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Abstract

While preference modelling is becoming one of the pillars of machine learning, the
problem of preference explanation remains challenging and underexplored. In this
paper, we propose PREF-SHAP, a Shapley value-based model explanation frame-
work for pairwise comparison data. We derive the appropriate value functions for
preference models and further extend the framework to model and explain context
specific information, such as the surface type in a tennis game. To demonstrate
the utility of PREF-SHAP, we apply our method to a variety of synthetic and
real-world datasets and show that richer and more insightful explanations can be
obtained over the baseline.

1 Introduction
Preference learning [1] is a classical problem in machine learning, where one is interested in learning
the order relations on a collection of data items. Preference learning algorithms [2–5] often assume
that there is a latent utility function f : X 7→ R dictating the outcome of preferences, where
X denotes the domain of item covariates. An explicit feedback such as item ratings or rankings
from recommender systems can be treated as noisy evaluations of f , whereas pairwise comparison
data (also known as duelling data) arising from, e.g., sports match outcomes [6, 7] can be used to
implicitly infer f , i.e. item x(ℓ) is preferred over (beats) item x(r) when f(x(ℓ)) > f(x(r)). As
shown by Kahneman and Tversky [8], humans often struggle with evaluating absolute quantities
when it comes to eliciting preferences, but are broadly capable of evaluating relative differences, a
core observation often exploited in preference learning. Motivated by such, this work will focus on
explaining preferences inferred using duelling data.

Explaining preference models is crucial when they are applied in areas such as recommendation
systems [9], finance [10], and sports science [11] for the practitioner to trust, debug and understand
the value of their findings [12]. However, despite its importance, no prior work has studied this
problem to the best of our knowledge. While one may suggest applying existing explainability tools
such as LIME [13], or SHAP [14] to a learned utility function f , we reason that this approach only
explains the utility but not the mechanism of eliciting preferences itself. We highlight the important
differences between these two viewpoints in our numerical experiments. Moreover, the utility-based
model places a strong rankability assumption on the underlying preferences, meaning that if we
define x(ℓ) ⪯ x(r) ⇐⇒ f(x(ℓ)) ≤ f(x(r)), then ⪯ is a total order on all the items. However, as
Pahikkala et al. [15] and Chau et al. [16] have discussed, there are many departures from rankability
in practice, e.g. we might easily see a preference of A over B, B over C, but C over A – conforming
to the rock-paper-scissors relation. Such inconsistent preferences are under frequent study in social

∗Equal contribution, order decided by coinflip
†Work mainly done while the authors were with the Department of Statistics, University of Oxford

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



choice theory [17, 18], and are of wider interest in both healthcare [19] and retail [20] where data are
both large and noisy.

To move beyond the rankability assumption, we will utilise the Generalised Preferential Kernel from
[16] to model the underlying preferences, and develop PREF-SHAP, a novel Shapley value [21]-based
explainability toolbox, to explain the inferred preferences. Our contributions can be summarised as
follows:

1. We propose PREF-SHAP, a novel Shapley value-based explainability algorithm, to explain
preferences based on duelling data.

2. We empirically demonstrate that PREF-SHAP gives more informative explanations com-
pared to the naive approach of applying SHAP to the inferred utility function f .

3. We release a high-performant implementation of PREF-SHAP at [22].

2 Background materials
We will first give a brief overview of preference learning and Shapley Additive Explana-
tions (SHAP) [14], which are the two core concepts of our contribution, PREF-SHAP, described in
Section 3.
Notation Scalars are denoted by lower case letters, while vectors and matrices are denoted by bold
lower case and upper case letters, respectively. Random variables are denoted by upper case letters.
X ⊆ Rd denotes the item space with d features and Y = {−1, 1} is the binary preference outcome
space3. We let k : X × X → R be a kernel function and Hk the corresponding reproducing kernel
Hilbert space (RKHS).

2.1 Preference Learning
In this section, we will introduce the two approaches to model preferences from duelling data, namely
the utility based approach and the more general approach from Chau et al. [16]. Formally, a preference
feedback is denoted as duelling, when a pair of items (x(ℓ),x(r)) ∈ X × X is given to a user, and a
binary outcome y ∈ Y telling us whether x(ℓ) or x(r) won the duel, is observed. In general, we observe

m binary preferences among n items, giving the data D =
(
y,X(ℓ),X(r)

)
=

{
(yj ,x

(ℓ)
j ,x

(r)
j )

}m

j=1
.

We also use X ∈ Rn×d to denote the full item covariate matrix.

Utility-based Preference model (UPM) The following likelihood model is often used [2–5, 7] to
model duelling feedback using a latent utility function f :

p
(
y | x(ℓ),x(r)

)
= σ

(
y
(
f
(
x(ℓ)

)
− f

(
x(r)

)))
, (1)

where σ is the logistic CDF, i.e. σ(z) = (1 + exp(−z))−1. Maximum likelihood approaches are
then deployed to learn the latent utility function f . Consequently, preferences between items can be
inferred accordingly from f = {f(xi)}ni=1, i.e. xi is on average preferred over xj if fi ≥ fj .

Albeit elegant, there are several drawbacks to this approach in modelling preferences. As mentioned,
using a one-dimensional vector f to derive preferences assumes that the items {xi}ni=1 are perfectly
rankable, i.e. there is a total ordering on X which the true preferences are consistent with. This is a
strong assumption that often does not hold in practice. For example, it is well studied that cognitive
biases often lead to inconsistent human preferences in behavioural economics [8]. Moreover, the
ranking community has also challenged this assumption by devising rankability metrics [23, 24] to
test this restrictive assumption in practice.

Generalised Preference Model (GPM) Chau et al. [16] proposed to model preference directly
using a more general g : X ×X → R that captures the preference within any pair of items, using the
likelihood

p
(
y | x(ℓ),x(r)

)
= σ

(
yg

(
x(ℓ),x(r)

))
. (2)

We note that g has to be a skew-symmetric function to ensure the natural property p(y | x(ℓ),x(r)) =
1− p(y | x(r),x(ℓ)). The utility based approach can be obtained as a special case of this model, i.e.

3Thus, we do not model ‘draws’ in match outcomes, but the model can be straightforwardly extended to
include them by specifying the appropriate likelihood function.
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by setting g(x(ℓ),x(r)) = f(x(ℓ))− f(x(r)). We propose that when one is interested in modelling
(and thus explaining) pairwise preferences, we should consider the preference function g directly
instead of explaining preferences based on a restrictive utility model f .

We follow Chau et al. [16]’s approach to model g non-parametrically using kernel methods [25].
We assume g as a function lives in the following RKHS of skew-symmetric functions: given kernel
k : X × X → R defined on the item space X , the generalised preferential kernel kE on X × X is
constructed as follows:

kE

((
x
(ℓ)
i ,x

(r)
i

)
,
(
x
(ℓ)
j ,x

(r)
j

))
= k

(
x
(ℓ)
i ,x

(ℓ)
j

)
k
(
x
(r)
i ,x

(r)
j

)
− k

(
x
(ℓ)
i ,x

(r)
j

)
k
(
x
(r)
i ,x

(ℓ)
j

)
.

This kernel allows us to model the similarity across pairs of items. Moreover, if k is a universal
kernel [26], then kE also satisfies the corresponding notion of universality, meaning that the
corresponding RKHS HkE

is rich enough to approximate any bounded continuous skew-symmetric
function arbitrarily well [16, Theorem. 1]. To infer g ∈ HkE

using likelihood (2), one simply runs
kernel logistic regression with data y as labels and

(
X(ℓ),X(r)

)
as inputs. We will refer to this

approach as the Generalised Preference Model (GPM).

We emphasize that explaining GPM allows us to specifically explain inconsistent prefer-
ences, which in contrast to explaining rank allows us to infer preferences even when transitivity is
violated. Such insights can be of great importance in broader contexts such as decision theory [27]
and utility theory [28] where transitivity does not hold.

Incorporating context variables. Besides item-level covariates x ∈ X , when there exist additional
context covariates u ∈ U ⊆ Rd′

that describe the context in which a specific pairwise comparison is
made, they can be incorporated into the kernel design as discussed in Chau et al. [16, Appendix. B].
Examples of such context covariates could be court type when a tennis match is conducted, or where
a different user compares two clothing items in e-commerce. Considering the enriched dataset

D =
{(

yj ,uj ,x
(ℓ)
j ,x

(r)
j

)}m

j=1
, we can now model the preference incorporating the context as:

p(y | u,x(ℓ),x(r)) = σ
(
gU

(
u,x(ℓ),x(r)

))
. Now, given a kernel kU defined on the context space U ,

the context-specific preference function gU : U ×X ×X → R can be learnt non-parametrically with
the following kernel,

k
(U)
E

((
ui,x

(ℓ)
i ,x

(r)
i

)
,
(
uj ,x

(ℓ)
j ,x

(r)
j

))
= kU (ui,uj) kE

((
x
(ℓ)
i ,x

(r)
i

)
,
(
x
(ℓ)
j ,x

(r)
j

))
.

We refer to this approach as the Context-specific Generalised Preference Model (C-GPM).

2.2 Shapley Additive Explanations (SHAP)
To explain preferences, we will utilise the popular SHAP (SHapley Additive exPlanations) paradigm,
which is based on the concept of Shapley values (SV). SV [21] were originally proposed as a credit
allocation scheme for a group of d players in the context of cooperative games, which are characterised
by a value function ν : [0, 1]d → R that measures utility of subsets of players. Formally, the Shapley
value for player j in game ν is defined as:

ϕj(ν) =
∑

S⊆Ω\{j}

(|S|!(d− |S| − 1)!/d!) (ν(S ∪ j)− ν(S)) , (3)

where Ω = {1, ..., d} is the set of players of the game. Given a value function ν, the Shapley values
are proven to be the only credit allocation scheme that satisfies a particular set of favourable and
fair game theoretical axioms, commonly known as efficiency, null player property, symmetry and
additivity [21]. Štrumbelj and Kononenko [29] later connect Shapley values to the field of explainable
machine learning by drawing an analogy between model fitting and cooperative game. Given a
specific data point, by considering its features as players participating in a game that measures
features’ utilities, the Shapley values obtained can be treated as local feature importance scores. Such
games are typically defined through the value functions defined below.
Definition 2.1 (Value functions). Let X be a random variable on X ⊆ Rd and f : X → R a model
from hypothesis space H. The value function ν : X × [0, 1]d ×H is given by

νx,S(f) = Er(XSc |XS=xS) [f({XS , XSc}) | XS = xS ] (4)
where r is an appropriate reference distribution, XS is the subvector of X corresponding to the feature
set S, Sc is the complement of the feature set S and {XS , XSc} = X denotes the concatenation of
XS and XSc .
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In other words, given a data point x, the utility of the feature subset S is defined as the impact
on the model prediction, after “removing” the contribution from Sc via integration with respect to
the reference distribution r. These “removal-based” strategies are common in the explainability
literature [30]. Nonetheless, the correct choice of the reference distribution has been a long-standing
debate [31]. Janzing et al. [32] argued from a causality perspective that the feature marginal dis-
tribution should be used as the reference distribution, i.e. r(XSc | XS = xS) = p(XSc) where
p is the data distribution. On the other hand, Frye et al. [33] disagreed by pointing out these
“marginal” value functions ignore feature correlations and lead to unintelligible explanations in
higher-dimensional data, and they instead advocate the use of conditional distribution as reference,
i.e. r(XSc | XS = xS) = p(XSc | XS = xS). Thus, there is no consensus and in fact, Chen et al.
[31] took a neutral stand and argued the choice depends on the application at hand. This also leads to
design of value functions for specific problems, e.g. improving local estimation [34], incorporating
causal knowledge [35, 36] and modelling structured data [37]. In this paper, we will design an
appropriate value function for preference learning and show that naive application of the existing
value function to preference learning will lead to unintuitive results.

Shapley value estimation. Given a data point x and a model f , estimating Shapley values consist
of two main steps: Firstly, for each feature subset S ⊆ Ω, estimate the value function νx,f (S) either
by Monte Carlo sampling from the reference distributions r, or by utilising a model specific structure
to speed up the estimation such as in LINEARSHAP [29], DEEPSHAP [14], TREESHAP [38],
and RKHS-SHAP [12]. The former sampling procedure is straightforward when r is the marginal
distribution, but computationally heavy and difficult when r is the conditional distribution, as it
involves estimating an exponential number of conditional densities [39]. Finally, after estimating
the value functions, one can compute the Shapley values based on Eq. 3 or by utilising the efficient
weighted least square approach proposed by Lundberg and Lee [14].

Estimating value functions when f ∈ Hk. We give a review to the recently introduced RKHS-
SHAP algorithm proposed by Chau et al. [12] as it is another core component for PREF-SHAP.
RKHS-SHAP is a SV estimation method for functions in a given RKHS. It circumvents the need for
any density estimation and utilises the arsenal of kernel mean embeddings [40] to estimate the value
functions non-parametrically. Assume k takes a product kernel structure across dimensions, then for
any f ∈ Hk, by applying the reproducing property [25], the value function can be decomposed as:

νx,S(f) =
〈
f, Er(XSc |XS=xS) [k ({XS , XSc}, ·) | XS = xS ]

〉
Hk

(5)

=
〈
f, kXS

⊗ µr(XSc |XS=xS)

〉
Hk

, (6)

where kXS
is the product of kernels belonging to the feature set S, and µr(XSc |XS=xS) :=∫

kXSc r(XSc | XS = xS)dXSc is the kernel mean embedding [40] of the reference distribu-
tion r. Depending on the choice of the reference distribution, one recovers either the standard kernel
mean embedding or the conditional mean embedding. This allows us to arrive at a closed form
expression of the value function and circumvents the need for fitting an exponential number of
conditional densities.

3 Proposed method: PREF-SHAP
In this section, we will present PREF-SHAP, a new Shapley explainability toolbox designed to
explain preferences by attributing contribution scores over item-level and context-level covariates for
our preference models. Recall the likelihood model for C-GPM from Sec. 2.1:

p
(
y | u,x(ℓ),x(r)

)
= σ

(
ygU

(
u,x(ℓ),x(r)

))
, (7)

where gU is the context-included preference function that denotes the strength of preference of item
x(ℓ) over item x(r) under context u. As there are two distinct sets of covariates present, we will
propose two different value functions to capture the influences from items and context variables
respectively, and show how they could be estimated non-parametrically using tools from the kernel
methods literature, as in RKHS-SHAP.

3.1 Preferential value function for items
To explain a general preference model g : X × X → R, we propose the following preferential value
function for items.
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Definition 3.1 (Preferential value function for items). Given a preference function g ∈ H, a pair
of items

(
x(ℓ),x(r)

)
∈ X × X to compare, we define the preferential value function for items as

ν(pI) : X × X × [0, 1]d ×H → R such that:

ν
(pI)

x(ℓ),x(r),S
(g) = Eq

[
g({X(ℓ)

S , X
(ℓ)
Sc }, {X(r)

S , X
(r)
Sc }) | X(ℓ)

S = x
(ℓ)
S , X

(r)
S = x

(r)
S

]
(8)

where expectation is taken over the reference q
(
X

(ℓ)
Sc , X

(r)
Sc | X(ℓ)

S = x
(ℓ)
S , X

(r)
S = x

(r)
S

)
.

We note that ν(pI) is also applicable to the context-specific preference models. For example, applying
ν(pI) to gu := gU (u, ·, ·) allows one to quantify the item covariate’s influences under a specific
context u, while applying ν(pI) to ḡ := Ep(U)[gU (U, ·, ·)] quantifies the average influence from each
of the item covariates instead.

Similar to standard value functions, the influence of a feature set S shared by the items x(ℓ),x(r)

is measured as the impact on the preference model after “removing” contributions from features in
Sc, via integration with respect to some reference distribution r. Similar to g, this value function
is skew-symmetric in its first two arguments, i.e. ν(pI)(x(ℓ),x(r), S, g) = −ν(pI)(x(r),x(ℓ), S, g).
This is justified, since features that “encourage” preference of x(ℓ) over x(r) should naturally be
the ones that “discourage” preference of x(r) over x(ℓ) to ensure consistency. In this paper, we
assume the items are i.i.d sampled from some distribution p, and we utilise the observational data
distribution as reference as in [33], i.e. we take r

(
X

(ℓ)
Sc , X

(r)
Sc | X(ℓ)

S = x
(ℓ)
S , X

(r)
S = x

(r)
S

)
to be

p
(
X

(ℓ)
Sc | X(ℓ)

S = x
(ℓ)
S

)
p
(
X

(r)
Sc | X(r)

S = x
(r)
S

)
. Although we decide here to use the observational

distribution as the reference, the corresponding estimation procedure follows analogously if one
instead uses the marginal distribution approach in Janzing et al. [32].

Problems with direct application of SHAP to preference model g A naive way of explaining
with SHAP a general preference model g which assumes no rankability would require concatenation
of the items’ covariates. Namely, we would set z = (x(ℓ),x(r)) ∈ R2d and then apply SHAP to the
function g(z) directly, now giving 2d Shapley values for each observed preference, i.e. two Shapley
values for each feature. Not only does this approach require us to consider a larger number of feature
coalitions during computation (squaring the original amount), but it also ignores that x(ℓ) and x(r) in
fact consist of the same features, leading to inconsistent explanations, i.e. that the same feature in
x(ℓ) and x(r) has a different influence, hence giving different explanations simply due to the ordering
of items. We illustrate these pitfalls of such a naive approach in Appendix B.

Empirical estimation of the preferential value function ν
(pI)

x(ℓ),x(r),S
(g) While the preferential

value function is general in the sense that it could be applied to any preference function g, we divert
our attention to functions in HkE

, where kE is the generalised preferential kernel introduced in
Sec 2.1. This allows us to adapt the recently introduced RKHS-SHAP to our settings, and we can
thus circumvent learning an exponential number of conditional densities as in [33]. In the following
segment, we prove the existence of the Riesz representation of the preferential value functional, a
necessary step to adapt the RKHS-SHAP framework to our setting.
Proposition 3.1 (Preferential value functional for items). Let k be a product kernel on X , i.e.
k(x(ℓ),x(r)) =

∏d
j=1 k

(j)(x(j), x′(j)). Assume k(j) are bounded for all j, then the Riesz representa-

tion of the functional ν(p)
x(ℓ),x(r),S

exists and takes the form:

ν
(p)

x(ℓ),x(r),S
=

1√
2

(
K(x(ℓ), S)⊗K(x(r), S)−K(x(r), S)⊗K(x(ℓ), S)

)
where K(x, S) = kS(·,xS)⊗ µXSc |XS=xS

and kS(·,xS) =
⊗

j∈S k(j)(·, x(j)) is the sub-product
kernel defined analogously as XS .

All proofs are included in the appendix. By representing the functionals as elements in the corre-
sponding RKHS, we can now estimate the value function non-parametrically using kernel mean
embeddings.

Proposition 3.2 (Non-parametric Estimation). Given ĝ =
∑m

j=1 αjkE((x
(ℓ)
j ,x

(r)
j ), ·), datasets

X(ℓ),X(r), test items x(ℓ),x(r), the preferential value function at test items x(ℓ),x(r) for coalition S
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Table 1: A summary of how our preference value functions can tackle different explanation tasks
Candidate Explanation of interest Value function Preference function
x(ℓ),x(r) Which item features contributed most to this duel? ν

(pI)

x(ℓ),x(r),S
g, EU [gU (U, ·, ·)]

x(ℓ) Which item features contributed most to x(ℓ)’s matches? 1
n

∑n
i=1 ν

(pI)

x(ℓ),xi,S
g, EU [gU (U, ·, ·)]

u,x(ℓ),x(r) Which context features contributed most to this duel? ν
(pU )

u,x(ℓ),x(r),S
gU

u Which context features contributed most on average? 1
m

∑m
j=1 ν

(pU )

u,x
(ℓ)
j ,x

(r)
j ,S′

gU

and preference function ĝ can be estimated as

ν̂
(pI)

x(ℓ),x(r),S
(ĝ) = α⊤

(
Γ(X

(ℓ)
S ,x

(ℓ)
S )⊙ Γ(X

(r)
S ,x

(r)
S )− Γ(X

(ℓ)
S ,x

(r)
S )⊙ Γ(X

(r)
S ,x

(ℓ)
S )

)
,

where Γ(X
(ℓ)
S ,x

(ℓ)
S ) = K

X
(ℓ)
S ,x

(ℓ)
S

⊙ K
X

(ℓ)
Sc ,XSc

K−1
XS ,λKXS ,x

(ℓ)
S

,KXS ,λ = KXS ,XS
+ nλI , α =

{αj}mj=1 and λ > 0 is a regularisation parameter.

3.2 Preferential value function for contexts
The influence an individual context feature in U has on a C-GPM function gU can be measured by
the following value function.

Proposition 3.3 (Preferential value function for contexts). Given a preference function gU ∈ HkU
E

,
denote Ω′ = {1, ..., d′}, then the utility of context features S′ ⊆ Ω′ on {u,x(ℓ),x(r)} is mea-
sured by ν

(pU )

u,x(ℓ),x(r),S′(gU ) = E[gU
(
{uS , USc},x(ℓ),x(r)

)
| US = uS ] where the expectation

is taken over the observational distribution of U . Now, given a test triplet (u,x(ℓ),x(r)), if

ĝU =
∑m

j=1 αjk
U
E

(
(uj ,x

(ℓ)
j ,x

(r)
j ), ·

)
, the non-parametric estimator is:

ν̂
(pU )

u,x(ℓ),x(r),S′(ĝU ) = α⊤
((

KUS′ ,uS′ ⊙KUS′c ,US′c

(
KUS′ ,US′ +mλ′I

)−1
KUS′ ,uS′

)
⊙ Ξx(ℓ),x(r)

)
where Ξx(ℓ),x(r) =

(
KX(ℓ),x(ℓ) ⊙KX(r),x(r) −KX(r),x(ℓ) ⊙KX(ℓ),x(r)

)
.

Analogously, the average influence of a specific context feature can be computed by taking an average
over all pairs of matches, i.e. by using a modified value function 1

m

∑m
j=1 ν

(pU )

u,x
(ℓ)
j ,x

(r)
j ,S′

(ĝU ). We

summarise different ways to modify the proposed preferential value functions to interrogate the
preference models in Table 1.

Computational complexity of PREF-SHAP When computing GPM, it is fundamentally a
kernel ridge regression (KRR), which naïvely has complexity O(n3). There exists a multitude
of approximation techniques for KRR, the most common type being the Nyström approximation
[41]. For all our experiments, we use FALKON [42], a large-scale library for solving kernel
logistic regression using preconditioned conjugate gradient descent and Nyström approximations.
FALKON has a computational complexity of O(n

√
n), which effectively becomes the complexity

for GPM when using FALKON. As the value function for GPM requires estimating conditional
mean embeddings, which in turn also are KRR’s, one can appeal to FALKON again to reduce
complexity to O(n

√
n). We summarize the procedure of PREF-SHAP in Algorithm 1. We further

detail computational details pertaining to computing coalitions S and batched conjugate gradient
descent (BatchedCGD) in Appendix A.

4 Experiments
The main focus of our experiments is to illustrate the difference between explaining GPM (PREF-
SHAP) and applying SHAP to UPM, thus highlighting the difference in explaining the mechanism
of eliciting preferences and explaining the utility. When we explain UPM, we first explain how items
x(ℓ),x(r) affect their utilities f(x(ℓ)), f(x(r)). Explaining the utility corresponds to calculating the
value functions of the utilities νx(ℓ),S(f) and νx(r),S(f). By linearity of SHAP values [14] and the
simple structure relating preference and utilities in UPM, we can explain UPM by subtracting the
Shapley values of x(ℓ) with x(r). However, this type of explanation is only correct when data is
rankable, which seldom happens in practice, thus motivating PREF-SHAP.
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Algorithm 1 PREF-SHAP

Input: Solution α, datasets X(ℓ),X(r),X,U, test items x(ℓ),x(r),u, batch size nb, number of
coalition samples nS , context-specific flag cflg

1: Compute effective dimension deff := Number of features with variance greater than 0.
2: Compute coalitions S = {S1, . . . , SnS

}, form binary matrix Z ∈ {0, 1}nS ,deff from S, and
compute weights W = [w1, . . . , wnS

] with wi =
d−1

( d
|Si|)|Si|(d−|Si|)

.

3: for batch Sb in S do
4: if cflg Take S, Sc of X(ℓ),X(r),X,x(ℓ),x(r) else Take S′, S′c of U,u

5: if cflg Compute K−1
XS ,λ[KXS ,x

(ℓ)
S

,K
XS ,x

(r)
S

] else
(
KUS′ ,US′ +mλ′I

)−1
KUS′ ,uS′ using

BatchedCGD
6: if cflg Compute ν̂

(p)

x(ℓ),x(r),Sb
(ĝ) else ν̂u,x(ℓ),x(r),S′

b
(ĝU )

7: end for
8: if cflg Set vx = {ν̂(p)

x(ℓ),x(r),Sb
(ĝ)}Bb=1 else vx = {ν̂u,x(ℓ),x(r),S′

b
(ĝU )}Bb=1

9: Calculate Shapley values βx =
(
Z⊤WZ

)−1
Z⊤Wvx

10: return βx

We apply PREF-SHAP to unrankable synthetic and real-world datasets to connect theory with
practice. We split data, i.e. matches with their outcomes, into train (80%), validation (10%), and
test (10%) and explain the model on a random subset of the data. The hyperparameters for the
kernels are selected using gradient descent, based on the proposed method in [43]. We first generate
synthetic duelling data where performance can be compared against ground truth, to demonstrate that
PREF-SHAP is capable of identifying the relevant features.

Synthetic data We first consider a synthetic experiment with unrankable duelling data. We generate
the items by first sampling 1000 item covariates [x[0]

i , xAB
i , xAC

i , xBC
i ] =: pi ∈ R4 ∼ N (0, I4). We

associate each item with a cluster membership ci ∈ {A,B,C}, where the assignment is randomly
chosen for each item with equal probability. We then form the full item covariate by concatenating
pi with one-hot encoded ci as xi = [pi, one_hot(ci)]. 40000 matches between randomly chosen
pairs of items are conducted by the following mechanism: match outcomes are decided based on
the underlying cluster membership of the items. For example, if an item from cluster A competes
against an item from cluster B, the winner is decided by their inter-cluster covariate xAB , i.e. i ⪯ j if
xAB
j ≥ xAB

i . When the match is between members of the same cluster, it is dictated by the maximum

among the within-cluster variable, i.e. max(x
[0]
i , x

[0]
j ). See Fig. 1 for an illustration. As no clusters

have any advantage over the others, the data is not rankable, and we expect the inter-cluster covariates
xAB , xAC , xBC to have similar explanations on average, but significantly different from each other
when we examine local explanations.

A

B

C

A

B

C

Figure 1: An illus-
tration of our sim-
ulation: each edge
corresponds to the
variable that dic-
tates the comparison
based on the colour.

We consider both global and grouped-local explanations of the synthetic
dataset in Figure 2 and Figure 3 respectively. In the global explanations, we
explain all matches regardless of the cluster membership, while in the grouped-
local explanations we only explain matches between items from A against
items from B. For more grouped-local explanations on different cluster pairs,
we refer to appendix B.

Interpreting the simulation explanations. The beehive plots showcase the
recovered PREF-SHAP values, where the bar plots demonstrated the average
PREF-SHAP values for each feature. The colour in the beehive plots indicates
the magnitude of the difference between the corresponding features of the
winner and of the loser in that match. For example, a red point in a beehive
plot for feature d indicates that the difference x

(d)
winner − x

(d)
loser is large.

Fig. 2 illustrates the explanation results for the global synthetic experiments.
We see that PREF-SHAP identified the within-cluster variable x[0] as the
most important, which is a consequence of the fact that the largest number
of matches are played between the items of the same cluster (cf. Fig. 1
where there are three blue lines and two lines of each of the other colours). The three inter-cluster
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Table 2: Dataset summary
Dataset NMatches Nitems NContext Dcontinuous Dbinary DContext

continuous DContext
binary

Synthetic 40000 1000 - 4 3 - -
Chameleon 106 35 - 7 19 - -
Pokémon 60000 800 - 7 0 - -

Tennis 95359 3483 4114 (tournaments) 4 7 0 6

variables contributed similarly according to PREF-SHAP, which, by symmetry, should be the case.
Furthermore, the correct battle mechanism is captured by PREF-SHAP but not UPM, as we see that
the large PREF-SHAP values for each feature are red in the beehive plot. This indicates that items
with larger value are more likely to win against items with lower value in the corresponding features.
In contrast, SHAP for UPM does not recover this insight.

The explanations for the matches between items from A against items from B, are shown in Fig 3.
Here, xAB is correctly picked as the relevant feature in these matches with PREF-SHAP, but not
with SHAP for UPM. We see again that there is a clear tendency that large PREF-SHAP values are
red for feature xAB , showing that PREF-SHAP once again captures the designed gaming mechanism
– which is not the case in SHAP for UPM. Intuitively, even though SHAP for UPM allows local
explanations, it does so based on a global utility, which fails completely in a non-rankable case.

PREF-SHAP SHAP for UPM PREF-SHAP SHAP for UPM

Figure 2: Bar and Beehive plots for global explanations on the synthetic dataset.

PREF-SHAP SHAP for UPM PREF-SHAP SHAP for UPM

Figure 3: Bar and Beehive plots for grouped local explanations on the synthetic dataset (Cluster A vs B).

Real-world explanations For our real-world datasets, we consider publicly available datasets
Chameleon, Pokémon and Tennis. We provide descriptive statistics of these datasets in Table 5
and give their brief descriptions below. Appendix B contains further large scale experiments on an
additional dataset consisting of user-item interactions on a fashion retail website.

The Chameleon dataset [44] considers 106 contests between 35 male dwarf chameleons. Physical
traits of the chameleons are measured such as the height of their casque, length of their jaw, body
mass etc. According to [44], they fitted a linear Bradley Terry model and examined the coefficients
to deduce that casque height (ch.res) and relative area of the flank patch (prop.patch) positively
affected the fighting ability the most. The Pokémon dataset considers 60000 Pokémon battles among
800 Pokémon. Pokémon have different characteristics such as attack power, speed, health etc. The
Pokémon further has at least one different type such as Electric, Water, Fire, etc. Certain types have
advantages and disadvantages against each other, for instance, fire Pokémon are weak to water-based
attacks (receiving twice the damage) and as a result have a disadvantage against water Pokémon.

The Tennis dataset considers professional tennis matches between 1991 and 2017 in all major
tournaments each year. The data is provided publicly by ATP World Tour [45]. Features such as
birthyear, weight, height etc are included about each tennis player together with context details of the
match such as the court being indoor or outdoor and what surface the match is being played on.

The above datasets are not rankable, and we validate this claim by comparing GPM performance
against UPM in Table 4, together with the estimated rankability measure SpecR proposed in [23] for
each dataset. SpecR measures the similarity of the data to a complete dominance graph (i.e. rankable
data). It takes values between 0 and 1 with values close to 1 being evidence in support of rankability.
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Table 3: GPM vs UPM. Mean and standard deviations of performance averaged over 5 runs.
Synthetic Chameleon Pokémon Tennis

GPM UPM GPM UPM GPM UPM C-GPM UPM
Test AUC 0.98±0.00 0.71±0.01 0.92±0.07 0.80±0.07 0.86±0.00 0.82±0.00 0.58±0.02 0.52±0.02

SpecR 0.09 0.24 0.20 0.13±0.07

For the Tennis data where there are additional relationships with the context (tournaments), we
estimate the average SpecR of each tournament. Both the superior performance of GPM over UPM
and the low SpecR measures suggest that the datasets are generally not rankable, which points to
limitations of explaining preferences via utility-based modeling.

Explaining Pokémon battles. We first consider standard dueling data for explaining preferences.
We explain the learned preferences and learned differences in utilities on the Pokémon dataset in
Figure 4. In this dataset, we have summed the Shapley values for Type features.

PREF-SHAP SHAP for UPM PREF-SHAP SHAP for UPM

Figure 4: Bar and Beehive plots for the Pokémon dataset. PREF-SHAP captures that both speed and type
matter, while SHAP for UPM only captures the type importance.

Figure 5: Explaining matches
between 4 types of Pokémon,
among them only fire and
water has a type disadvan-
tage/advantage against each other.
PREF-SHAP (top) correctly
identifies that fire and water are
the most important, while water
and fire are not deemed most
important by SHAP for UPM.

We see that explaining general preferences provides further insight
than just explaining the difference in utility functions. In particular,
SHAP for UPM does not capture the additional importance of Speed
in winning battles. As higher (more red) values of differences in
speed xspeed

winner − xspeed
loser have positive impact on the outcome, we con-

clude that having higher speed than your opponent is advantageous
besides a type advantage. This insight is aligned with the “Sweeper”
strategy [46], where one would employ a leading Pokémon with very
high speed and attack to attempt downing the opponent before they
can strike back. In Fig. 5, we see PREF-SHAP can also capture the
correct type advantage/disadvantages among the Pokémon, but not
SHAP for UPM.

Explaining Chameleon contests. We find that UPM’s explana-
tions are more aligned with [44]’s findings (prop.path and ch.res are
the most important features), which is unsurprising since the Bradley
Terry model used in [44] is also a utility based model. However,
since GPM gives a much better predictive performance than UPM
(Test AUC 0.92 v.s. 0.80), we believe PREF-SHAP’s explanations
are also insightful. In fact, PREF-SHAP discovers that having larger
jaw sizes (jl.res) than your opponent have a significant negative ef-
fect on match outcome, a previously undiscovered mechanism from [44]. We verify this finding in
Appendix B by applying PREF-SHAP to GPM trained on multiple folds of the Chameleon dataset
and consistently find that high values of the jaw size (jl.res) variable have a negative impact on the
outcome.

PREF-SHAP SHAP for UPM PREF-SHAP SHAP for UPM

Figure 6: Bar and Beehive plots for the Chameleon dataset

Explaining Tennis matches. We now consider preference learning with context covariates and
explain both item characteristics and context covariates in Figure 7. In terms of item-based inference,
PREF-SHAP finds that being older than your opponent (xyob

winner − xyob
loser < 0 → Blue), physically
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heavier, and taller than your opponent positively impacts the chances of winning. We also find that
debuting earlier as a professional tennis player than your opponent positively impacts your chances
of winning. This is not surprising as debuting earlier may be indicative of a promising young talent.
Across all competitions, there appear to be no significant patterns in environment effects.

Tennis players Environment Tennis players Environment

Figure 7: Item and context-specific Pref-SHAP values for the Tennis dataset

Explaining Djokovic’s losses In plot Figure 8, we locally explain all Novak Djokovic’s losses in
his professional career. Novak Djokovic is regarded as one of the greatest tennis players of all time,
so understanding his weakness could serve as a practical demonstration of the utility of PREF-SHAP.

Djokovic Environment Djokovic Environment

Figure 8: Local explanations of Djokovic losses

While the results take a similar shape to the global explanations, Djokovic remarkably seems to be
weaker to players shorter than him, contrary to the general advantage of being taller. Besides this,
Djokovic seems to be weaker on clay courts and when playing indoors.

5 Conclusion
In this work, we proposed PREF-SHAP to explain preference learning for pairwise comparison
data. We proposed the appropriate value function for preference explanations and demonstrated the
pathologies of the naive concatenation approach in Appendix B. Experiments demonstrated that
PREF-SHAP recovers richer explanations than utility-based approaches, showcasing the ability of
PREF-SHAP in interpreting the mechanism of preference elicitation.
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