2 + nω) is quadratic in n and strictly dominates all the others. In contrast, the costs of
the identity matrix approximation O(nk) and the Woodbury approximation O(nk + kω) are both
linear in n. The Woodbury method offers an option to get a more accurate Hessian at low additional
cost.

9 Conclusion

This paper considers learning a predictive model to address the missing parameters in sequential
decision problems. We successfully extend decision-focused learning from optimization problems to
MDP problems solved by deep reinforcement learning algorithms, where we apply sampling and
low-rank approximation to Hessian matrix computation to address the associated computational
challenges. All our results suggest that decision-focused learning can outperform two-stage approach
by directly optimizing the final evaluation metric. The idea of considering sequential decision
problems as differentiable layers also suggests a different way to solve online reinforcement learning
problems, which we reserve as a future direction.
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