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Abstract

Conventional supervised learning methods, especially deep ones, are found to
be sensitive to out-of-distribution (OOD) examples, largely because the learned
representation mixes the semantic factor with the variation factor due to their
domain-specific correlation, while only the semantic factor causes the output. To
address the problem, we propose a Causal Semantic Generative model (CSG) based
on a causal reasoning so that the two factors are modeled separately, and develop
methods for OOD prediction from a single training domain, which is common
and challenging. The methods are based on the causal invariance principle, with a
novel design in variational Bayes for both efficient learning and easy prediction.
Theoretically, we prove that under certain conditions, CSG can identify the seman-
tic factor by fitting training data, and this semantic-identification guarantees the
boundedness of OOD generalization error and the success of adaptation. Empirical
study shows improved OOD performance over prevailing baselines.

1 Introduction
Deep learning has initiated a new era of artificial intelligence where the potential of machine learning
models is greatly unleashed. Despite the great success, these methods heavily rely on the assumption
that data from training and test domains follow the same distribution (i.e., the IID assumption),
while in practice the test domain is often out-of-distribution (OOD), meaning that the test data
distribute differently from the training data. Popular models for predicting the output (or label,
response, outcome) y from the input (or covariate) x have been found erroneous when confronted
with a distribution change, even from an essentially irrelevant perturbation like a position shift or
background change for images [91, 6, 102, 41, 2, 27]. These phenomena pose serious concerns on
the robustness and trustworthiness of machine learning methods and severely impede them from
risk-sensitive scenarios.

Looking into the problem, although deep learning models allow extracting abstract representation
for prediction with their powerful approximation capacity, the representation may unconsciously
mix up semantic factors s (e.g., shape of an object) and variation factors v (e.g., background, object
position) due to a correlation between them (e.g., desks often appear in a workspace background
and beds in bedrooms), so the model also relies on the variation factors v for prediction via this
correlation. However, this correlation tends to be superficial and spurious (e.g., a desk can also appear
in a bedroom, but this does not make it a bed), and may change drastically in a new domain, making
the effect from v misleading. So it is desired to learn a representation that identifies s against v.

Formally, the essence of this goal is to leverage causal relations for prediction, since the fundamental
distinction between s and v is that only s is the cause of y. Causal relations better reflect basic
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mechanisms of nature. They bring the merit to machine learning that they tend to be universal and
invariant across domains [97, 87, 93, 77, 16, 96, 98], thus provide the most transferable and reliable
information to unseen domains. This causal invariance has been shown to lead to proper domain
adaptation [97, 123], lower adaptation cost and lighter catastrophic forgetting [87, 9, 56].

In this work, we propose a Causal Semantic Generative model (CSG) following a causal consideration
to separately model the semantic (cause of prediction) and variation latent factors, and develop OOD
prediction methods with theoretical guarantees on identifiability and the boundedness of OOD
prediction error. Addressing the complaint that OOD prediction and causality methods often require
multi-domain or intervention data, we focus on the most common and also challenging tasks where
only one single training domain is available, including OOD generalization and domain adaptation,
where in the latter, unsupervised test-domain data are additionally available for training. The
methods and theory are based on the causal invariance principle, which suggests to share generative
mechanisms across domains, while the latent factor distribution (i.e., the prior p(s, v)) changes. We
argue that this causal invariance is more reliable than inference invariance in the other direction
adopted by many existing methods [33, 101, 2, 66, 79]. For our method, we design novel and delicate
reformulations of the ELBO objective so that we avoid the cost to build and learn two inference
models. Theoretically, we prove that under certain conditions, CSG can identify the semantic factor
on the single training domain, even in presence of an s-v correlation. We further prove the merits from
this identification: prediction error is bounded for OOD generalization, and for domain adaptation, the
test-domain prior is identifiable which leads to an accurate prediction. To sum up our contributions,
• Up to our knowledge, we are the first to show a theoretical guarantee (under appropriate

conditions) to identify the latent cause of prediction (i.e., the semantic factor) on a single training
domain, and also the first to show the theoretical benefits of this identification for OOD prediction.
The results also contribute to generative representation learning for revealing what is learned.
• We develop effective methods for OOD generalization and domain adaptation, and achieve

mostly better performance than prevailing methods on real-world image classification tasks.

2 Related Work
OOD generalization with causality. There are trials that ameliorate discriminative models towards
a causal behavior. Bahadori et al. [4] introduce a regularizer that reweights input dimensions based
on their approximated causal effects to the output, and Shen et al. [102] reweight training samples
by amortizing causal effects among input samples. Their linear input-output assumption is then
extended [4, 41] by learning a representation. Some recent works require identity data (finer than
label) and enforce inference invariance via variance minimization [42], or leverage a strong domain
knowledge to augment images as an independent intervention on variation factors [79]. These
methods introduce no additional generative modeling efforts, at the cost of limited capacity for
invariant causal mechanisms.

Domain adaptation/generalization with causality. There are methods developed under various
causal assumptions [97, 123] or using learned causal relations [93, 77]. Zhang et al. [123], Gong
et al. [35, 36] also consider certain ways of mechanism change. The considered causality is among
directly observed variables, which may not well suit general data like image pixels where causality
rather lies in the conceptual latent level [75, 10, 59].

To consider latent factors, there are domain adaptation [83, 5, 33, 73, 74] and generalization meth-
ods [80, 101, 113] that learn a representation with a domain-invariant marginal distribution. Remark-
able results have been achieved. Nevertheless, it is found that this invariance is neither sufficient nor
necessary to identify the true semantics or lower the adaptation error ([54, 125]; see also Appx. E).
Moreover, these methods are based on inference invariance, which may not be as reliable as causal
invariance (see Sec. 3.2).

There are also generative methods for domain adaptation/generalization that model latent factors.
Cai et al. [18] and Ilse et al. [49] introduce a semantic factor and a domain-feature factor. They
assume the two latent factors are independent in both generative and inference models, which is
unrealistic. Correlated factors are then considered [3]. But all these works do not adapt the prior for
domain change thus resort to inference invariance. Zhang et al. [121] consider a partially observed
manipulation variable, while still assuming its independence from the output in both the joint and
posterior, and the adaptation is inconsistent with causal invariance. The above methods also do not
show guarantees to identify their latent factors. Teshima et al. [108] leverage causal invariance and
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(a) CSG (b) CSG-ind (c) CSG-DA

Figure 1: (a) Graphical structure of the proposed CSG. Solid arrows represent causal mechanisms
p(x|s, v) and p(y|s), the undirected s-v clique represents a domain-specific prior p(s, v), and the
dashed bended arrows represent the inference model q(s, v|x) for learning. (b, c) Graphical struc-
tures of CSG-ind and CSG-DA for prediction on the test domain. An independent prior p⊥⊥(s, v)
(constructed from p(s, v)) and a new prior p̃(s, v) (the dotted s-v clique) are introduced reflecting
the intervention on the test domain. Respective inference models q⊥⊥(s, v|x) and q̃(s, v|x) are also
shown. All three models share the same causal mechanisms p(x|s, v) and p(y|s).

adapt the prior, yet also assume latent independence and do not separate the semantic factor. They
require some supervised test-domain data, and their deterministic and invertible mechanism also
indicates inference invariance. In addition, most domain generalization methods require multiple
training domains, with exceptions [89] that still seek to augment domains. In contrast, CSG leverages
causal invariance, and has guarantee to identify the semantic factor from a single training domain,
even with a correlation to the variation factor.

Disentangled latent representations is also of interest in unsupervised learning. Despite em-
pirical success [22, 43, 21], Locatello et al. [70] conclude that it is impossible to guarantee the
disentanglement in unsupervised settings. Subsequent works then introduce ways of supervision like
a few latent variable observations [71] or sample similarity [20, 72, 104]. Identifiable VAE [57] and
extensions [58, 117] leverage the data of a cause variable of the latent variables and have established
theoretical guarantees under a diversity condition. But the works do not depict domain change thus
not suitable for OOD prediction. Instead of disentangling latent factors, we focus on identifying the
semantic factor s (Sec. 5.1) and its benefit for OOD prediction. Appx. D shows more related work.

3 The Causal Semantic Generative Model
To develop the model soberly based on causality, we require its formal definition: two variables
have a causal relation, denoted as “cause→ effect”, if intervening the cause (by changing external
variables out of the considered system) may change the effect, but not vice versa [85, 88]. We follow
this definition to build our model (Fig. 1a) by analyzing the example that an photographer takes a
photo in a scene as x and labels it as y. Appx. C provides more explanations under other perspectives.

(1) It is likely that neither y → x (e.g., intervening the label with noise by distracting the photographer
does not change the image) nor x→ y holds (e.g., intervening an image by breaking a camera sensor
unit does not change how the photographer labels it), as also argued in [88, Sec. 1.4; 59]. So we
introduce a latent variable z to capture factors with causal relations. Also for this reason, we need a
generative model (vs. discriminative model that only learns x→ y).

(2) The latent variable z as underlying generating factors (e.g., object shape and texture, background
and illumination during imaging) is plausible to cause both x (e.g., changing object shape or back-
ground makes a different image, but breaking the camera does not change the shape or background)
and y (e.g., the photographer would give a different label if the object shape had been different, but
noise-corrupting the label does not change the shape). So we orient the edges in the generative direc-
tion z → (x, y), as also adopted in [78, 88, 108]. This is in contrast to prior works [18, 49, 48, 19]
that treat y as the cause of a semantic factor, which, when y is also a noisy observation, makes
unreasonable implications (e.g., adding noise to the labels in a dataset automatically changes object
features and consequently the images, and changing the object features does not change the label).
This difference is also discussed in [88, Sec. 1.4; 59].

(3) We attribute all x-y relation to the existence of some latent factor [68, “purely common cause”;
51] and exclude x-y edges. This can be achieved as long as z holds sufficient information of data
(e.g., with shape, background etc. fixed, breaking the camera does not change the label, and noise-
corrupting the label does not change the image). Promoting this structure reduces arbitrariness in
explaining x-y relation thus helps identify (part of) z. This is in contrast to prior works [63, 121, 19]
that treat y as a cause of x as no latent variable is introduced between.
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(4) Not all latent factors are the causes of y (e.g., changing the shape may alter the label, while
changing the background does not). We thus split the latent variable as z = (s, v) and remove the
v → y edge, where s represents the semantic factor that causes y, and v describes the variation or
diversity in generating x. This formalizes the intuition on the concepts in Introduction (Sec. 1).

(5) The two factors s and v often have a relation (e.g., a desk/bed shape tends to appear with a
workspace/bedroom background), but it is usually a spurious correlation (e.g., putting a desk in a
bedroom does not automatically change the room as a workspace, nor does it turn the desk into a
bed). So we keep the undirected s-v edge. This is in contrast to prior works [18, 49, 121, 108, 79]
which assume independent latent variables. Although v is not a cause of y, modeling it explicitly
is worth the effort since otherwise it would still be implicitly mixed into s anyway through the s-v
correlation. We summarize these conclusions in the following definition.
Definition 1 (CSG). A Causal Semantic Generative Model (CSG), p := 〈p(s, v), p(x|s, v), p(y|s)〉,
is a generative model on data variables x ∈ X ⊆ RdX and y ∈ Y with semantic s ∈ S ⊆ RdS and
variation v ∈ V ⊆ RdV latent variables, following the graphical structure shown in Fig. 1a.

3.1 The Causal Invariance Principle

Through the above process, we see that the s-v correlation embodied in the prior p(s, v) tends to
change across domains. Under a causal view, this means that the domain change comes from a
(soft) intervention on s or v or both, leading to a different prior. On the other hand, the generative
processes are likely causal mechanisms, so they enjoy the celebrated Independent Causal Mechanisms
principle [88, 98] indicating that they are unaffected under the intervention on prior. This leads to the
following causal invariance principle for CSG.
Principle 2 (causal invariance). The causal generative mechanisms p(x|s, v) and p(y|s) in CSG are
invariant across domains, and the change of prior p(s, v) is the only source of domain change.

This invariance reflects the universality of basic laws of nature and is considered in some prior
works [97, 88, 10, 16]. Other works instead introduce domain index [18, 49, 48, 19] or manipulation
variables [121, 57, 58] to model distribution change explicitly. They then require multiple training
domains or additional observations, while such changes can also be explained under causal invariance
as long as the latent variables include all changing factors.

3.2 Comparison with Inference Invariance

Figure 2: Examples of noisy (left)
or degenerate (right) generating mech-
anisms that lead to ambiguity in in-
ference. Left: handwritten digit that
may be generated as either “3” or “5”.
Right: Schröder’s stairs that may be
generated with either A or B being
the nearer surface. Inference results
notably rely on the prior on the dig-
its/surfaces, which is domain-specific.

Most domain adaptation and generalization methods (incl.
domain-invariant-representation based [33, 101], invariant-
latent-predictor based [2, 66, 79]) use a shared representation
extractor across domains. This effectively assumes the in-
variance in the other direction, i.e. inferring latent factors z
from observed data x. We note in its supportive examples
(e.g., inferring object position from image, extracting the
fundamental frequency from audio), the causal mechanism
p(x|z) is nearly deterministic and invertible such that it pre-
serves the information of z. Formally, for a given x, only
one single z value achieves a positive p(x|z) while all other
values lead to zero. The inferred representation given by
the posterior via the Bayes rule p(z|x) ∝ p(z)p(x|z) then
concentrates on this z value, which is determined by the causal mechanism p(x|z) alone, regardless
of the domain-specific prior p(z). Causal invariance then implies inference invariance.

In more general cases, the causal mechanism may be noisy or degenerate (Fig. 2), such that there
are multiple z values that give a positive p(x|z), i.e. they all could generate the same x. Inference
is then ambiguous, and the posterior relies on the prior to choose from these z values. Since the
prior changes across domains (e.g., different labelers have different mindset), the inference rule then
changes by nature and is not invariant,3 while the causal invariance is rather more fundamental and
reliable. To leverage causal invariance, we use a different prior for the test domain (CSG-ind and
CSG-DA), which gives a different and more reliable prediction than following inference invariance.

3Particularly, although Mitrovic et al. [79] consider a similar causal structure and promote the invariance
of p(y|s), s actually depends on v for a given x, even when they are independent in the prior. So p(s|x) must
depend on the domain-specific p(v), and a domain-invariant representation extractor does not exist.
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4 Method
We now develop methods based on variational Bayes [55, 62] for OOD generalization and domain
adaptation using CSG. Appx. F.1 shows all details.

4.1 Method for OOD Generalization

For OOD generalization, one only has supervised data from the underlying data distribution
p∗(x, y) on the training domain. Fitting a CSG p := 〈p(s, v), p(x|s, v), p(y|s)〉 to data by max-
imizing likelihood Ep∗(x,y)[log p(x, y)] is intractable, since p(x, y) :=

∫
p(s, v, x, y) dsdv where

p(s, v, x, y) := p(s, v)p(x|s, v)p(y|s), is hard to estimate. The Evidence Lower BOund (ELBO)
Lp, qs,v|x,y (x, y) := Eq(s,v|x,y)[log p(s,v,x,y)

q(s,v|x,y) ] [55, 112] is a tractable surrogate with the help of an
inference model q(s, v|x, y) that enjoys easy sampling and density evaluation. It is known that
maxqs,v|x,y Lp, qs,v|x,y (x, y) drives q(s, v|x, y) towards the posterior p(s, v|x, y) := p(s,v,x,y)

p(x,y) , mean-
while makes Lp, qs,v|x,y (x, y) a tighter lower bound of log p(x, y) for optimizing CSG p.

However, the subtlety with supervised learning is that prediction is still hard, as the introduced model
q(s, v|x, y) does not help estimate p(y|x). To address this, we propose to employ an auxiliary model
q(s, v, y|x) targeting p(s, v, y|x). It allows easy sampling of y given x for prediction, and can also
serve as the required inference model: q(s, v|x, y) = q(s,v,y|x)

q(y|x) , where q(y|x) :=
∫
q(s, v, y|x) dsdv

is also determined by q(s, v, y|x). The ELBO objective Ep∗(x,y)[Lp, qs,v|x,y (x, y)] then becomes:

Ep∗(x)Ep∗(y|x)[log q(y|x)] + Ep∗(x)Eq(s,v,y|x)

[p∗(y|x)

q(y|x)
log

p(s, v, x, y)

q(s, v, y|x)

]
. (1)

As a functional of q(s, v, y|x) (instead of q(s, v|x, y)) and the CSG p, this objective also drives
them towards their targets: the first term is the negative of the standard cross entropy (CE) loss
which drives q(y|x) towards p∗(y|x), and once this is achieved, the second term becomes the
expected ELBO Ep∗(x)[Lp, qs,v,y|x(x)] that drives q(s, v, y|x) towards p(s, v, y|x) and p(x) towards
p∗(x). Furthermore, as the target of q(s, v, y|x) factorizes as p(s, v, y|x) = p(s, v|x)p(y|s) (due to
Fig. 1a) where p(y|s) is already known (part of the CSG), we can instead employ a lighter inference
model q(s, v|x) for the minimally intractable component p(s, v|x) therein, and use q(s, v|x)p(y|s)
as q(s, v, y|x). This turns the objective Eq. (1) to:

max
p, qs,v|x

Ep∗(x,y)

[
log q(y|x) +

1

q(y|x)
Eq(s,v|x)

[
p(y|s) log

p(s, v)p(x|s, v)

q(s, v|x)

]]
, (2)

where q(y|x) := Eq(s,v|x)[p(y|s)]. The expectations can be estimated by Monte Carlo after applying
the reparameterization trick [62]. This is the basic CSG method.

CSG-ind To actively improve OOD generalization performance, we consider using an independent
prior p⊥⊥(s, v) := p(s)p(v) for prediction in the test domain (Fig. 1b), where p(s) and p(v) are the
marginals of the training-domain prior p(s, v). Intuitively, p⊥⊥(s, v) discards the spurious correlation
between s and v on the training domain (e.g., the “desk-workspace”, “bed-bedroom” association),
and promotes a cautious neutral belief on the unknown test-domain correlation in defence against
all possibilities (e.g., a “desk-bedroom”, “bed-workspace” association). Formally, p⊥⊥(s, v) has
a larger entropy than p(s, v) [24, Thm. 2.6.6], so it reduces training-domain-specific information
and encourages reliance on the causal mechanisms for better generalization. It also amounts to
applying the do-operator [85] to Fig. 1a, representing a randomized experiment by independently
soft-intervening s or v. In this way, causal invariance is properly leveraged, making a different and
more reliable prediction than following inference invariance. Our theory below also shows that
p⊥⊥(s, v) leads to a smaller generalization error bound (Thm. 6 Remark).

Methodologically, we need the test-domain inference model q⊥⊥(s, v|x) for prediction p⊥⊥(y|x) ≈
Eq⊥⊥(s,v|x)[p(y|s)], but also need q(s, v|x) for learning on the training domain. To save the cost of
building and learning two inference models, we propose to use q⊥⊥(s, v|x) to represent q(s, v|x).
Noting that their targets are related by p(s, v|x) = p(s,v)

p⊥⊥(s,v)
p⊥⊥(x)
p(x) p

⊥⊥(s, v|x), we formulate q(s, v|x) =

p(s,v)
p⊥⊥(s,v)

p⊥⊥(x)
p(x) q

⊥⊥(s, v|x) accordingly, so that this q(s, v|x) achieves its target if and only if q⊥⊥(s, v|x)

5



does. The objective Eq. (1) then becomes:

max
p, q⊥⊥

s,v|x

Ep∗(x,y)

[
log π(y|x) +

1

π(y|x)
Eq⊥⊥(s,v|x)

[ p(s, v)

p⊥⊥(s, v)
p(y|s) log

p⊥⊥(s, v)p(x|s, v)

q⊥⊥(s, v|x)

]]
, (3)

where π(y|x) := Eq⊥⊥(s,v|x)

[ p(s,v)
p⊥⊥(s,v)

p(y|s)
]
. (Note p⊥⊥(s, v) is determined by p(s, v) in the CSG p.)

4.2 Method for Domain Adaptation

In domain adaptation, one also has unsupervised data from the underlying data distribution p̃∗(x) on
the test domain. We can leverage them for better prediction. According to the causal invariance prin-
ciple (2), we only need a new prior p̃(s, v) for the test-domain CSG p̃ := 〈p̃(s, v), p(x|s, v), p(y|s)〉
(Fig. 1c). Fitting test-domain data can be done through the standard ELBO objective with the
test-domain inference model q̃(s, v|x):

max
p̃, q̃s,v|x

Ep̃∗(x)[Lp̃, q̃s,v|x(x)],where Lp̃, q̃s,v|x(x) = Eq̃(s,v|x)

[
log

p̃(s, v)p(x|s, v)

q̃(s, v|x)

]
. (4)

Prediction is given by p̃(y|x) ≈ Eq̃(s,v|x)[p(y|s)]. Similar to the CSG-ind case, we still need
q(s, v|x) for fitting training-domain data, and we can also avoid a separate q(s, v|x) model by
representing it using q̃(s, v|x). Following the same relation between their targets, we let q(s, v|x) =
p̃(x)
p(x)

p(s,v)
p̃(s,v) q̃(s, v|x), which reformulates the same training-domain objective Eq. (1) as:

max
p, q̃s,v|x

Ep∗(x,y)

[
log π(y|x) +

1

π(y|x)
Eq̃(s,v|x)

[p(s, v)

p̃(s, v)
p(y|s) log

p̃(s, v)p(x|s, v)

q̃(s, v|x)

]]
, (5)

where π(y|x) := Eq̃(s,v|x)

[p(s,v)
p̃(s,v)p(y|s)

]
. The resulting method, termed CSG-DA, solves both

optimization problems Eqs. (4, 5) simultaneously.

4.3 Implementation and Model Selection

To implement the three CSG methods, we only need one inference model in each. Appx. F.2 shows its
construction from a general discriminative model (e.g., how to select its hidden nodes as s and v). In
practice x often has a much larger dimension than y, making the first supervision term overwhelmed
by the second unsupervised term in Eqs. (2,3,5). So we downscale the second term.

As recently emphasized [39], an OOD method should include a model selection method, since it
is nontrivial and significantly affects performance [95, 120]. For our methods, we use a validation
set from the training domain for model selection. This complies with the OOD setup, and is also
suggested by our theory below which gives guarantees based on a good fit to the training-domain
data distribution. For CSG-ind/DA, the learned predictor targets the test domain, so we do not use it
directly for evaluating validation accuracy, but by normalizing π(y|x). Appx. F.3 shows details.

5 Theory
We now establish theory for the identification of the semantic factor (cause of prediction) and
subsequent merits for OOD generalization and domain adaptation. We focus on the distribution-level
generalization instead of from finite samples to unseen samples under the same distribution, so we
only consider the infinite-data regime. Appx. A shows all the proofs and auxiliary theory.

Latent variable identification is hard [65, 81, 116, 70] as it is beyond observational relations [51, 88].
Assumptions are thus required to draw definite conclusions.

Assumption 3. (Additive noise) There exist nonlinear functions f and g with bounded derivatives up
to the third-order, and independent random variables µ and ν, such that p(x|s, v) = pµ(x− f(s, v)),
and p(y|s) = pν(y − g(s)) for continuous y or p(y|s) = Cat(y|g(s)) for categorical y.
(Bijectivity) Assume f is bijective and g is injective.

The additive noise assumption is widely adopted in causal discovery [51, 17]. It disables expressing
the same joint in the other direction [122, Thm. 8; 86, Prop. 23] so that CSG unnecessarily indicates
inference invariance. For this reason, we exclude GAN [37] and flow-based [61] implementations.
Bijectivity is a common assumption for identifiability [51, 100, 57, 68]. It is sufficient [86, Prop. 17;
88, Prop. 7.4] for the more fundamental [86, Prop. 7; 88, p.109] requirement of causal minimality
[86, p.2012; 88, Def. 6.33]. Particularly, s and v may otherwise have dummy dimensions that f and
g simply ignore, raising another ambiguity against identifiability. On the other hand, according to the
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commonly acknowledged manifold hypothesis [115, 31], we can take X as the lower-dimensional
data manifold and such a bijection exists as a coordinate map, which is an injection to the original
data space and also allows dS + dV < dX .

5.1 Identifiability Theory

We first formalize the goal of identifying the semantic factor.

Definition 4 (semantic-identification). We say a learned CSG p is semantic-identified, if there exists
a homeomorphism4 Φ on S ×V , such that (i) its output dimensions in S is constant of v: ΦS(s, v) =
ΦS(s, v′),∀v, v′ ∈ V (hence denote ΦS(s, v) as ΦS(s)), and (ii) it is a reparameterization of the
ground-truth CSG p∗: Φ#[p∗s,v] = ps,v , p∗(x|s, v) = p(x|Φ(s, v)) and p∗(y|s) = p(y|ΦS(s)).

Here, Φ#[p∗s,v] denotes the pushed-forward distribution5 of p∗s,v by Φ, i.e. the distribution of Φ(s, v)
when (s, v) ∼ p∗s,v. As the ground-truth CSG could at most provide its information via the data
distribution p∗(x, y), a well-learned CSG that achieves p(x, y) = p∗(x, y) still has the degree of
freedom in parameterizing (s, v). This is described by this reparameterization Φ (Appx. Lemma 9).
At the heart of the definition, the v-constancy of ΦS implies that Φ is semantic-preserving: the learned
model does not mix the ground-truth v into its s, so that the learned s holds equivalent information
to the ground-truth s. The definition can thus be seen as the semantic equivalence (Appx. Def. 10,
Prop. 14) to the ground-truth CSG p∗.

For related concepts, this identification cannot be characterized by the statistical independence
between s and v (vs. [18, 49, 121]), which is not sufficient [70] nor necessary (due to the existence of
spurious correlation). It is also weaker than disentanglement [44, 11], which additionally requires
the learned v to be constant of the ground-truth s. The following theorem shows that semantic-
identification can be achieved on a single domain under certain conditions.

Theorem 5 (semantic-identifiability). With Assumption 3, a CSG p is semantic-identified, if it is
well-learned such that p(x, y) = p∗(x, y), under the conditions that log p(s, v) and log p∗(s, v) are
bounded up to the second-order, and that6 (i) 1/σ2

µ → ∞ where σ2
µ := E[µ>µ], or (ii) pµ (e.g., a

Gaussian) has an a.e. non-zero characteristic function.

Remarks. (1) (Condition and Intuition) Compared with the multi-domain case [87, 93, 2], identifi-
ability on a single training domain comes at a cost and requires certain conditions. One may imagine
that in some extreme cases e.g., all desks appear in workspace and all beds in bedrooms, it is impossi-
ble to distinguish whether y labels the object or the background (unlearnable OOD problem [119]).
The theorem finds an appropriate condition that excludes such cases: when log p∗(s, v) is bounded,
deterministic s-v relations are not allowed as they concentrate p∗(s, v) on a lower-dimensional
subspace in S × V thus make it unbounded.

It also leads to the intuition of identifiability: a bounded log p∗(s, v) indicates a stochastic s-v relation,
so mixing the ground-truth v into the learned smakes the inference of smore noisy due to the intrinsic
diversity/uncertainty of this v. As prediction is made via the inferred s, this worsens prediction
accuracy thus violates the “well-learned” requirement. Compared with discriminative models, CSG
makes more faithful inference, and its causal structure leads to a proper description of domain change.

(2) In condition (i), 1/σ2
µ measures the intensity of the causal mechanism p(x|s, v). When it is large,

the “strong” p(x|s, v) helps disambiguating values of (s, v) in generating a given x. The formal
version in Appx. Thm. 5’ shows a quantitative reference for large enough intensity, and Appx. B
gives a non-asymptotic extension showing how the intensity trades-off the tolerance of equalities in
Def. 4. Condition (ii) goes beyond inference invariance. It roughly implies that different (s, v) values
a.s. produce different p(x|s, v), so their roles in generating x become clear which helps identification.

(3) The theorem does not contradict the impossibility result by Locatello et al. [70], which considers
disentangling each latent dimension with an unconstrained (s, v)→ (x, y), while we only identify s
as a whole, with the v → y edge removed which breaks the s-v symmetry.

4A transformation is a homeomorphism if it is a continuous bijection with continuous inverse.
5The definition of Φ#[p∗s,v] requires Φ to be measurable. This is satisfied by the continuity of Φ as a

homeomorphism (as long as the Borel σ-field is considered) [13, Thm. 13.2].
6To be precise, the conclusions are that the equalities in Def. 4 hold asymptotically in the limit 1/σ2

µ →∞
for condition (i), and hold a.e. for condition (ii).
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5.2 OOD Generalization Theory
Now we show the benefit of semantic-identification for OOD generalization that the prediction error
is bounded. Note the optimal predictor Ẽ

∗
[y|x] 7 on the test domain is defined by the corresponding

ground-truth CSG p̃∗, which differs from p∗ only in the test-domain prior p̃∗(s, v) (Principle 2).
Theorem 6 (OOD generalization error). 8 With Assumption 3, for a semantic-identified CSG p on the
training domain with semantic-preserving reparameterization Φ, we have up to O(σ4

µ),

Ep̃∗(x)‖E[y|x]− Ẽ
∗
[y|x]‖22 6 σ4

µB
′4
f−1B′2g Ep̃s,v

∥∥∇ log(p̃s,v/ps,v)
∥∥2

2
, (6)

where B′f−1 and B′g bound the 2-norms9 of the Jacobians of f−1 and g, respectively, and p̃s,v :=

Φ#[p̃∗s,v] is the test-domain prior under the parameterization of the CSG p.

In the bound, the term Ep̃s,v
∥∥∇ log(p̃s,v/ps,v)

∥∥2

2
is the Fisher divergence measuring the difference

between the two priors. As the prior change is the only source of domain change, this term also
measures the “OODness” in terms of the effect on prediction. The bound also shows that when the
causal mechanism p(x|s, v) is strong (small σµ), it dominates prediction over the prior change, as
the generalization error becomes small. Compared with other methods, using a CSG enforces causal
invariance, so the boundedness of OOD generalization error becomes more plausible in practice.

Remark. The bound also shows the advantage of CSG-ind (Sec. 4.1). The Fisher divergence is
revealed [28] to have a similar behavior as the forward KL divergence ps,v 7→ KL(p̃s,v‖ps,v) that it is
very sensitive to the insufficient coverage of ps,v on the support of p̃s,v [46, 109], since log(p̃s,v/ps,v)

is infinitely large on the uncovered region. As the independent prior p⊥⊥s,v has a larger support than
ps,v, it is less likely to miss the support of p̃s,v, so it induces a generally smaller Fisher divergence.
CSG-ind thus generally has a smaller OOD generalization error bound than CSG.

5.3 Domain Adaptation Theory
CSG-DA (Sec. 4.2) learns a new prior p̃s,v by fitting unsupervised test-domain data, with causal
mechanisms shared. If the mechanisms are semantic-identified, the ground-truth test-domain prior
p̃∗s,v can also be identified under the learned parameterization, and prediction is made precise.
Theorem 7 (domain adaptation error). With conditions of Thm. 5, for a semantic-identified CSG p
on the training domain with semantic-preserving reparameterization Φ, if its new prior p̃s,v is well-
learned such that p̃(x) = p̃∗(x), then p̃s,v = Φ#[p̃∗s,v], and Ẽ[y|x] = Ẽ

∗
[y|x] for any x ∈ supp(p̃∗x).

Different from existing domain adaptation bounds (Appx. E), Theorems 6,7 allow different inference
models in the two domains, thus go beyond inference invariance.

6 Experiments
For OOD generalization baselines, there is not much choice beyond the standard CE loss optimization,
as domain adaptation methods require test-domain data and most domain generalization methods
degenerate to CE with one training domain. The exception within our scope is a causal discriminative
method CNBB [41]. For domain adaptation, we consider well-acknowledged methods DANN [33],
DAN [73], CDAN [74] and recent compelling methods MDD [124] and BNM [25] (shown in Appx.
Tables 2,3). Appx. G shows more details, results, and discussions. 10

Shifted-MNIST. We first consider an OOD prediction task on MNIST to classify digits “0”s and
“1”s. To make a spurious correlation, in the training data, we horizontally shift each “0” at random by
δ0 ∼ N (−5, 12) pixels, while each “1” by δ1 ∼ N (5, 12) pixels. We consider two test domains with
different digit-position distributions: each digit is not moved δ0 = δ1 = 0 in the first, and is shifted
at random by δ0, δ1 ∼ N (0, 22) pixels in the second. We implement all methods using a multilayer
perceptron which is not naturally shift invariant. We use a larger architecture for non-generative
methods to compensate the additional generative component of generative methods.

The performance is shown in Table 1(top 2 rows). For OOD generalization, CE is misled by the more
noticeable position factor due to the spurious correlation to digits, and resorts to random guess (even

7For categorical y, the expectation of y is taken under the one-hot representation.
8See Appx. Thm. 6’ for the formal version.
9As the induced operator norm for matrices (not the Frobenius norm).

10Codes are available at https://github.com/changliu00/causal-semantic-generative-model.
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Table 1: Test accuracy (%) by various methods (ours in bold) for OOD generalization (left 4 cols) and
domain adaptation (right 5 cols) on Shifted-MNIST (top 2 rows), ImageCLEF-DA (middle 4 rows)
and PACS (bottom 4 rows) datasets. Averaged over 10 runs. Appx. Tables 2,3 show more results.

task CE CNBB CSG CSG-ind DANN DAN CDAN MDD CSG-DA

δ0 = δ1 = 0 42.9±3.1 54.7±3.3 81.4±7.4 82.6±4.0 40.9±3.0 40.4±2.0 41.0±0.5 41.9±0.8 97.6±4.0
δ0,δ1∼N(0,22) 47.8±1.5 59.2±2.4 61.7±3.6 62.3±2.2 46.2±0.7 45.6±0.7 46.3±0.6 45.8±0.3 72.0±9.2

C→P 65.5±0.3 72.7±1.1 73.6±0.6 74.0±1.3 74.3±0.5 69.2±0.4 74.5±0.3 74.1±0.7 75.1±0.5
P→C 91.2±0.3 91.7±0.2 92.3±0.4 92.7±0.2 91.5±0.6 89.8±0.4 93.5±0.4 92.1±0.6 93.4±0.3
I→P 74.8±0.3 75.4±0.6 76.9±0.3 77.2±0.2 75.0±0.6 74.5±0.4 76.7±0.3 76.8±0.4 77.4±0.3
P→I 83.9±0.1 88.7±0.5 90.4±0.3 90.9±0.2 86.0±0.3 82.2±0.2 90.6±0.3 90.2±1.1 91.1±0.5

others→P 97.8±0.0 96.9±0.2 97.7±0.2 97.8±0.2 97.6±0.2 97.6±0.4 97.0±0.4 97.6±0.3 97.9±0.2
others→A 88.1±0.1 73.1±0.3 88.5±0.6 88.6±0.6 85.9±0.5 84.5±1.2 84.0±0.9 88.1±0.8 88.8±0.7
others→C 77.9±1.3 50.2±1.2 84.4±0.9 84.6±0.8 79.9±1.4 81.9±1.9 78.5±1.5 83.2±1.1 84.7±0.8
others→S 79.1±0.9 43.3±1.2 80.7±1.0 81.1±1.2 75.2±2.8 77.4±3.1 71.8±3.9 80.2±2.2 81.4±0.8

worse) when position is not informative for prediction. CNBB ameliorates the position confusion, but
not as thoroughly without modeling causal mechanisms. In contrast, our CSG gives more genuine
predictions in unseen domains, thanks to the identification of the semantic factor. CSG-ind performs
even better, justifying the merit of using an independent prior for prediction. For domain adaptation,
CSG-DA achieves the best results. Existing adaptation methods even worsen the result (negative
transfer), as the misleading position representation gets strengthened on the unsupervised test data.
CSG is benefited from adaptation in a proper way that identifies the semantic factor.

ImageCLEF-DA is a standard benchmark for domain adaptation [1]. It has 12 classes and three
domains of real-world images: Caltech-256, ImageNet, Pascal VOC 2012. We select four OOD
prediction tasks C↔P, I↔P that have not seen good enough results. We adopt the same setup as [74].
As shown in Table 1(middle 4 rows), CSG-ind again achieves the best OOD generalization results,
and even outperforms some domain adaptation methods. Our CSG also outperforms the baselines
mostly. For domain adaptation, CSG-DA is the best in most cases and on par with the best in others.

PACS is a more recent benchmark dataset [69]. It has 7 classes and is named after its four domains:
Photo, Art, Cartoon, Sketch; each contains images of a certain style. We follow the same setup
as [39]; particularly, we pool together all domains but the test one as the single training domain.
Results in Table 1(bottom 4 rows) show the same trend. CSG-DA even outperforms most domain
generalization methods reported in [39], which are fed with more information. Appx. Tables 2,3 also
show the results on an even larger dataset VLCS [30], which present a similar observation.

Visualization. Appx. Fig. 5 visualizes the learned models using LIME [91]. The results show our
methods focus more on the semantic regions and shapes, indicating a causal representation is learned.

Dataset analysis. The results indicate our methods are more powerful on shifted-MNIST and PACS
(and VLCS) than ImageCLEF-DA. This meets the intuition of identifiability (Thm. 5 Remark (1)):
the random position or pooled training domain shows a diverse v for each s (while with a misleading
spurious correlation), so identification is better guaranteed to overcome the spurious correlation.

Ablation study. To show the benefit of modeling s and v separately, we compare with a counterpart
of CSG that treats s and v as a whole (equivalently, v → y is kept; see Appx. F.1.4 for method details).
Appx. Tables 2,3 show that our methods outperform this baseline in all cases. This shows the separate
modeling makes CSG consciously drive semantic representation into the dedicated variable s.

7 Conclusion and Discussion
We propose a Causal Semantic Generative model for single-domain OOD prediction tasks, which
builds upon a causal reasoning, and models the semantic (cause of prediction) and variation factors
separately. By the causal invariance principle, we develop novel and efficient learning and prediction
methods, and prove the semantic-identifiability and the subsequent bounded generalization error and
the success of adaptation. Experiments show the improved performance over prevailing baselines.

Notably, we answered the questions in the recent farseeing paper [98] on causal representation
learning: we found an appropriate condition under which “causal variables can be recovered”, and
provided “compelling evidence on the advantages (of causal modeling) in terms of generalization”.
Also, separating semantics from variation extends to broader examples. Neural nets are found to
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change their prediction under a different texture [34, 15]. Adversarial vulnerability [107, 38, 67]
extends variation factors to human-imperceptible features, i.e. adversarial noise, which is found
to have a strong correlation to the semantics [50]. The separation also matters for fairness when a
sensitive variation factor may affect prediction. This work also inspires the dual connection between
causal representation learning (“fill in the blanks” given a graph) and causal discovery (“link the
nodes” given observed variables). Our theory shows the identifiability condition for causal discovery
(the additive noise assumption) also makes causal representation identifiable. Studying the general
connection between the two tasks is an interesting future work.
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