
Skill Discovery for Exploration and Planning using Deep Skill Graphs

Akhil Bagaria 1 Jason Crowley 1 Jing Wei Nicholas Lim 1 George Konidaris 1

Abstract
Temporal abstraction provides an opportunity to
drastically lower the decision making burden fac-
ing reinforcement learning agents in rich senso-
rimotor spaces. Well constructed hierarchies in-
duce state and action abstractions that can reduce
large continuous MDPs into small discrete ones,
in which planning with a learned model is feasible.
We propose a novel algorithm, Deep Skill Graphs,
for acquiring such a minimal representation of
an environment. Our algorithm seamlessly inter-
leaves discovering skills and planning using them
to gain unsupervised mastery over ever increasing
portions of the state-space. The constructed skill
graph can be used to drive the agent to novel goals
at test time, requiring little-to-no additional learn-
ing. We test our algorithm on a series of contin-
uous control tasks where it outperforms baseline
flat and hierarchical RL methods alike.

1. Introduction
Model-free reinforcement learning agents can acquire goal-
directed behaviors in unknown environments (Sutton &
Barto, 2018; Mnih et al., 2015; Lillicrap et al., 2015). These
behaviors however, often tend to be reactive and must be
reacquired when the agent is tasked with solving a differ-
ent, albeit related task (Farebrother et al., 2018; Witty et al.,
2018). Planning, on the other hand, can generate long-
horizon behaviors (Campbell et al., 2002; Silver et al., 2017)
but assumes access to a model of the environment, which
can often be hard to specify. Our goal is to learn representa-
tions that enable an agent to transition from trial-and-error
learning to solving long-horizon tasks using high-level plan-
ning.

One way to generate long-horizon behaviors is to plan using
models learned from raw observations (Sutton, 1991; Levine

1Department of Computer Science, Brown University, Prov-
idence, Rhode Island, USA. Correspondence to: Akhil Bagaria
<akhil bagaria@brown.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 108, 2020. Copyright 2020 by
the author(s).

et al., 2016; Ha & Schmidhuber, 2018; Hafner et al., 2018;
Kaiser et al., 2020). However, model-based methods are
plagued by the difficulty of learning effective models in high-
dimensional spaces. Learning abstractions (Giunchiglia &
Walsh, 1992; Konidaris, 2019; Abel & Littman, 2020) af-
forded by the hierarchical reinforcement learning (HRL)
framework (Barto & Mahadevan, 2003) could facilitate plan-
ning without having to confront the problem of learning a
detailed model of the world. The majority of research in
HRL has examined the benefits of discovering and using
abstract actions, or skills (Sutton et al., 1999; Mcgovern
& Barto, 2002; Precup, 2001; Konidaris & Barto, 2011;
Ravindran & Barto, 2004; Bacon, 2018). Less studied is
the complimentary question of how discovered skills can
inform useful state-abstraction.

We build on the key insight of Konidaris et al. (2018) that
abstract actions create an opportunity to build an accompa-
nying state abstraction that supports planning. They proved
that to compress an SMDP (Sutton et al., 1999) into a dis-
crete representation suitable for planning, the agent’s skills
must be sequentially executable—successful execution of
one should permit the execution of another. Furthermore,
Bagaria & Konidaris (2020) recently showed how skills
that have this property can be autonomously discovered in
high-dimensional continuous spaces. However, for skill dis-
covery to proceed in their work, Bagaria & Konidaris (2020)
assume access to a pre-specified goal state and an explo-
ration policy that can generate a small number of trajectories
that reach that goal state.

Such extrinsically defined goals are often unavailable, and
even when they are, random exploration may be insufficient
for the agent to ever reach them. So that skill-acquisition
may proceed in the absence of such extrinsic goals, we dis-
cover them using principles of intrinsic motivation (Barto
et al., 2004; Chentanez et al., 2005). We call such dis-
covered target states salient events, and construct a collec-
tion of skills capable of moving the agent between such
salient events, resulting in a skill graph. This graph is a
compressed discrete representation of the original MDP
where vertices correspond to states in which skills operate
and edges correspond to skill policies. Because the skill
graph was constructed to meet the specifications laid out
by Konidaris et al. (2018), it is provably sound—meaning
that plans constructed in the abstract MDP correspond to



Skill Discovery for Exploration and Planning using Deep Skill Graphs

feasible solutions in the original ground MDP.

We test our algorithm on three challenging maze-navigation
tasks in MuJoCo (Todorov et al., 2012; Fu et al., 2020),
demonstrate its key properties, and find that it can signifi-
cantly out-performs baseline flat and hierarchical RL meth-
ods alike.

2. Background
We consider the class of MDPsM = (S,A,R, T , γ, ρ). S
denotes the state space, A denotes the action space and γ is
the discount factor (Sutton & Barto, 2018). R is the set of
reward functions and ρ is the set of start state distributions
implied by the different tasks in the multi-task setting (Sut-
ton et al., 2007; Tanaka & Yamamura, 2003; Brunskill &
Li, 2013; Wilson et al., 2007). The transition dynamics T is
assumed to be fixed among the different tasks.

Importantly, we do not assume access to R during train-
ing time—skill discovery proceeds without extrinsic re-
wards. Furthermore, ρ remains fixed at training time, but
can change arbitrarily at test-time. This ensures that the
agent cannot “teleport” to states that might otherwise be
difficult to reach and thus must confront the exploration
problem in its entirety (Even-Dar et al., 2005; Kakade &
Langford, 2002).

2.1. The Options Framework

We model abstract actions (or skills) as options (Sutton
et al., 1999). Each option o in the agent’s option repertoire
O is defined as a three element tuple (Io, πo, βo). The
initiation set Io : s → {0, 1} describes the set of states
from which option o can be executed. The termination set
βo : s→ {0, 1} describes the set of states in which option
execution is deemed successful. Finally, the option policy
πo : s→ a is a closed-loop controller that drives the agent
from states in Io to those in βo. Augmenting the set of
available actions with options results in a Semi-Markov
Decision Process (SMDP) (Sutton et al., 1999) where the
next state depends on the current state, action, and time.

In addition to the three elements described above, Konidaris
et al. (2018) define the effect set Eo of option o as the set of
states in which the agent might find itself after successfully
executing πo from anywhere in Io. Note that Eo ⊆ βo since
there may be states in βo not reachable from states in Io.

2.2. Skill Chaining

The skill chaining algorithm (Konidaris & Barto, 2009;
Bagaria & Konidaris, 2020) incrementally constructs op-
tions that extend backward from a goal state to the start
states of the MDP. Discovered skills have the property that
the initiation condition of an option oi is the termination

condition of the option oi−1 that precedes it in its chain, i.e,
βoi−1 = Ioi . Option policies in the skill chaining frame-
work have local support: they specialize in different regions
of the state-space and do not have to learn representations
for states far outside their initiation region. This allows
them to learn effective solutions to their own sub-problems
which are then combined by a policy over options.

Each skill learns to initiate only from those states from
which it can reliably solve its own sub-problem. As a result,
the skill chaining algorithm adaptively discovers as many
skills as it needs, with whatever granularity it needs, to most
reliably get from its start state to its goal state. By decon-
structing the solution to goal-oriented MDPs into sequential
option executions, deep skill chaining (DSC) can learn over-
all policies that reach the goal far more effectively than flat
reinforcement learning techniques.

Given a single start state and a goal state, skill chaining
organizes skills in the form of a chain. When there are
multiple start states, skill chaining organizes skills in the
form of a tree rooted at the goal state. While effective in
solving many goal-oriented MDPs, this topology is insuf-
ficient in the multi-task setting where the agent could start
anywhere and be asked to go anywhere. Consequently, we
propose to organize skills in the form of a graph to handle
the multi-task setting.

2.3. Covering Options

Recent work has focused on learning task agnostic represen-
tations by exploiting the spectral properties of the environ-
ment’s transition dynamics (Mahadevan & Maggioni, 2007;
Machado et al., 2017; Liu et al., 2017; Machado et al., 2018).
Most recently, Jinnai et al. noticed that the eigenvector cor-
responding to the second smallest eigenvalue of the graph
Laplacian (Chung & Graham, 1997) (also known as the
Fiedler vector (Fiedler, 1973)) captures information about
states that are furthest apart in the topology of an MDP. In
an effort to make the MDP easier to explore, they developed
Covering Options (Jinnai et al.) to connect the two states
in a discrete MDP that are furthest apart according to this
Fiedler vector. Deep covering options (DCO) (Jinnai et al.,
2020) used Wu et al. (2019)’s approximation of the graph
Laplacian to extend covering options to large continuous
spaces. Because of their ability to identify states in the fron-
tier and their demonstrated superiority to other methods that
discover options for exploration (Eysenbach et al., 2019a;
Machado et al., 2017), we use it to boost exploration in our
algorithm.

2.4. Rapidly Exploring Random Trees (RRT)

RRT is a motion planning algorithm used to find a collision-
free path between two points in a robot’s configuration space
(LaValle, 1998). The RRT algorithm, which builds a tree



Skill Discovery for Exploration and Planning using Deep Skill Graphs

Figure 1. When the discovered salient event (red) is outside the graph, the agent uses planning inside the graph to reach the node closest to
its goal (green). It then expands the graph by constructing a series of skills that connect the salient event to the graph.

rooted at the start state, proceeds in three steps: (a) randomly
sample a state from the configuration space, (b) identify its
nearest neighbor node in the tree and finally (c) use the
robot’s dynamics model to move one step in the direction
of the sampled state. Despite its simplicity, RRTs have been
wildly successful in solving motion planning problems in-
volving high-dimensional dynamical systems. It owes its
success in large part to the Voronoi bias of the tree construc-
tion procedure (Lindemann & LaValle, 2004).

The Voronoi bias of RRT refers to property that at each iter-
ation of the algorithm, the direction in which tree expands
is proportional to the volume of the Voronoi region of an
edge node. The volume of the Voronoi region of a state can
thus be seen as a measure of “how unexplored” the region
around that state is; randomly selecting points to expand the
tree therefore causes it to naturally grow in the direction of
the unexplored frontiers of the state-space.

Since RRT assumes a given dynamics model, it cannot be
directly used in the RL setting. However, as we will see
in Section 3, our graph construction procedure is heavily
inspired by RRT. Finally, although inspired by RRT, we do
not learn a single-query tree (LaValle, 2006). Instead, much
like the Probabilistic Road Map (PRM) algorithm (Kavraki
et al., 1996), we learn a multiple-query graph, meaning that
the discovered skill graph can be used to find solution paths
between multiple start-goal pairs.

3. Deep Skill Graphs
A skill graph is a particular arrangement of acquired skills
that represents a convenient discrete abstraction of the orig-
inal continuous MDP. To construct this graph, the agent
continually interleaves two steps: (a) discovery of target
salient regions that will increase the coverage of the skill
graph and (b) creation of skill chains that connect each new
salient event to the graph. Once acquired, the agent may

construct plans to reach any state that lies in the region
spanned by its skill graph.

3.1. Definitions

Salient Events: A salient event βsalient is a collection of
states that are deemed important by an intrinsic motivation
system (Barto et al., 2004). We formalize them as binary
classifiers that take a state as input and return a boolean
decision denoting whether that state triggered that salient
event.

Skill Graph: A skill graph is a weighted and directed graph
G = (V, E,W). Each vertex i ∈ V either corresponds to
an option effect set or a salient event. There is an edge ei→j
between vertices i and j if and only if the effect set of vertex
i is inside the initiation set of vertex j, i.e, Ei ⊆ Ij . The
edge weight wi,j ∈ W is the inverse of the fraction of times
you can successfully get from vertex i to vertex j using a
single option execution.

3.2. Constructing the Skill Graph

As illustrated in Figure 1, skill graph construction iteratively
proceeds in three steps. In the first step, the DSG agent
discovers a target/salient event it would like to reach. Since
this target state lies outside the graph, the agent does not yet
have the necessary skills to get there using planning. In the
second step, the agent identifies the node in the graph closest
to the target state identified in step 1. It then constructs a
plan (shown with red arrows) inside the graph to reach this
identified node (shown in green). Once there, it uses deep
skill chaining to construct a series of skills that eventually
connect the target state to graph. Now, the salient event
from step 1 is now just another node in the graph that can be
easily reached using planning. This process repeats when
a new salient event is generated, until the skill-graph has
achieved reasonable coverage of the state-space.



Skill Discovery for Exploration and Planning using Deep Skill Graphs

3.2.1. SALIENT EVENT DISCOVERY

Task-agnostic skill acquisition requires the agent to identify
salient regions of the state-space and construct skills that
target such regions. Regions of the state-space covered by
the graph represent regions where the agent has achieved
mastery (Kaelbling, 1993; Veeriah et al., 2018). This is
because the agent can plan using learned skills to reliably
reach arbitrary states inside the graph. So that the agent
may incrementally increase the portion of the world over
which it has achieved mastery, our salient event discovery
algorithm should extend our graph into largely unexplored
regions of the state-space.

We propose two strategies for generating salient events:

Deep covering options (DCO): Given a buffer of n tran-
sitions B = (s, s′)1:n, DCO learns a one-dimensional em-
bedding called the Fiedler vector f : s → R. The states
s1 = argmaxs∈B f(s) and s2 = argmins∈B f(s) repre-
sent the two states in B that are furthest apart in the agent’s
decision space. Jinnai et al. (2020) note that adding an edge
between s1, s2 maximally increases the connectivity of the
graph (makes it easier to explore the underlying MDP). They
assume that such an edge corresponds to a single option ex-
ecution. However, in general s1, s2 might be very far away
from each other and hence require an arbitrary number of
skills to reliably go from one to the other.

Algorithmically, DCO examines the replay buffer of the
agent every K episodes (where K is a hyperparameter). It
then generates two salient events: βs1 : s → {0, 1} that
targets state s1 and βs2 : s → {0, 1} that targets state s2.
We then call upon deep skill chaining to learn as many skills
as it needs to connect βs1 and βs2 to the existing portion of
the skill graph. Once these events are in the graph, the agent
can then plan with its existing skills to get from one to the
other—reflecting the increased connectivity of the resulting
underlying SMDP.

Random sampling: Covering options is a principled ap-
proach to generating salient events for intrinsically moti-
vated graph expansion. Its success in high-dimensional
spaces however, is dependent on the quality of its approx-
imation of the graph Laplacian (Wu et al., 2019). A far
simpler alternative would be to generate salient events in the
same way the RRT algorithm does—uniformly at random.
This simple strategy can lead to the graph growing in the di-
rections of the largest unexplored regions of the state-space.
Its disadvantage, however, is that it assumes that one can
sample feasible states from the environment. When such an
oracle is available, random sampling of salient events may
provide a competitive alternative to its more computation-
ally expensive counterparts.

3.2.2. PICKING A TARGET SALIENT EVENT

Given the current list of salient events β̃ = {β1, β2, ..., βn},
the agent must first pick which one to target in the current
episode. One could imagine using heuristics based on which
which skills to practice and refine the most (Stout & Barto,
2010), but for simplicity, we pick a target randomly from
this list. Once the agent successfully reaches β, it picks a
new target from β̃, and the process continues.

3.2.3. IDENTIFYING THE NEAREST NODE IN THE GRAPH

Given a target salient event β that lies outside the graph,
DSG must first identify its nearest neighbor in the graph.
Let this vertex in the graph be vnn. For the experiments
presented in this paper, we chose the node with the lowest
Euclidean norm. This measure is not applicable for all prob-
lems, but we leave discovering and using a more appropriate
measure related to MDPs (Mahadevan & Maggioni, 2007;
Taylor et al., 2011) for future work.

3.2.4. ACTING INSIDE THE GRAPH

Given target salient event β and its nearest neighbor inside
the graph vnn, the DSG agent must now figure out a way
to get to that target node vnn from its current state st. We
can find the vertex in the graph corresponding to st by
querying the initiation set classifiers of all the options in
the graph. Let ot be the option whose initiation set st is
in, i.e, Iot(st) = 1,∃ot ∈ O. We now use graph search
(Dijkstra, 1959) to find a plan that goes from ot to vnn. We
then execute the first option in the plan, land in a new state
st+τ , and then re-plan to go from st+τ to vnn. This process
continues until we reach vnn.

3.2.5. EXTENDING THE GRAPH

Once DSG has used its planning based control loop to reach
vnn, which is usually a vertex in the boundary of the graph,
it leaves the graph in an effort to reach the target event
β. Here, it uses deep skill chaining to learn options that
eventually chain back from β to vnn. After that, the agent
can go back to using its planner to reach β in the future.

3.2.6. ADDING EDGES TO THE GRAPH

Now we will describe how skill chains targeting different
salient events may be connected together in the skill graph.
For simplicity, we can break our discussion into two differ-
ent cases:

Option-option edges: For plans in the abstract MDP to cor-
respond to feasible solutions in the ground MDP, Konidaris
et al. (2018) showed that any two options o1 and o2 can have
an edge e1,2 between them if and only if there is a guarantee
that successful execution of o1 will allow the agent to exe-
cute o2, i.e, e1,2 exists iff Eo1 ⊆ Io2 . To implement this rule,



Skill Discovery for Exploration and Planning using Deep Skill Graphs

Figure 2. Illustration of how DSG handles achieving goal states at test time: (a) If the goal region contains the effect set of any option,
DSG can use its planner to reach it without any additional learning (b) If the goal lies inside the initiation set of an option, it can create a
new option o5 to reach the goal with some learning and (c) If the goal happens to fall outside the graph, DSG uses planning to reach the
nearest neighbor in the graph and does RL (deep skill chaining) for the rest of the way.

we store all the states in which o1 execution successfully
terminated and check if all of them lie inside Io2 . If at some
point Eo1 expands and we get a sample from its effect set
that lies outside Io2 , we must delete edge e1,2 from the skill
graph.

Option-event edges: An edge can exist from an option to
a salient event if the option’s effect set is a subset of the
salient event—this typically only happens when the option
is trained to target that salient event. For an edge to go from
a salient event βsalient to option o, the option’s initiation set
must contain all the points at which that salient event can
be triggered, i.e, βsalient ⊆ Io. To implement this logic,
we keep track of all the points at which any option has ever
triggered β and ensure that Io includes all of those points.

To develop greater intuition about when it is appropriate to
connect options in the graph, readers may refer to figures 7
and 8 in the appendix.

3.2.7. LEARNING BACKWARD OPTIONS

So far, we have only described how the skills in the graph
take the agent from the start state to discovered salient
events. However, to equip the agent with the ability to
navigate between events, it must learn options that go back-
ward from discovered salient events to the start state (and
to other salient events). The logic for learning these “back-
ward options” is similar to learning “forward options”, but
requires some additional care which is described in section
A.3 of the appendix.

3.3. Using the Skill Graph

Once the agent has finished constructing the skill graph, it
can use it to target goals not seen during training. Suppose
that at test time, the agent is asked to reach a goal region
βsg (in continuous domains, this is typically defined as a

small region around a goal state sg). As illustrated in figure
2, the goal region βsg , at test time can fall into one of the
three possible scenarios:

• βsg completely contains the effect set of an option:
Since reaching that effect set would imply reaching
βsg , the agent may use its planning based control loop
to reach sg without any additional learning.

• βsg is inside the initiation set of some option in the
graph: Suppose that the βsg does not contain the effect
set of an option in the graph but is inside initiation set
of option otrain. In this case, we have options that
can take the agent close to the goal but do not have
a controller that will drive us to sg. As a result, we
create a new option otest having the same initiation
set as option otrain. The agent then uses planning to
get to Iotest and then execute πotest to reach sg . Since
existing skills reliably bring the agent close to sg, it
can learn πotest fairly quickly 1.

• Goal is outside the graph: It is of course possible that
sg entirely lies outside our graph. In this case, DSG
uses the same logic that it used to trigger salient events
outside the graph during training, i.e, it follows the
steps outlined in sections 3.2.3 – 3.2.6.

4. Experiments
We test our algorithm in a series of continuous control tasks
adapted from the “Dataset for RL” benchmark (Fu et al.,
2020; Todorov et al., 2012).2 Chosen tasks either involve

1It is possible to pre-train πotest off-policy with otrain’s replay
buffer (Munos et al., 2016; Thomas & Brunskill, 2016), but for
simplicity we train this policy starting from a random initialization.

2We use the maze-navigation tasks from this suite, without
using their demonstration data.



Skill Discovery for Exploration and Planning using Deep Skill Graphs

Figure 3. Identifying and expanding the frontier in the Ant Reacher domain: these plots visualize the position of the ant-robot at different
times during training. The shade of the blue dots represent the values of the approximated Fiedler vector at that state. The black dots
represent the two states that DCO identifies as being farthest away in the agent’s transition buffer. The fact that the black dots always lie at
the edge of the explored space shows DSG’s ability to consistently identify the frontier. The fact that the area occupied by the blue dots is
always increasing suggests DSG’s ability to consistently expand that frontier.

the point agent from Nachum et al. (2018) or the quadruped
ant robot from Brockman et al. (2016). These tasks are
challenging for non-hierarchical methods, which make little-
to-no learning progress in these tasks (Duan et al., 2016).

We evaluate two versions of the proposed algorithm: one
using deep covering options (DSG-DCO) and the other
using RRT-style random sampling for salient event discov-
ery (DSG-RRT). We compare Deep Skill Graphs to goal-
conditioned RL (Kaelbling, 1993; Schaul et al., 2015) and
deep covering options (Jinnai et al., 2020).

Goal-conditioned RL algorithms learn policies that general-
ize across goals by taking the goal state as an additional in-
put during training. Because of their relative simplicity and
their widespread use in RL (Nachum et al., 2018; Levy et al.,
2019; Eysenbach et al., 2019b; Nasiriany et al., 2019), we
compare against them as a representative non-hierarchical
method that works in the multi-task setting.

We choose DCO as our HRL baseline because (a) the DSG-
DCO variant of our algorithm uses DCO for salience dis-
covery and (b) DCO outperformed other methods that learn
options for exploration (Eysenbach et al., 2019a; Machado
et al., 2017).

4.1. Qualitative Evaluation

Exploration Property of DSG: We compare the states vis-
ited by the DSG agent and those visited under a random
walk. Figure 4 shows that in the ant-maze environment, skill
discovery can lead to temporally extended exploration as
opposed to the dithering behavior of random walks, even in
the absence of an extrinsic reward function.

Incremental Graph Expansion: Figures 3 and 6 provides
some intuition on why DSG can effectively explore large
regions of the state-space—the skill-graph begins at the start
state and incrementally expands into unexplored regions of
the state-space. By planning and executing learned skills

Figure 4. Exploration property of skill-graphs: while a random
walk fails to visit the different parts of the maze, deep skill graphs
incrementally expand the frontier of the agent’s experiences.

inside the graph, the agent can reliably get back to the
frontier of its knowledge (as represented by the outermost
vertices in the graph). Exploration from the frontier in turn
allows it to amass the experiences it needs to further expand
the graph. By interleaving planning and chaining in this
way, the DSG agent incrementally achieves mastery of ever
increasing proportions of the state-space.

4.2. Quantitative Evaluation

After training each algorithm for the same number of
episodes, we evaluate their ability to navigate from ran-
domly chosen start states to randomly chosen goal states.
As is common in the multi-task setting, we plot the “success
rate” of each algorithm, which is the fraction of times it
was able to successfully reach the goal in the given episodic
budget. All learning curves in figure 5 are averaged over the
same set of 20 random start and goal states.

4.2.1. COMPARATIVE ANALYSES

Comparison with goal-conditioned RL: Figure 5 shows
that we comfortably outperform our flat goal-conditioned



Skill Discovery for Exploration and Planning using Deep Skill Graphs

Figure 5. Test time learning curves comparing two variants of deep skill graphs (DSG-RRT and DSG-DCO) with goal-conditioned RL
(UVFA) and deep covering options (DCO). The vertical axis represents the fraction of times the agent was able to reach a randomly
sampled goal in the given episodic budget. Solid lines represent mean success rate and error bands represent standard error measured over
20 runs. For more details about hyperparameter settings and baseline implementations, please refer to section A.5 of the appendix.

Figure 6. Incremental expansion of the skill graph: black dots represent salient events; a line connects two events if there exists option(s)
that take the agent from one event to the other. Not shown here are the individual options that the agent constructs to go between each of
the visualized events. These are graphs were constructed using DSG-RRT, similar graphs can be constructed using DSG-DCO.



Skill Discovery for Exploration and Planning using Deep Skill Graphs

RL baseline. Our results support the findings of Nasiriany
et al. (2019) that while UVFAs can in principle be used to
solve any goal-reaching task, their effectiveness seems to be
limited to situations where the goal state is near the agent’s
start state. By contrast, DSG learns skills that specialize
in different parts of the state-space, making them more
effective at solving long-horizon problems.

Comparison with deep covering options: DCO learns op-
tions that allow it to effectively explore the MDP. However,
these options are isolated, so the agent must use SMDP
Q-learning (Bradtke & Duff, 1995) to compose options and
primitive actions to reach a goal given at test-time. Learning
an effective policy over options in this setting demands a
lot of data, making DCO under-perform when being tested
for few-shot generalization. DSG, on the other hand, uses
planning to compose options at test time and hence requires
little-to-no additional interactions with the environment.

Impact of salience discovery method: Figure 5 shows that
DSG-RRT consistently outperforms the DSG-DCO variant
of our algorithm. We found that the skill-graph produced by
randomly sampling salient events was denser than the one
constructed by using salient events generated by DCO. As
a result, a test-time goal state tended to be inside the graph
more often for DSG-RRT than for DSG-DCO. This meant
that DSG-RRT could plan and execute skills it had already
learned to move close to the goal, while DSG-DCO often
had to extend the graph towards the goal state—a process
that can be a relatively sample inefficient. An analysis of
DSG-DCO’s poor performance on ant-maze is presented in
section A.1.3 of the appendix.

5. Related Work
Skill Discovery in high-dimensional spaces: Recent work
on goal-directed skill acquisition in large continuous spaces
can be broadly divided into three categories: (1) option-
critic methods (Bacon et al., 2017; Harutyunyan et al., 2019;
Khetarpal & Precup, 2019; Klissarov et al., 2017; Tiwari &
Thomas, 2019; Riemer et al., 2018; Harb et al., 2018) which
describe an end-to-end architecture for learning options in
high-dimensional spaces, (2) feudal methods (Dayan & Hin-
ton, 1993; Vezhnevets et al., 2017; Nachum et al., 2018;
Levy et al., 2019; Li et al., 2019) in which a higher-level
manager outputs goals for lower level workers to achieve
and (3) skill chaining methods (Konidaris & Barto, 2009;
Konidaris et al., 2012; Konidaris, 2016; Shoeleh & Asad-
pour, 2017; Metzen & Kirchner, 2013; Bagaria & Konidaris,
2020) which deconstruct the solution path of an MDP into a
series of shorter horizon skills. While these methods demon-
strate substantial progress on the skill discovery question,
they optimize for a task-specific objective and hence cannot
be directly used for the multitask setting.

Combining model-free RL and planning: Some recent
works have sought to bridge model-free RL and planning.
SoRB (Eysenbach et al., 2019b) uses graph search on the
replay buffer (Lin, 1993) to find efficient paths between
observations made by a model-free policy. PRM-RL (Faust
et al., 2018) replaces the local planner used in PRM meth-
ods (LaValle, 2006) with an RL policy. Both SoRB and
PRM-RL assume access either to a well trained value func-
tion or an RL policy that can be meaningfully queried in
arbitrary parts of the state-space. By contrast, we learn skill
policies that specialize in different parts of the state-space.
In LEAP (Nasiriany et al., 2019), a planner generates sub-
goals for a low level model-free policy to meet. However,
their planner uses a pre-trained generative model to gener-
ate high-dimensional goals in parts of the state-space the
RL agent may not have seen. Our algorithm automatically
extends the skill graph towards unexplored regions. SPTM
(Savinov et al., 2018) is a memory augmented RL agent
that plans over raw landmark observations in navigation
problems. Our method bypasses the difficulty of planning in
high-dimensional spaces by instead planning over abstract
states. Most recently, DADS (Sharma et al., 2020) achieved
impressive results by using Model Predictive Control to
compose learned skills to reach novel goal states at test time.
However, their algorithm does not interleave skill-discovery
and high-level planning, making them unable to exploit the
effectiveness of temporal abstraction to explore from states
that are difficult to get to.

Exploration in RL: In the non-hierarchical setting, notions
of novelty (Strehl & Littman, 2008; Bellemare et al., 2016)
and prediction error (Oudeyer et al., 2008; Barto et al., 2004;
Burda et al., 2019; Pathak et al., 2017; Badia et al., 2020)
have been used to drive the agent to previously unseen re-
gions of the state-space (Taı̈ga et al., 2019). Recent work
in HRL based intrinsic motivation has fallen into two broad
categories: (1) empowerment (Klyubin et al., 2005) driven
methods (Florensa et al., 2016; Hausman et al., 2018; Ey-
senbach et al., 2019a; Gregor et al., 2016; Heess et al., 2017;
Sharma et al., 2020) which optimize an entropy based ob-
jective and (2) spectral methods (Mahadevan & Maggioni,
2007; Machado et al., 2017; Jinnai et al.; 2020) that ex-
ploit structure in the transition dynamics of the environment.
While these methods generally focus on the exploration
question alone, we show that additionally combining them
with options for exploitation eventually facilitates better
exploration.

6. Conclusion
We introduced a practical algorithm that compresses a large
continuous MDP into a small abstract representation suitable
for planning. Like all RL agents, DSG starts by exploring
the environment since it does not know enough about it to



Skill Discovery for Exploration and Planning using Deep Skill Graphs

plan. It then discovers salient events and the skills it needs
to reliably trigger those salient events. Together, these skills
and target events enable high-level planning.

We showed that skill graphs grow outward from the start-
state towards large unexplored regions, reflecting mastery
over ever increasing portions of the state-space. Finally, we
tested our algorithm on a series of maze navigation tasks and
showed that DSG can be used to reach novel goals at test
time in a small number of trials. We compared the few-shot
generalization capability of our algorithm to that of popular
flat and hierarchical alternatives and showed that DSG can
significantly outperform them.

References
Abel, D. and Littman, M. A Theory of Abstraction in Re-

inforcement Learning. PhD thesis, Brown University,
2020.

Bacon, P.-L. Temporal Representation Learning. PhD thesis,
McGill University Libraries, 2018.

Bacon, P.-L., Harb, J., and Precup, D. The option-critic ar-
chitecture. In Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

Badia, A. P., Sprechmann, P., Vitvitskyi, A., Guo, D., Piot,
B., Kapturowski, S., Tieleman, O., Arjovsky, M., Pritzel,
A., Bolt, A., et al. Never give up: Learning directed
exploration strategies. In ICLR, 2020.

Bagaria, A. and Konidaris, G. Option discovery using deep
skill chaining. In International Conference on Learning
Representations, 2020. URL https://openreview.
net/forum?id=B1gqipNYwH.

Barto, A. G. and Mahadevan, S. Recent advances in hier-
archical reinforcement learning. Discrete event dynamic
systems, 13(1-2):41–77, 2003.

Barto, A. G., Singh, S., and Chentanez, N. Intrinsically
motivated learning of hierarchical collections of skills.
In Proceedings of the 3rd International Conference on
Development and Learning, pp. 112–19, 2004.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying count-based explo-
ration and intrinsic motivation. In Advances in Neural
Information Processing Systems, pp. 1471–1479, 2016.

Bradtke, S. J. and Duff, M. O. Reinforcement learning
methods for continuous-time markov decision problems.
In Advances in neural information processing systems,
pp. 393–400, 1995.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Brunskill, E. and Li, L. Sample complexity of multi-task
reinforcement learning. In Proceedings of the Twenty-
Ninth Conference on Uncertainty in Artificial Intelligence,
pp. 122–131, 2013.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O.
Exploration by random network distillation. In In-
ternational Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=H1lJJnR5Ym.

Campbell, M., Hoane Jr, A. J., and Hsu, F.-h. Deep blue.
Artificial intelligence, 134(1-2):57–83, 2002.

Chentanez, N., Barto, A. G., and Singh, S. P. Intrinsically
motivated reinforcement learning. In Advances in neural
information processing systems, pp. 1281–1288, 2005.

Chung, F. R. and Graham, F. C. Spectral graph theory.
Number 92. American Mathematical Soc., 1997.

Dayan, P. and Hinton, G. E. Feudal reinforcement learning.
In Advances in neural information processing systems,
pp. 271–278, 1993.

Dijkstra, E. W. A note on two problems in connexion with
graphs. Numerische mathematik, 1(1):269–271, 1959.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. Benchmarking deep reinforcement learning
for continuous control. In International Conference on
Machine Learning, pp. 1329–1338, 2016.

Even-Dar, E., Kakade, S. M., and Mansour, Y. Reinforce-
ment learning in pomdps without resets. 2005.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
In International Conference on Learning Representations,
2019a. URL https://openreview.net/forum?
id=SJx63jRqFm.

Eysenbach, B., Salakhutdinov, R. R., and Levine, S. Search
on the replay buffer: Bridging planning and reinforce-
ment learning. In Advances in Neural Information Pro-
cessing Systems 32, pp. 15246–15257. 2019b.

Farebrother, J., Machado, M. C., and Bowling, M. Gen-
eralization and regularization in dqn. arXiv preprint
arXiv:1810.00123, 2018.

Faust, A., Oslund, K., Ramirez, O., Francis, A., Tapia, L.,
Fiser, M., and Davidson, J. Prm-rl: Long-range robotic
navigation tasks by combining reinforcement learning
and sampling-based planning. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pp. 5113–5120. IEEE, 2018.

https://openreview.net/forum?id=B1gqipNYwH
https://openreview.net/forum?id=B1gqipNYwH
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=SJx63jRqFm
https://openreview.net/forum?id=SJx63jRqFm


Skill Discovery for Exploration and Planning using Deep Skill Graphs

Fiedler, M. Algebraic connectivity of graphs. Czechoslovak
mathematical journal, 23(2):298–305, 1973.

Florensa, C., Duan, Y., and Abbeel, P. Stochastic neural
networks for hierarchical reinforcement learning. In Inter-
national Conference on Learning Representations, 2016.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Interna-
tional Conference on Machine Learning, pp. 1582–1591,
2018.

Giunchiglia, F. and Walsh, T. A theory of abstraction. Arti-
ficial intelligence, 57(2-3):323–389, 1992.

Gregor, K., Rezende, D. J., and Wierstra, D. Variational
intrinsic control. ArXiv, abs/1611.07507, 2016.

Ha, D. and Schmidhuber, J. World models. arXiv preprint
arXiv:1803.10122, 2018.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels. arXiv preprint arXiv:1811.04551,
2018.

Harb, J., Bacon, P.-L., Klissarov, M., and Precup, D. When
waiting is not an option: Learning options with a delibera-
tion cost. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Harutyunyan, A., Dabney, W., Borsa, D., Heess, N., Munos,
R., and Precup, D. The termination critic. In The 22nd
International Conference on Artificial Intelligence and
Statistics, pp. 2231–2240, 2019.

Hausman, K., Springenberg, J. T., Wang, Z., Heess, N.,
and Riedmiller, M. Learning an embedding space for
transferable robot skills. 2018.

Heess, N., TB, D., Sriram, S., Lemmon, J., Merel, J., Wayne,
G., Tassa, Y., Erez, T., Wang, Z., Eslami, S., et al. Emer-
gence of locomotion behaviours in rich environments.
arXiv preprint arXiv:1707.02286, 2017.

Jinnai, Y., Park, J. W., Abel, D., and Konidaris,
G. Discovering options for exploration by minimiz-
ing cover time. In Proceedings of the 36th Inter-
national Conference on Machine Learning. PMLR.
URL http://proceedings.mlr.press/v97/
jinnai19b.html.

Jinnai, Y., Park, J. W., Machado, M. C., and Konidaris, G.
Exploration in reinforcement learning with deep cover-
ing options. In International Conference on Learning

Representations, 2020. URL https://openreview.
net/forum?id=SkeIyaVtwB.

Kaelbling, L. P. Learning to achieve goals. In IJCAI, pp.
1094–1099. Citeseer, 1993.

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Camp-
bell, R. H., Czechowski, K., Erhan, D., Finn, C., Koza-
kowski, P., and Levine, S. Model-based reinforcement
learning for atari. International Conference on Learning
Representations (ICLR), 2020.

Kakade, S. and Langford, J. Approximately optimal approx-
imate reinforcement learning. In ICML, volume 2, pp.
267–274, 2002.

Kavraki, L. E., Svestka, P., Latombe, J.-C., and Overmars,
M. H. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE transactions on
Robotics and Automation, 12(4):566–580, 1996.

Khetarpal, K. and Precup, D. Learning options with interest
functions. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 9955–9956, 2019.

Klissarov, M., Bacon, P.-L., Harb, J., and Precup, D. Learn-
ings options end-to-end for continuous action tasks. Hi-
erarchical Reinforcement Learning Workshop (NeurIPS),
2017.

Klyubin, A. S., Polani, D., and Nehaniv, C. L. Empow-
erment: A universal agent-centric measure of control.
In 2005 IEEE Congress on Evolutionary Computation,
volume 1, pp. 128–135. IEEE, 2005.

Konidaris, G. Constructing abstraction hierarchies using a
skill-symbol loop. In IJCAI: proceedings of the confer-
ence, volume 2016, pp. 1648. NIH Public Access, 2016.

Konidaris, G. On the necessity of abstraction. Current
Opinion in Behavioral Sciences, 29:1–7, 2019.

Konidaris, G. and Barto, A. Skill discovery in continuous
reinforcement learning domains using skill chaining. In
Advances in Neural Information Processing Systems, pp.
1015–1023, 2009.

Konidaris, G. and Barto, A. Autonomous Robot Skill Ac-
quisition. PhD thesis, University of Massachusetts at
Amherst, 2011.

Konidaris, G., Kuindersma, S., Grupen, R., and Barto, A.
Robot learning from demonstration by constructing skill
trees. The International Journal of Robotics Research, 31
(3):360–375, 2012.

Konidaris, G., Kaelbling, L. P., and Lozano-Perez, T. From
skills to symbols: Learning symbolic representations for
abstract high-level planning. Journal of Artificial Intelli-
gence Research, 61:215–289, 2018.

http://proceedings.mlr.press/v97/jinnai19b.html
http://proceedings.mlr.press/v97/jinnai19b.html
https://openreview.net/forum?id=SkeIyaVtwB
https://openreview.net/forum?id=SkeIyaVtwB


Skill Discovery for Exploration and Planning using Deep Skill Graphs

LaValle, S. M. Rapidly-exploring random trees: A new tool
for path planning. 1998.

LaValle, S. M. Planning algorithms. Cambridge university
press, 2006.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. End-to-
end training of deep visuomotor policies. The Journal of
Machine Learning Research, 17(1):1334–1373, 2016.

Levy, A., Platt, R., and Saenko, K. Hierarchical reinforce-
ment learning with hindsight. In International Confer-
ence on Learning Representations, 2019. URL https:
//openreview.net/forum?id=ryzECoAcY7.

Li, S., Wang, R., Tang, M., and Zhang, C. Hierarchical
reinforcement learning with advantage-based auxiliary
rewards. In Advances in Neural Information Processing
Systems, pp. 1409–1419. 2019.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Lin, L.-J. Reinforcement learning for robots using neu-
ral networks. Technical report, Carnegie-Mellon Univ
Pittsburgh PA School of Computer Science, 1993.

Lindemann, S. R. and LaValle, S. M. Incrementally reducing
dispersion by increasing voronoi bias in rrts. In IEEE
International Conference on Robotics and Automation,
2004. Proceedings. ICRA’04. 2004, volume 4, pp. 3251–
3257. IEEE, 2004.

Liu, M., Machado, M. C., Tesauro, G., and Campbell,
M. The eigenoption-critic framework. arXiv preprint
arXiv:1712.04065, 2017.

Machado, M. C., Bellemare, M. G., and Bowling, M. A
laplacian framework for option discovery in reinforce-
ment learning. In Proceedings of the 34th International
Conference on Machine Learning - Volume 70, ICML’17,
pp. 2295–2304. JMLR.org, 2017.

Machado, M. C., Rosenbaum, C., Guo, X., Liu, M., Tesauro,
G., and Campbell, M. Eigenoption discovery through the
deep successor representation. In International Confer-
ence on Learning Representations, 2018. URL https:
//openreview.net/forum?id=Bk8ZcAxR-.

Mahadevan, S. and Maggioni, M. Proto-value functions:
A laplacian framework for learning representation and
control in markov decision processes. Journal of Machine
Learning Research, 8(Oct):2169–2231, 2007.

Mcgovern, E. A. and Barto, A. G. Autonomous discovery
of temporal abstractions from interaction with an envi-
ronment. PhD thesis, University of Massachusetts at
Amherst, 2002.

Metzen, J. H. and Kirchner, F. Incremental learning of skill
collections based on intrinsic motivation. Frontiers in
neurorobotics, 7:11, 2013.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529, 2015.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare,
M. Safe and efficient off-policy reinforcement learning.
In Advances in Neural Information Processing Systems
29, pp. 1054–1062. 2016.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-
efficient hierarchical reinforcement learning. In Advances
in Neural Information Processing Systems, pp. 3303–
3313, 2018.

Nasiriany, S., Pong, V., Lin, S., and Levine, S. Planning
with goal-conditioned policies. 2019.

Oudeyer, P.-Y., Kaplan, F., et al. How can we define intrin-
sic motivation. In Proc. of the 8th Conf. on Epigenetic
Robotics, volume 5, pp. 29–31, 2008.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 16–17,
2017.

Precup, D. Temporal abstraction in reinforcement learning.
PhD thesis, 2001.

Ravindran, B. and Barto, A. G. An algebraic approach
to abstraction in reinforcement learning. PhD thesis,
University of Massachusetts at Amherst, 2004.

Riemer, M., Liu, M., and Tesauro, G. Learning abstract
options. In Advances in Neural Information Processing
Systems, pp. 10424–10434, 2018.

Savinov, N., Dosovitskiy, A., and Koltun, V. Semi-
parametric topological memory for navigation. In In-
ternational Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=SygwwGbRW.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Universal
value function approximators. In International conference
on machine learning, pp. 1312–1320, 2015.

Sharma, A., Gu, S., Levine, S., Kumar, V., and Hausman,
K. Dynamics-aware unsupervised discovery of skills. In
International Conference on Learning Representations
(ICLR), 2020.

https://openreview.net/forum?id=ryzECoAcY7
https://openreview.net/forum?id=ryzECoAcY7
https://openreview.net/forum?id=Bk8ZcAxR-
https://openreview.net/forum?id=Bk8ZcAxR-
https://openreview.net/forum?id=SygwwGbRW
https://openreview.net/forum?id=SygwwGbRW


Skill Discovery for Exploration and Planning using Deep Skill Graphs

Shoeleh, F. and Asadpour, M. Graph based skill acquisition
and transfer learning for continuous reinforcement learn-
ing domains. Pattern Recognition Letters, 87:104–116,
2017.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354–359, 2017.

Stout, A. and Barto, A. G. Competence progress intrinsic
motivation. In 2010 IEEE 9th International Conference
on Development and Learning, pp. 257–262. IEEE, 2010.

Strehl, A. L. and Littman, M. L. An analysis of model-
based interval estimation for markov decision processes.
Journal of Computer and System Sciences, 74(8):1309–
1331, 2008.

Sutton, R., , Precup, D., and Singh, S. Between MDPs and
semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 112(1):
181–211, 1999.

Sutton, R. S. Dyna, an integrated architecture for learning,
planning, and reacting. ACM Sigart Bulletin, 2(4):160–
163, 1991.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Sutton, R. S., Koop, A., and Silver, D. On the role of
tracking in stationary environments. In Proceedings of
the 24th International Conference on Machine Learning,
pp. 871–878, 2007.

Taı̈ga, A. A., Fedus, W., Machado, M. C., Courville, A.,
and Bellemare, M. G. Benchmarking bonus-based ex-
ploration methods on the arcade learning environment.
arXiv preprint arXiv:1908.02388, 2019.

Tanaka, F. and Yamamura, M. Multitask reinforcement
learning on the distribution of mdps. In IEEE Inter-
national Symposium on Computational Intelligence in
Robotics and Automation. IEEE, 2003.

Taylor, M. E., Kulis, B., and Sha, F. Metric learning for
reinforcement learning agents. In AAMAS, pp. 777–784,
2011.

Thomas, P. and Brunskill, E. Data-efficient off-policy policy
evaluation for reinforcement learning. In International
Conference on Machine Learning, pp. 2139–2148, 2016.

Tiwari, S. and Thomas, P. S. Natural option critic. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pp. 5175–5182, 2019.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033. IEEE, 2012.

Veeriah, V., Oh, J., and Singh, S. Many-goals reinforcement
learning. arXiv preprint arXiv:1806.09605, 2018.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N.,
Jaderberg, M., Silver, D., and Kavukcuoglu, K. Feu-
dal networks for hierarchical reinforcement learning. In
Proceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, pp. 3540–3549. JMLR. org,
2017.

Wilson, A., Fern, A., Ray, S., and Tadepalli, P. Multi-task
reinforcement learning: a hierarchical bayesian approach.
In Proceedings of the 24th international conference on
Machine learning, pp. 1015–1022, 2007.

Witty, S., Lee, J. K., Tosch, E., Atrey, A., Littman, M.,
and Jensen, D. Measuring and characterizing general-
ization in deep reinforcement learning. arXiv preprint
arXiv:1812.02868, 2018.

Wu, Y., Tucker, G., and Nachum, O. The laplacian in RL:
Learning representations with efficient approximations.
In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=HJlNpoA5YQ.

https://openreview.net/forum?id=HJlNpoA5YQ
https://openreview.net/forum?id=HJlNpoA5YQ


Skill Discovery for Exploration and Planning using Deep Skill Graphs

A. Appendix

Figure 7. How initiation and effect sets of learned options corre-
spond to connections in the abstract skill-graph: the blue sphere
represents a salient event β. The red regions represent the effect
set of two different options o1, o2 targeting β. The green regions
represent the initiation and effect set of another option o3. Because
Eo2 ⊆ Io3 , we can create an edge from o2 → o3 in the abstract
graph shown on the right.

A.1. Using Deep Covering Options for Salient Event
Discovery

DCO approximates the Fiedler vector, which is a function
that projects states into a one dimensional embedding. In
DCO, all states that have a fiedler value lower than some
pre-defined threshold are marked as the termination condi-
tion of an option. However, as noted by Jinnai et al., this
scheme can often lead to termination sets that are either too
small or those that are too big. If we were to directly use
such termination conditions as salient events, the resulting
salient events themselves could be too small or too big. As
a result, we discard the termination condition discovered by
DCO and simply pick the states with the highest and low-

Figure 8. Conditions under which vertices in the skill-graph can
be connected by an edge between them: An edge from o1 to o2
exists because Eo1 ⊆ Io2 . An edge from o2 to βsalient exists
because o2 targets βsalient. Finally, an edge exists from βsalient

to o3 because βsalient ⊆ Io3 .

est values under the approximate Fiedler vector. We then
construct an ε-ball around that state and treat it as a salient
event. Creating this ε-ball assumes a meaningful metric,
which is readily available in the domains considered here.
However, scaling our method to domains with pixel obser-
vations would require a deeper understanding of how the
size of DCO termination conditions can be better controlled
(Harutyunyan et al., 2019).

A.1.1. FILTERING SALIENT EVENTS

So as to not create options that target redundant salient
events, we may choose to reject a generated salient event
before we add them to the list of target events. A generated
event is rejected if it is either (a) already satisfied by an ex-
isting event or (b) the generated event is inside the initiation
classifier of an option already in the graph.

A.1.2. WHEN TO GENERATE NEW SALIENT EVENTS

We attempt to generate a new pair of salient events when
any of the following three conditions are satisfied:

1. The most recent generated salient event has been added
to the graph

2. It has been K = 30 episodes since a salient event was
generated and accepted

3. It has been R = 10 episodes since the last pair of
salient events were generated, and both were rejected
(according to criteria described in A.1.1).

A.1.3. DSG-DCO ON ANT-MAZE

Figure 9 shows that in the Ant-Maze domain, DCO fails to
discover salient events in the top left portion of the state-
space. As a result, DSG is unable to expand the graph into
that region of the state space and it thus fails to reliably reach
goal states there. DSG-DCO’s failure to expand the skill-
graph in the top part of the maze is principally responsible
for its poor performance in Ant-Maze.

A.2. Setting edge weights in the skill graph

As described in section 3.1, the edge weight between
vertices i, j is given by wi,j = 1

success rate(i,j) , where
success rate(i, j) is the fraction of times option i suc-
cessfully executed its policy to reach option j’s initiation
set. The same formula works when vertex i corresponds
to an option and vertex j corresponds to a salient event.
However, when vertex i corresponds to a salient event and
vertex j corresponds to an option, then the edge weight
wi,j = 0 because being inside the salient event implies be-
ing inside the initiation set of option oj . As described in
section 3.1, the edge weight between vertices i, j is given



Skill Discovery for Exploration and Planning using Deep Skill Graphs

Figure 9. Failure mode of DSG-DCO: In ant-maze, DCO failed to
generate salient events in the top left part of the maze—preventing
DSG from extending its graph into that region of the state-space.

by wi,j = 1
success rate(i,j) , where success rate(i, j) is the

fraction of times option i successfully executed its policy
to reach option j’s initiation set. The same formula works
when vertex i corresponds to an option and vertex j cor-
responds to a salient event. However, when vertex i cor-
responds to a salient event and vertex j corresponds to an
option, then the edge weight wi,j = 0 because being inside
the salient event implies being inside the initiation set of
option oj .

A.3. More details on learning backward options

Consider a skill chain C that starts at β0 and targets βsalient.
C is considered “complete” when it learns an option o such
that β0 ⊆ Io. At this point, we start learning a new skill
chain Cback that targets β0 and chains until βsalient. As is
typical with skill chaining, Cback learns as many options as
it needs to reliably drive the agent from βsalient to β0.

A.4. Test environments

We evaluated our algorithm in four tasks that exhibit a strong
hierarchical structure (Nachum et al., 2018; Fu et al., 2020;
Brockman et al., 2016; Duan et al., 2016): (1) Point Maze
(Medium), (2) Point Maze (Hard), (3) Ant U-Maze and (4)
Ant Reacher. Learning curves in figure 5 are shown for
environments 1-3. In ant reacher, there is no maze, and
the ant is required to navigate an open area spanned by
[−10, 10]2. Only qualitative results are presented in figure 3
for the Ant Reacher domain. In each task, the agent is reset
back to its start state (a small distribution around (0, 0))
after 1000 steps per episode.

These learning curves in figure 5 are generated after we train
each algorithm for 2000 episodes in problems involving the
point robot and for 4000 episodes in problems involving
the more complex ant robot. Each episode lasts 1000 time
steps.

Figure 10. The Deep Skill Graphs system architecture

A.5. Baseline Implementation Details

Following Bagaria & Konidaris (2020), we use the Deep
Deterministic Policy Gradients (DDPG) algorithm (Lilli-
crap et al., 2015) to train option policies. As a result, we
compare against a goal-conditioned version of DDPG as
our goal-conditioned RL baseline. In the same way that
our algorithm samples a salient event every 30 episodes,
the goal-conditioned DDPG samples a goal state at random
every 30 episodes. It gets a positive terminal reward for
successfully reaching this goal.

All hyper-parameters for our implementation of DCO were
taken from Jinnai et al. (2020). In the same way that DSG
generates a new salient event every 30 episodes, so does
DCO. Unlike DSG, DCO requires the number of skills to
learn to be specified as an input to the algorithm. We eval-
uated DCO with 3, 4, 5, 10 options and present the best
performing ones in figure 5.

A.6. System Architecture

Figure 10 shows the system architecture of the deep skill
graph agent. Both the salient event discovery module and
the deep skill chaining agent (Skill Discovery module) may
find salient events in the MDP, all of which are stored in a
single list. When the agent is in a state inside the graph and
there exists a path in the graph to the chosen target event, the
planner selects the option to execute. If the agent is outside
the graph or when there is no path from the current state to
the selected goal state, the policy-over-options in the DSC
module picks the option to execute. All options execute
their closed loop policies until they reach their termination
set or timeout at 200 steps.



Skill Discovery for Exploration and Planning using Deep Skill Graphs

A.7. The x-y prior

Option initiation sets are learned over the same state vari-
ables that factor in the reward function. This is the same
assumption as related work (Bagaria & Konidaris, 2020;
Levy et al., 2019; Nachum et al., 2018; Sharma et al., 2020;
Eysenbach et al., 2019a).

A.8. DDPG Hyperparameters

We used DDPG to train option policies and as the basis
for our goal-conditioned RL baseline. We did not try to
optimize over the space of DDPG hyperparameters and
used the ones reported in previous work (Lillicrap et al.,
2015; Fujimoto et al., 2018).

Parameter Value

Replay buffer size 1e6
Batch size 64
γ 0.99
τ 0.01
Number of hidden layers 2
Hidden size 1 400
Hidden size 2 300
Critic learning rate 1e− 3
Actor learning rate 1e− 4

Table 1. DDPG Hyperparameters

A.9. Compute Infrastructure

We used 1 NVIDIA GeForce 2080 Ti and 4 NVIDIA
GeForce 2070 Ti GPUs to perform all experiments reported
in this paper.


