
The Past Does Matter: Correlation of Subsequent States in
Trajectory Predictions of Gaussian Process Models

Steffen Ridderbusch1 Sina Ober-Blöbaum2 Paul Goulart1

1Control Group, Dept. of Engineering Science, University of Oxford, Oxford, UK
2Numerical Mathematics and Control, University of Paderborn, Paderborn, Germany

Abstract

Computing the distribution of trajectories from a
Gaussian Process model of a dynamical system is
an important challenge in utilizing such models.
Motivated by the computational cost of sampling-
based approaches, we consider approximations of
the model’s output and trajectory distribution. We
show that previous work on uncertainty propaga-
tion, focussed on discrete state-space models, in-
correctly included an independence assumption
between subsequent states of the predicted tra-
jectories. Expanding these ideas to continuous or-
dinary differential equation models, we illustrate
the implications of this assumption and propose a
novel piecewise linear approximation of Gaussian
Processes to mitigate them.

1 INTRODUCTION

The context of this work is the combination of dynamical
systems theory, with its history of widespread applications in
science and engineering, and Gaussian Process (GP) models.
To utilize these models, one must be able to make predic-
tions for future trajectories, ideally in a way that incorpor-
ates the uncertainty of the model. These predictions should
also be cheap to compute and qualitatively accurate.

The computation of trajectories depends on the model class.
One example of continuous models, our main focus, are
ordinary differential equation (ODE) models of the form

ẋ = f(x). (1)

We can represent f as a GP, which means that we learn the
vector field of a dynamical system, as seen in Ridderbusch
et al., 2021 and Heinonen et al., 2018. This approach is
conceptually similar to UniversalODEs, which use a Neural
Network instead of a GP [Rackauckas et al., 2020].

We note explicitly that this setting does not result in a
stochastic differential equation or random dynamical system,
where aleatory uncertainty arises from inherent stochasticity
[Banks et al., 2012]. Instead, a GP represents a distribution
over a function space, conditioned on available pairs of
input-output data, which we assume contains the true un-
derlying deterministic function. This means that GP models
capture epistemic uncertainty, as the uncertainty about the
true model decreases with additional data.

The state x of a continuous model at time t is given by
the flow φt

f (x0), which is the solution of the ODE (1) for
the initial value x0. However, the flow map is generally
not available analytically and instead must be computed
approximately at discrete times via numerical integration.
The simplest such method is the explicit Euler’s method

xn+1 = φh
f (xn) ≈ xn + hf(xn), (2)

where h is the step size, which can be varied over subsequent
steps. There exists a wide range of more complex numerical
solvers, differing in their order of convergence, stability, and
computational cost. One motivation for this work is to apply
those methods to GP-based ODEs while also accounting for
uncertainty. For details on dynamical systems and numerical
integration see for example Guckenheimer et al., 2013.

A related class of models are discrete dynamical systems,
which directly assume a model of the form

xn+1 = f(xn), (3)

instead of discretizing a continuous model. Representing the
discrete flow map with a GP is a more popular alternative to
learning the vector-field, and the resulting model is called a
state-space GP [Kamthe et al., 2017; Buisson-Fenet et al.,
2020; Girard et al., 2003; Groot et al., 2011]. This approach
implicitly assumes a fixed step size h between subsequent
states xn and xn+1, often the measurement interval of the
available time series data. One computes a trajectory by
iteratively applying f . Some approaches additionally use
auto-regression, taking into account l past states [Groot et
al., 2011; Kocijan, 2015; Nghiem, 2019].

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<steffen@robots.ox.ac.uk>?Subject=Your UAI 2023 paper

The challenge with uncertainty propagation for both continu-
ous and discrete models is that mapping a random variable
through a nonlinear function is generally intractable, even
for the generally very tractable normal distribution.

In the context of dynamical system models, this problem
is compounded. To obtain the distribution of the states
Xn+1, Xn+2 and so forth in the trajectory of a state-space
GP one has to repeatedly map the state Xn through the
distribution of nonlinear functions represented by the GP.
For continuous models, the difficulty increases further. To
compute subsequent states, we must compute a distribution
of gradients f(X) for the state X , which needs to be com-
bined with the distribution of current state Xn as seen in (2).
For higher-order methods, additional gradient distributions
at intermediate states are required.

To our knowledge, this work is the first to consider ap-
proximate uncertainty propagation through numerical in-
tegrators for ODEs. However, there has been some work
on uncertainty propagation in state-space GPs. Girard et al.
published a series of results on approximating the output
distribution when mapping a normal distribution through
a GP, within the context of making iterative multiple-step-
ahead predictions for discrete models. In Girard et al., 2002
the authors derive an approximation for the mean and vari-
ance of the output based on Taylor series approximations
of the predicted mean and variance, using derivatives for
the GP kernel function. A subsequent result in Girard et
al., 2003 showed that when using the squared exponential
kernel specifically, the mean and the variance of the out-
put distribution can be obtained analytically. These results
are called moment matching in Kamthe et al., 2017. Other
work has applied sampling-based approaches to estimate
uncertainty in state-space GPs [Hewing et al., 2020] and for
continuous GP dynamics [Hegde et al., 2022].

The combination of ODEs and GPs has also been considered
in the context of probabilistic numerics. Well-known ex-
amples include Schober et al., 2014 and the work mentioned
in Hennig et al., 2022. At a high level, ODE solvers un-
der the probabilistic numerics umbrella consider a fully
deterministic model and describe the continuous solution
or trajectory as a Gaussian Process. Each discrete iteration
step of the solver is then seen as a noisy observation, which
makes it possible to quantify the uncertainty in the trajectory
introduced by the integration algorithm. However, the set-
ting in our work is orthogonal. The model itself is uncertain
and we aim to include this uncertainty at least approximately
in the trajectory prediction.

We briefly summarize the setting in this paper. We assume
that the data-generating system has an unknown, but determ-
inistic, dynamical system model. Given noisy observations,
we express the different possible models and their likeli-
hood as a distribution, represented for example by a finite
GP conditioned on collected data.

For simplicity, we completely omit all hyperparameter train-
ing and data conversion. Instead, we assume that model
distribution is given, which allows us to focus on how to
compute trajectory uncertainty from the model uncertainty.

Our main contributions are the following: We show that
existing approaches to uncertainty propagation based on
approximating the output distribution of the exact model as-
sume the independence of the state and the model, and how
this affects the predicted trajectory distribution. We further
propose an alternative approach based on a piecewise linear
model approximation that can be solved exactly, resulting
in what we call the PULL (Propagating Uncertainty through
Local Linearization) class of solvers. We demonstrate the
effectiveness of the PULL version of the explicit Euler and
include discussions on its convergence and limitations.

2 REVIEW

2.1 GAUSSIAN PROCESSES

We review briefly the basics of GPs [Rasmussen et al., 2006].
We assume we have N output observations yi = f(xi) + ϵi

with Gaussian noise ϵi ∼ N (0, σ2
n) for known inputs xi to

an unknown function f : Rm → Rd. We express f as a GP,
i.e. as a distribution over functions. We specify a prior P(f)
via a mean function m(x), generally assumed to be zero,
and a kernel function k(x, x′), which uniquely determines a
Reproducing Kernel Hilbert Space containing all possible
realizations of f .

For any finite subset of random variable outputs f i cor-
responding to known inputs xi the GP determines a joint
Gaussian distribution, and by conditioning on the initial ob-
servations D = (xi, yi) we obtain the posterior distribution
P(f |D), which allows us to predict the output f(x̂) at a new
input x̂. Since we are considering a distribution of functions,
we will obtain a distribution of outputs with the mean µf (x̂)
and variance σ2

f (x̂) determined by

µf (x̂) = Kx̂,x(Kx,x + σ2
nI)

−1y (4a)

σ2
f (x̂) = Kx̂,x̂ −Kx̂,x(Kx,x + σ2

nI)
−1Kx,x̂ (4b)

where x = [x1, . . . , xN], y = [y1, . . . , yN], and Kx,x′ =
[k(xi, x′j)]i,j is the kernel or covariance matrix. The most
common kernel is the squared exponential kernel

k(x, x′) = exp

(
−1

2
(x− x′)TW−1(x− x′)

)
, (5)

where W = diag(w1, . . . , wM) is the diagonal matrix of
length scales. We also use this kernel in our work, but our
results can be applied for any kernel that is at least once
differentiable.

In the context of dynamical systems the input and out-
put dimensions are equal, hence m = d. A number of

vector-valued kernels exist Alvarez et al., 2012, but it is
often assumed that each output can be treated independ-
ently with d GPs f : Rm → R. For this work, we consider
only one-dimensional dynamical systems and therefore one-
dimensional GPs.

2.2 SAMPLING GAUSSIAN PROCESSES

GPs are distributions over function spaces which are gener-
ally infinite-dimensional and therefore inherently difficult
to sample numerically. The standard option [Wilson et al.,
2020] to compute the output of function realizations f∗

at specified input locations x∗ from the posterior distribu-
tion, is to generate normally distributed random variables
ζ ∼ N (0, I), and transform them according to the GP pos-
terior such that

f∗|y,x, x∗ = m∗ +K
1/2
∗,∗ ζ. (6)

Here, (·)1/2 indicates a matrix square root such as the
Cholesky factor, m∗ is the GP mean µf (x

∗) from (4a) and
K∗,∗ is the covariance matrix for the sample input x∗ via
(4b). In essence, this is a grid-based approach which, while
numerically exact, is computationally costly as it scales
cubically with the number of function values sampled. To
evaluate a function sample f∗ at arbitrary locations between
grid points one can use standard interpolation methods.

To mitigate the cubic scaling, alternative algorithms have
been developed. Wilson et al. Wilson et al., 2020 propose a
combination of decoupled bases, specifically Fourier basis
functions Rahimi et al., 2007, and kernel bases via a sparse
GP approach. This has been used in other recent work Hegde
et al., 2022; Ensinger et al., 2022 in the context of vector
field models.

An approach of this kind was also mentioned in Hewing
et al., 2020, along with a memory-based approach, which
generates samples subsequently while conditioning each
sample on at least some previous ones. It has also been
used for uncertainty propagation in continuous dynamics
[Ridderbusch et al., 2021].

For this work we will use samples via (6) as a source of
ground truth for comparison, since it is the most accurate
option to compare with.

3 A LINEAR PERSPECTIVE

We begin with the simplest possible example, a prototyp-
ical linear model. We highlight the expected behaviour and
introduce the approach by Girard et al., 2002 based on ap-
proximating the output distribution of each subsequent state.
We then illustrate an issue with this approach for the predic-
tion of trajectory uncertainty.

−0.2 −0.1 0.0 0.1 0.2

−0.50

−0.25

0.00

0.25

0.50

x

f(x
)

b=-0.25
b=-0.125

b=0.0
b=0.125
b=0.25

N (−ax, β)

0.0 0.5 1.0 1.5 2.0

−0.1

0.0

0.1

0.2

0.3

0.4

time t

x

N (µ0,Σ0)

N (0, β/a2)

a

b

Figure 1: Linear Prototype. a: The distribution of linear
ODEs. b: Solving sampled linear ODEs for a distribution
of initial values N (µ0,Σ0) shows trajectories converging
to the model parameter-dependent fixed point distribution.

3.1 A LINEAR PROTOTYPE

Consider a distribution of stable linear ODEs of the form

f(x) = −ax+B, with a ∈ R+, B ∼ N (0, β), (7)

shown in Fig. 1a, whose mean and variance are

µ(x) = −ax and σ2(x) = β. (8)

The fixed point distribution of this distribution of ODEs is

X̂ ∼ N (0, β/a2), (9)

which matches the behaviour shown in Fig. 1b. There, we
sample realizations b of B to obtain deterministic linear
ODEs, which we can solve for realizations x0 of the initial
value distribution X0 ∼ N (µ0,Σ0). As we will discuss in
more detail in the following, the effect of the initial value
is transient and trajectories converge to a fixed point only
depending on the realization of the model variable B.

3.2 APPROXIMATING THE OUTPUT
DISTRIBUTION

Although the distribution of each subsequent state random
variable Xn is generally not normally distributed, the idea
of Girard et al., 2003 is to compute the mean and variance
of each subsequent state of a discrete model (3) and ap-
proximate its unknown general distribution with normal
distribution with the same moments. In this section, we
extend this idea to trajectories resulting from numerically
integrating continuous models.

For the example of the explicit Euler method (2), a naive
approach would be to use moment-matching to approximate

f(Xn) and then compute the sum of Xn and f(Xn) as the
sum of two independent normal random variables. However,
this leads to incorrect variance growth over time, as they are
clearly correlated. Instead, we extend the idea to the function
g(x) = x + hf(x) and compute the mean E[g(Xn)] and
variance var(g(Xn)) to once again approximate the general
distribution of g(Xn) with a normal distribution.

Let the input Xn be

Xn ∼ N (νn,Σn). (10)

The output of the GP for a specific sample x∗ of Xn is then

f(x∗) ∼ N (µ(x∗), σ2(x∗)). (11)

The distribution of Xn+1 = g(Xn) will generally not
be normal, but we can at least compute its mean
νn+1 = E[Xn+1] and variance Σn+1 = var(Xn+1).

From the law of iterated expectations it follows that the
mean of the output distribution of one Euler step is given by

νn+1(νn,Σn) = E [Xn + hf(Xn)]

= νn + hE[µ(Xn)] (12)

The corresponding variance is given by

Σn+1(νn,Σn) =var
(
Xn + hf(Xn)

)
= var(Xn) + h2var

(
f(Xn)

)
+ 2h cov

(
Xn, f(Xn)

)
(13)

and from the law of total variance it follows that

var(f(Xn))

= E
[
σ2(Xn)

]
+ E

[
µ(Xn)

2
]
− E [µ(Xn)]

2
. (14)

This leaves the covariance between Xn and f(Xn). The law
of total covariance states that

cov (Xn, f(Xn)) = covXn (Ef [Xn|Xn],Ef [f(Xn)|Xn])

+ EXn [covf (Xn, f(Xn)|Xn)] (15)

The first term can be written as

covXn
(Ef [Xn|Xn],Ef [f(Xn)|Xn])

=E [Xnµ(Xn)]− νnE [µ(Xn)] , (16)

and the second part resolves to

EXn
[covf (Xn, f(Xn)|Xn)]

=EXn

[
Ef [Xnf(Xn)|Xn]

]
− EXn

[
Xnµ(Xn)

]
. (17)

We further write

Ef [Xnf(Xn)|Xn = xn]

=
1

ϕXn(xn)

∫
xnf̂(xn) ϕXn,f (xn, f̂)df̂ (18)

where f̂ is a realisation of f , ϕXn is the probability density
of Xn and ϕXn,f the joint probability density of f and Xn.

The independence assumption If Xn and f are inde-
pendent, the joint distribution simplifies to

ϕXn,f (xn, f̂) = ϕXn
(xn)ϕf (f̂), (19)

and we find

Ef [Xnf(Xn)] = Xnµ(Xn) (20)

Inserting (20) into (17), which is further inserted with (16)
into (13), results in

Σn+1(νn,Σn) = Σn

+ h2
(
E[σ2(Xn)] + E[µ(Xn)

2]− E[µ(Xn)]
2
)

+ 2h
(
E[Xnµ(Xn)]− νnE[µ(Xn)]

)
.

(21)

This is the direct extension of the original moment-matching
approach in Girard et al., 2003 and Groot et al., 2011.

The dependence of Xn and f However, this independ-
ence assumption is incorrect in general for trajectory pre-
dictions. The state Xn is a function of the initial value and,
critically, of the model f , resulting from telescope expres-
sion

Xn = Xn−1 + hf(Xn−1)

=Xn−2 + hf(Xn−2) + hf(Xn−2 + hf(Xn−2)) = . . .

=Xn(f,X0). (22)

This means, to correctly compute the expected value over f
in (18), we must incorporate (22) and somehow compute or
approximate the resulting expression. Given the substantial
difficulty of this, just using (21) is attractive. However, we
will show in the following section that doing so leads to an
incorrect behaviour that cannot be neglected, even for the
simplest possible model.

3.3 RETURNING TO THE LINEAR PROTOTYPE

We return now to the simple linear model (7). The analytical
solution for the flow of (7) is

φt(X0) = e−at X0 +
B

a
(1− e−at). (23)

We assume that the initial value and the model parameter
B are independent, so cov(X0, B) = 0. This results in the
time-dependent mean and variance

νt = E[φt(X0)] = e−at µ0 (24a)

Σt = var(φt(X0))

= e−2at Σ0 +
β

a2
(1− e−at)2. (24b)

The expected values from the previous sections resolve to

E[µ(Xn)] = −aνn (25a)

E[σ2(Xn)] = β (25b)

E[µ(Xn)
2] = a2(Σn + ν2n) (25c)

E[Xnµ(Xn)] = −a(Σn + ν2n), (25d)

0.0 0.5 1.0 1.5 2.0
0.000

0.001

0.002

0.003

time t

m
ea

n
er

ro
r

0.0 0.5 1.0 1.5 2.0
0.000

0.005

0.010

0.015

0.020

time t

va
ria

nc
e sampling

2h
h

h/2

0.0 0.5 1.0 1.5 2.0
0.000

0.005

0.010

0.015

time t
va

ria
nc

e

sampl.
trans.
asym.
restart

0.0 0.5 1.0 1.5 2.0

0.005

0.010

0.015

0.020

time t

va
ria

nc
e

analytic
sampling, 500k
sampling, 50k

flow steps
corr. euler, h

corr. euler, h/2
corr. euler, h/4

0.0 0.5 1.0 1.5 2.0
0.00

0.02

0.04

0.06

0.08

er
ro

r

a1

a2

b c

Figure 2: Computing Trajectory Distributions a: With the independence assumption, decreasing the Euler step size
decreases the mean error. However, the variance is vastly underestimated, and the error increases with smaller step sizes due
to (26b). The reason is shown in b, where the black line represents the sampling result, with three restarts, each time again
sampling from the final distribution of the previous segment. It matches the sum of the analytic transient and asymptotic
terms. c: Iterating the flow and taking Euler steps with the correct covariance, we obtain results that match the analytic
solution and sampling. Decreasing the step size correctly reduces the variance error compared to the analytic solution.

which turns (12) and (21) into the iterations

νn+1 = (1− ah)νn (26a)

Σn+1 = Σn + h2β + h2a2Σn − 2haΣn. (26b)

Here we get the first indication that (21) is incorrect in this
context. While the exact flow (24b) results in the fixed point

Σ̂exact =
β

a2
, (27)

which matches the variance of (9), the variance iteration
map (26b) results in

Σ̂euler =
β

a2

(
ah

2− ah

)
. (28)

The Euler steps converge to a fixed point distribution that
depends on the step size h, which is also visible in Fig.
2a. Even worse, the variance is vastly underestimated over
the entire time span, and the error gets larger as the step
size decreases. This is problematic – the error of a method
should generally not increase with smaller step sizes.

Remarkably, we obtain a similar behaviour if we consider
(24b) as an iterable function of the state Xi and step size h,

Σh
Xn

= e−2ah Σn +
β

a2
(1− e−ah)2. (29)

This map can be viewed as equivalent to repeatedly applying
a state-space GP. It has the fixed point

Σ̂iter. flow =
β

a2
tanh

(
ah

2

)
(30)

This is surprising, since the analytical flow map should have
the semi-group property, such that (φt◦φs)(X0) = φt+sX0.
There should be no difference between applying the flow
over multiple smaller intervals or over one large interval.

To understand this behaviour, observe that (23) is a sum of
two terms. For stable systems, the first term captures the
transient effect of the initial value, and the second term
the asymptotic behaviour set by the model parameter B.
When applying the flow to the state Xn instead of the initial
value X0, the state has already been affected by the model
and at least some of its uncertainty is asymptotic. The it-
erative schemes above are equivalent to restarting with an
independent initial value after each time step (see Fig. 2b).

The repeated transient explains the additional factor in
Σ̂iter. flow, as smaller step sizes correspond to more "restarts"
in the same time period. For ah → ∞, we see either larger
steps or faster dynamics, such that the transient behaviour
fully decays in each step. The additional factor in Σ̂euler

similarly depends on ah. However, the expression fails for
ah → 2, the stability limit of the explicit Euler.

Therefore, the discrepancy between (27), (28) and (30)
arises from the covariance between the states and the model
parameter, as mentioned at the end of the previous section.
While it is valid to assume that cov(X0, B) = 0, all sub-
sequent states Xi depend on the model, in this case on the
random model parameter B, which means that they are not
independent. Instead, we find

cov(Xn, B) = cov
(
e−anh X0 +

B

a
(1− e−anh), B

)
=

β

a
(1− e−ahn) (31)

Adding this covariance to (29), we get

Σh
Xn

= e−2ah Σn +
β

a2
(1− e−ah)2

+ 2
β

a2
(1− e−ah) e−ah(1− e−ahn) (32)

If Xn is the result of subsequent Euler steps,

Xn =Xn−1 + h(−aXn−1 +B)

= (1− ah)Xn−1 + hB (33)

using a telescope sum we find cov(Xn, B)

cov(Xn, B) = cov ((1− ah)Xn−1 + hB, B)

= (1− ah)cov(Xn−1, B) + h cov(B,B) = . . .

=(1− ah)n cov(X0, B)︸ ︷︷ ︸
0

+ h

n−1∑
i=0

(1− ah)n−1−i cov(B,B)︸ ︷︷ ︸
β

. (34)

We insert this into the corrected version of (26b)

Σn+1 =(1− ah)2Σn + h2β

+ 2h(1− ah)cov(Xn, B). (35)

We show the results of using (32) and (35) in Fig. 2c. The
variance from the iterative solutions matches the analytic
solution and the variance of the sampled solutions (see Fig.
2c), and decreasing the step size correctly decreases the
variance error. We also note that despite the simplicity of
the model, we need to draw a substantial number of samples
to match the analytical results.

This result is noteworthy beyond continuous dynamics. Ap-
plying a flow map like (29) with some fixed step size h
iteratively without the additional covariance term is equi-
valent to repeatedly applying a learned state-space GP, as
proposed in Girard et al., 2003 and applied in Kamthe et al.,
2017. This has has previously been observed by for example
Ialongo et al. Ialongo et al., 2019, but attributed to the use
of variational methods.

4 LOCAL LINEARIZATION

In this section, we address the general case of model distri-
butions represented by a GP. Even discarding the correlation
with past states, to use (12) and (21) to compute values for
the mean νn+1(νn,Σn) and the variance Σn+1(νn,Σn),
we need expressions for the expected values E[µ(Xn)],
E[σ2(Xn)], E[µ(Xn)

2] and E[Xnµ(Xn)]. For the first three
terms, we can find analytical expressions in Girard et al.,
2002 for the squared exponential kernel, and approximate
expressions using linearization for all other kernels in Girard

et al., 2003. In Groot et al., 2011 we also find the previously
listed expressions for the squared exponential kernel and an
expression for the term E[Xnµ(Xn)].

However, we demonstrated in the previous section that we
must include the correlation between the state and the model
to accurately compute a trajectory, which means finding an
approximation of (17), which might be nearly intractable.

Instead, we propose side-stepping the issue by approximat-
ing the entire GP model. Specifically, we propose a piece-
wise linear approximation of the GP, defining a series of
linear ODEs, which allows us to exactly propagate a normal
distribution though each piece. In other words, we approx-
imate the model as a whole with a linearized model for
which we can compute exact state distributions.

We linearize around νi and define

fi(x) = aix+Bi, X(0) = Xi, t ∈ [ti, ti + h), (36)

where

ai = µ′
f (νi), (37)

Bi ∼ N
(
µf (νi)− aiνi, σ

2
f (νi)

)
, (38)

similar to (7). While it would be more accurate to treat ai
as a random variable, similar to the linGP in Nghiem, 2019,
this would introduce additional complexity via the product
of two random variables and additional covariances.

This approximation allows us to define the PULL (Propaga-
tion of Uncertainty through Local Linearization) class of
ODE solvers for continuous GP models of ODEs. However,
it is currently not clear whether a similar approximation
can be found for state-space GPs in order to incorporate the
correlation with past states.

4.1 EXPLICIT EULER METHOD

Taking Euler steps on each linear sections results in the
iterative scheme

νn+1 =νn + hµf (νn) (39a)

Σn+1 =(1 + anh)
2Σn + h2σ2

f (νn)

+ 2h(1 + anh) cov(Xn, Bn). (39b)

We use a telescope sum as in (34) for the covariance in (39b)
and obtain

cov(Xn, Bn) = h

n−1∑
i=0

n−1∏
j=i+1

(1 + ajh) cov(νi, νn). (40)

This expression requires storing all previous ai, but as we
store all trajectory states Xi, the storage requirements for
the solver already scale linearly with the number of steps
taken. The bigger challenge is computing the covariances

−4 −2 0 2 4
−4

−2

0

2

4

x

f(x
)

GP mean + 2σ
samples

data

0.0 2.5 5.0 7.5 10.0

0.50

0.75

1.00

1.25

1.50

1.75

time t
tr

aj
ec

to
ry

x(
t)

density
sample mean

sample std dev
PULL Euler mean

PULL Euler std. dev.

1.3 1.4 1.5 1.6 1.7 1.8
0
1
2
3
4
5
6

state x(2.5)

pr
ob

ab
ili

ty

0.0 2.5 5.0 7.5 10.0

0.025

0.050

0.075

0.100

0.125

time t

st
an

da
rd

de
vi

at
io

n

fixed point
sampling

PULL Euler (39)
MM (21)

no cov PULL Euler
MM (21) h/2

no cov PULL Euler h/2

a b c

Figure 3: Nonlinear example. a: The example function, including the noisy data points, the mean and the variance of the
GP and a few samples from the GP distribution. b: The distribution of the trajectories resulting from the GP samples, as well
as their mean and standard deviation. We compare with the results from the approximate local linearization-based solver. c:
The standard deviation resulting from sampling (ground truth), PULL Explicit Euler with full history, as well as the output
approximation approach and PULL Euler without using any past points for two different step sizes each.

cov(νi, νn) between the current state and all previous ones.
This is done via (4b) which means that the complexity scales
quadratically with the number of steps already taken.

To reduce this effort, there are two reasons to consider trun-
cating the series in (40). Firstly, we often operate within the
basin of attraction of a fixed point. Then it will generally be
the case that ai < 0 and

∏n−1
j=i+1(1+ajh) → 0 for n → ∞.

Secondly, when using a stationary kernel for the GP, the co-
variance is determined by the distance of the two points,
where distant points are assumed to be nearly uncorrelated,
which means cov(νi, νn) ≈ 0 for i ≪ n.

Both terms have complementary behaviour. Under stable dy-
namics, successive xn will be close and therefore correlated,
but since we have ai < 0 we can truncate based on the first
term. Under unstable dynamics, we will have ai > 0, but
successive points will be further apart and the covariance
term decreases faster.

As the terms of the series are simple to compute, it is pos-
sible to implement adaptive truncation or include adaptive
step sizes. We also note that we have made no assumption
about the underlying kernel beyond stationarity.

5 NUMERICAL EXPERIMENTS

In this section we illustrate the effectiveness of our PULL
explicit Euler with a numerical example. 1

1The results shown in this work were computed on an AMD
Ryzen 3900, using up to 10 threads. The code and notebooksgl
to reproduce these results can be found under github.com/
Crown421/the-past-does-matter-paper

5.1 A NONLINEAR EXAMPLE

We consider the ODE

ẋ = x cos(x), (41)

and sample 9 data points in the interval [−4, 4] and con-
dition a GP with zero mean and the squared exponential
kernel (5). Via (6), we generate 5000 samples (as seen in
Fig. 3a) and integrate each one with initial values from 150
samples of the input distribution N (0.6, 0.07), resulting in
an empirical distribution of trajectories. We also apply the
PULL explicit Euler to the same GP, starting from the same
initial distribution, and find in Fig. 3b that the results agree.

We also apply the moment-matching extension (21) of the
output approximation by Girard et al., 2003 and Groot et
al. Groot et al., 2011, using their expressions for (25) in the
special case of the squared exponential kernel. The results
differ substantially from the sampling-based ground truth,
and match our solver when excluding past states (Fig. 3c).

We show the behaviour of moment matching and our PULL
Euler in Tab. 1 with changing the step size, comparing
with the prediction from sampling with a very high number
of samples. A proper numerical solver should improve in
accuracy with decreasing step size, which is the case for
our PULL Euler (see also Fig. 4a-b), but for the moment-
matching variance prediction the opposite happens.

Further, we note that our PULL explicit Euler method re-
turns accurate results as the estimated trajectory distribution
converges towards a model-dependent fixed point distribu-
tion. The approximation slightly underestimates variance
compared to the ground truth sampling, likely due to linear-
ization error and can potentiallys be improved upon.

Table 1: Convergence of the L1 error (10−3): We com-
pare the L1 error of the mean and variance prediction of the
PULL Euler (39) and moment matching (MM) (21) to the
mean and variance obtained from a large number of samples
(5000 GP samples and 200 samples of initial value distri-
bution N (1.0, 0.07)) for the time interval (0.0, 3.0). Both
approximate methods have the same error for the mean pre-
diction, but for MM the variance prediction becomes worse
with smaller step sizes. See also Fig. 2a and Fig. We also
include the computation time for each step size.

Step Size 0.01 0.025 0.05 0.01 0.2
mean 7.76 8.80 10.53 13.99 20.85

var (PULL) 0.63 0.65 0.72 0.99 1.79
Time [ms] 14.4 2.8 1.1 0.53 0.35
var (MM) 25.20 24.40 18.94 13.98 8.03
Time [ms] 3.9 1.7 0.82 0.42 0.23

Tab. 1 also includes the computational cost of our PULL
Euler, which is the low millisecond range using only a single
thread as the algorithm is non-parallelizable. In Tab. 2 and 3
we study how the accuracy compared to a PULL Euler solu-
tion with a small step size and computational cost change
with the number of samples used. The results are very prom-
ising, as using more samples reduces the error to the PULL
Euler solution, while requires substantially more compute
time, even while using 10 threads.

5.2 LIMITATIONS

The linearization-based approach detailed in this work has
substantially lower computational cost than a sampling-
based approach, but has a fundamental limitation. While
linear models only have a single fixed point, nonlinear mod-
els introduce a variety of additional behaviours, such as
multiple fixed points and complex basins of attraction.

In the model (41) from section 5.1, there is an unstable fixed
point in 0 (see Fig. 3a). Trajectories starting to the right of
it will converge towards π/4 and ones starting on the left of
0 will converge towards −π/4. Therefore, the distribution
of trajectories starting from a distribution of initial values
near 0 will be bi-modal, as shown in Fig. 4c. This behaviour
cannot be captured by a linear approximation that assumes
a uni-modal distribution for all states.

Still, Fig. 4c highlights the usefulness of our efficient ap-
proximate solver. Solving the deterministic ODE defined
the GP mean would completely miss the presence and ef-
fects of the unstable fixed point. Similarly, a UniversalODE
[Rackauckas et al., 2020] using a Neural Network would
also be oblivious to the presence of this unstable fixed point.

Our solver converges to the right fixed point, as the initial
value distribution has its mean to the right of 0, but the
standard deviation shows substantially increased initial un-

certainty compared to the previous result in Fig. 3b. This
provides a strong hint of non-linear behaviour, which can be
investigated further with a more expensive sampling-based
method.

6 CONCLUSION

Accurately integrating dynamical systems expressed by GPs,
either by numerically integrating a continuous vector field
or subsequently applying a learned flow map, introduces a
correlation between the GP distribution of functions and sub-
sequent states. Using a linear prototype, we demonstrated
that the approach in previous work incorrectly assumes inde-
pendence between the distribution of the states and the GP,
resulting in an underestimation of the trajectory variance.

We derived and illustrated the correct correlation for a
simple linear model, and leveraged those findings to create
a local linearization that can be combined with numerical
integrator methods to create computationally efficient and
accurate solvers, called PULL solvers.

A possible application for these solvers is incorporating
them into a complete pipeline from data to predictions. We
can create a likelihood-based cost function for training GP-
based models with the predicted distribution of trajectories,
as an alternative to multiple shooting methods [Hegde et al.,
2022]. Once a model distribution is identified, we can make
ahead-of-time predictions for model predictive control and
take the prediction uncertainty into account when choosing
a control strategy.

Our results are very promising and highlight a fundamental
consideration for predicting trajectories for GP-learned dy-
namical systems, suggesting several extensions. To develop
methods with higher convergence order, one could im-
prove the piecewise linear approximation or combine it
with higher-order integration methods.

Extending this work to higher dimensions introduces a non-
zero correlation between the components of each state Xn

and requires additional research. This correlation is not
present in previous work due to using the independence
assumption in (17).

Another interesting option is to combine our estimation of
the model uncertainty with probabilistic numerics [Hennig
et al., 2022]. This would quantify the total uncertainty intro-
duced by both the model, due to insufficient data, and the
solver algorithm.

Lastly, a more in-depth study of the effects of the inde-
pendence assumption in the context of state-space GPs is
needed, as a smaller step size of the flow map often implies
a higher measurement frequency in the time series data. The
resulting higher density of data already decreases the model
uncertainty, and might partially mask the underestimation
of the trajectory uncertainty .

0.0 2.5 5.0 7.5 10.0

−15

−12

−9

−6

time t

lo
g

m
ea

n
er

ro
r

sampling
h = 0.2
h = 0.1
h = 0.05
h = 0.025

0.0 2.5 5.0 7.5 10.0

0.050

0.075

0.100

0.125

0.150

time t
st

an
da

rd
de

vi
at

io
n
σ

0.0 2.5 5.0 7.5 10.0
0.000

0.002

0.004

0.006

0.008

0.010

0.012

time t

er
ro

r

0.0 2.5 5.0 7.5 10.0
−2

−1

0

1

2

time t

tr
aj

ec
to

ry
x(

t)

mean
std. deviation
PULL Euler

std. deviation

a b c

Figure 4: PULL Euler Convergence and Limitations a: The logarithmic error of the solver compared to the solution of
the ODE defined by the GP mean. Decreasing the step size also decreases the mean error. b: The variance computed by
our PULL solver is close to the sampling result. c: Near an unstable fixed point, the sampled distribution of trajectories
bifurcates towards the two nearby stable fixed points, while the linear approximation can only capture a single one. However,
the increased transient variance compared to Fig. 3b indicates hidden nonlinear dynamics.

Table 2: Computation time and convergence of the L1
error (10−2) with increased sampling for a deterministic
initial value: We compare the trajectory mean and variance
predicted via sampling to the PULL Euler prediction with a
small step size h = 0.001, for the deterministic initial value
x0 = 1.0 and the time interval (0.0, 3.0). To improve the
accuracy we increase the number of both the equidistance
sampling locations (s. loc.) in (6) for a given GP sample,
and the number of GP samples which produce one traject-
ory each. As sampling is non-deterministic, we repeat each
prediction five times and also show the computation cost.
We see that while the performance matches the PULL Euler,
the computation cost is higher in all cases (cf. Tab. 1).

Mean Number of GP samples
s. loc. 500 1000 2000

4 1.39±3.9e-3 1.41±2.9e-3 1.40±1.6e-3
6 11.28±3.5e-3 11.30±1.6e-3 11.27±2.9e-3
8 1.32±2.1e-3 1.21±3.8e-3 1.25±1.0e-3

10 0.49±3.4e-3 0.45±2.3e-3 0.44±2.3e-3
Var Number of GP samples

s. loc. 500 1000 2000
4 1.45±2.9e-3 1.48±1.7e-3 1.51±2.7e-4
6 2.04±3.2e-3 2.09±3.2e-3 2.10±1.2e-3
8 1.59±2.9e-3 1.60±1.9e-3 1.57±5.8e-4
10 1.24±1.2e-3 1.21±1.3e-3 1.22±8.5e-4

Time [ms] Number of GP samples
s. loc. 500 1000 2000

4 63±54 93±42 186±59
6 65±50 113±58 196±58
8 61±46 93±47 212±5
10 40±0.7 94±48 175±53

Table 3: Computation time and convergence of the L1
error (10−3) with increased sampling for a initial value
distribution: We use the same setup as in Tab. 2, with
the difference that we have an initial value distribution
x ∼ N (1.0, 0.7) that we sample an increasing number of
times (in. s.) and the equidistance sampling locations are
fixed to 11. Instead, we need to sample The error decreases
with additional samples, apart from some outlier which are
most likely caused by insufficient sampling. However, the
computational cost is substantially higher than for the PULL
Euler (cf. Tab. 1).

Mean Number of GP samples
in. s. 500 1000 2000
50 4.76±4.7e-2 1.1e-1 6.07±9.6e-2
100 8.1±7.5e-2 6.25±4.8e-2 5.12±6.0e-2
150 6.06±9.0e-2 8.08±5.4e-2 5.81±7.8e-2

Var Number of GP samples
in. s. 500 1000 2000
50 2.05±4.5e-2 1.4±5.7e-2 0.44±2.8e-2

100 0.55±5.5e-2 1.24±3.0e-2 0.51±4.7e-2
150 0.68±2.8e-2 1.45±3.8e-2 0.39±3.4e-2
Time [s] Number of GP samples

in. s. 500 1000 2000
50 1.8±0.14 3.6±0.03 7.1±0.09
100 3.6±0.05 7.2±0.08 14.4±0.11
150 5.3±0.09 10.8±0.13 21.7±0.08

Acknowledgements

S.R. acknowledges funding by the EPSRC Centre for Doc-
toral Training in Autonomous Intelligent Machines & Sys-
tems EP/L015897/1.

REFERENCES

Ridderbusch, S., Offen, C., Ober-Blöbaum, S., Goulart, P.
(Dec. 2021). ‘Learning ODE Models with Qualitative
Structure Using Gaussian Processes’. 2021 60th IEEE
Conference on Decision and Control (CDC).

Heinonen, M., Yildiz, C., Mannerström, H., Intosalmi, J.,
Lähdesmäki, H. (12th Mar. 2018). ‘Learning Unknown
ODE Models with Gaussian Processes’. arXiv: 1803.
04303.

Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov,
K., Supekar, R., Skinner, D., Ramadhan, A. (13th Jan.
2020). ‘Universal Differential Equations for Scientific
Machine Learning’. arXiv: 2001.04385.

Banks, H. T., Hu, S. (2012). Uncertainty Propagation and
Quantification in a Continuous Time Dynamical System.

Guckenheimer, J., Holmes, P., Guckenheimer, J., Sirovich, L.
(2013). Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields. New York, NY: Springer.

Kamthe, S., Deisenroth, M. P. (20th June 2017). ‘Data-
Efficient Reinforcement Learning with Probabilistic
Model Predictive Control’. arXiv: 1706.06491.

Buisson-Fenet, M., Solowjow, F., Trimpe, S. (10th–
11th June 2020). ‘Actively Learning Gaussian Process
Dynamics’. Proceedings of the 2nd Conference on Learn-
ing for Dynamics and Control. Proceedings of Machine
Learning Research. The Cloud: PMLR.

Girard, A., Rasmussen, C. E., Murray-Smith, R. (2003).
‘Multiple-Step Ahead Prediction for Non Linear Dynamic
Systems – A Gaussian Process Treatment with Propaga-
tion of the Uncertainty’. Advances in Neural Information
Processing Systems.

Groot, P., Lucas, P., Bosch, P. (2011). ‘Multiple-Step Time
Series Forecasting with Sparse Gaussian Processes’.
http://allserv.kahosl.be/bnaic2011/.

Kocijan, J. (2015). Modelling and Control of Dynamic Sys-
tems Using Gaussian Process Models. Advances in In-
dustrial Control. Springer International Publishing.

Nghiem, T. X. (1st Oct. 2019). ‘Linearized Gaussian Pro-
cesses for Fast Data-driven Model Predictive Control’.
arXiv: 1812.10579 [cs].

Girard, A., Rasmussen, C. E., Candela, J. Q., Murray-Smith,
R. (2002). ‘Gaussian Process Priors with Uncertain In-
puts Application to Multiple-Step Ahead Time Series
Forecasting’. Advances in Neural Information Processing
Systems.

Hewing, L., Arcari, E., Fröhlich, L. P., Zeilinger, M. N.
(10th–11th June 2020). ‘On Simulation and Trajectory
Prediction with Gaussian Process Dynamics’. Proceed-
ings of the 2nd Conference on Learning for Dynamics
and Control. Proceedings of Machine Learning Research.
The Cloud: PMLR.

Hegde, P., Yıldız, Ç., Lähdesmäki, H., Kaski, S., Heinonen,
M. (17th Aug. 2022). ‘Variational Multiple Shooting for
Bayesian ODEs with Gaussian Processes’. Proceedings

of the Thirty-Eighth Conference on Uncertainty in Arti-
ficial Intelligence. Uncertainty in Artificial Intelligence.
PMLR.

Schober, M., Duvenaud, D., Hennig, P. (24th Oct. 2014).
‘Probabilistic ODE Solvers with Runge-Kutta Means’.
arXiv: 1406.2582 [cs, math, stat].

Hennig, P., Osborne, M. A., Kersting, H. P. (2022). Prob-
abilistic Numerics: Computation as Machine Learning.
Cambridge: Cambridge University Press.

Rasmussen, C. E., Williams, C. K. I. (2006). Gaussian Pro-
cesses for Machine Learning. Adaptive Computation and
Machine Learning. Cambridge, Mass: MIT Press. 248 pp.

Alvarez, M. A., Rosasco, L., Lawrence, N. D. (16th Apr.
2012). ‘Kernels for Vector-Valued Functions: A Review’.
arXiv: 1106.6251 [cs, math, stat].

Wilson, J. T., Borovitskiy, V., Terenin, A., Mostowsky, P.,
Deisenroth, M. P. (16th Aug. 2020). Efficiently Sampling
Functions from Gaussian Process Posteriors. arXiv:
2002.09309 [cs, stat]. preprint.

Rahimi, A., Recht, B. (2007). ‘Random Features for Large-
Scale Kernel Machines’. Advances in Neural Information
Processing Systems. Curran Associates, Inc.

Ensinger, K., Solowjow, F., Ziesche, S., Tiemann, M.,
Trimpe, S. (9th Jan. 2022). ‘Structure-Preserving Gaus-
sian Process Dynamics’. arXiv: 2102.01606 [cs].

Ialongo, A. D., van der Wilk, M., Hensman, J., Rasmussen,
C. E. (13th June 2019). ‘Overcoming Mean-Field Approx-
imations in Recurrent Gaussian Process Models’. arXiv:
1906.05828 [cs, stat].

https://arxiv.org/abs/1803.04303
https://arxiv.org/abs/1803.04303
https://arxiv.org/abs/2001.04385
https://arxiv.org/abs/1706.06491
https://arxiv.org/abs/1812.10579
https://arxiv.org/abs/1406.2582
https://arxiv.org/abs/1106.6251
https://arxiv.org/abs/2002.09309
https://arxiv.org/abs/2102.01606
https://arxiv.org/abs/1906.05828

	Introduction
	Review
	Gaussian Processes
	Sampling Gaussian Processes

	A Linear Perspective
	A Linear Prototype
	Approximating the Output Distribution
	Returning to the Linear Prototype

	Local Linearization
	Explicit Euler Method

	Numerical Experiments
	A Nonlinear Example
	Limitations

	Conclusion

