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Abstract

Several out-of-distribution (OOD) detection scores have been recently proposed
for deep generative models because the direct use of the likelihood threshold
for OOD detection has been shown to be problematic. In this paper, we propose
a new OOD score based on a Bayesian hypothesis test called the locally most
powerful Bayesian test (LMPBT). The LMPBT is locally most powerful in that
the alternative hypothesis (the representative parameter for the OOD sample) is
specified to maximize the probability that the Bayes factor exceeds the evidence
threshold in favor of the alternative hypothesis provided that the parameter specified
under the alternative hypothesis is in the neighborhood of the parameter specified
under the null hypothesis. That is, under this neighborhood parameter condition,
the test with the proposed alternative hypothesis maximizes the probability of
correct detection of OOD samples. We also propose numerical strategies for more
efficient and reliable computation of the LMPBT for practical application to deep
generative models. Evaluations conducted of the OOD detection performance of
the LMPBT on various benchmark datasets demonstrate its superior performance
over existing OOD detection methods.

1 Introduction

In several real-world applications of deep learning models, detecting anomalous samples that signifi-
cantly deviate from the distribution of the training data, that is, out-of-distribution (OOD) samples,
is crucial for reliable decision making, and various OOD detection methods have been studied in
this regard. Deep generative models [9, 8, 17] have also been investigated for OOD detection as an
intuitive strategy owing to their ability to evaluate the likelihood of a test sample. However, recent
studies have shown that deep generative models can assign higher likelihoods to OOD samples
than in-distribution samples [12], causing the direct use of raw likelihoods for OOD detection to be
problematic.

To address this challenge, several OOD scores have been recently proposed for deep generative models
and have exhibited effective OOD detection performance [15, 16, 18]. Ren et al. [15] proposed the
use of the ratio of the likelihood obtained from a model trained using pure input data to that obtained
from a background model trained using noise-perturbed input data as an OOD score. Xiao et al. [18]
proposed a likelihood regret score that can be calculated as the difference between the likelihood
obtained with the optimized parameters for a test sample and that approximated by the VAE. Serrà
et al. [16] proposed a penalized log-likelihood with an input complexity as an OOD score, where the
input complexity can be computed as the normalized size of the compressed input image.

In this paper, we propose a new OOD detection method that is optimal in some sense in the framework
of a Bayesian hypothesis test—inspired by a uniformly most powerful Bayesian test [7] and a locally
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most powerful test [14]. The Bayesian hypothesis test is based on the ratio of the posterior odds
that the alternative hypothesis is true, given the observed data [3]. We formulate the OOD detection
problem as a Bayesian test with the null hypothesis that a test sample is an in-distribution sample and
the alternative hypothesis that the test sample is an OOD sample. Specifically, the null hypothesis is
specified to represent the model trained on the in-distribution training set by the maximum likelihood
estimation, as typically performed in previous studies. Against this specific null hypothesis, we
propose to specify the alternative hypothesis to represent the model trained on the expanded training
set with the test sample. Then, we show that the test with our proposed alternative hypothesis is
locally most powerful in that the alternative hypothesis is specified so as to maximize the probability
that the Bayes factor exceeds the evidence threshold in favor of the alternative hypothesis among all
alternative hypotheses that have the model parameters in the neighborhood of the model parameter
specified under the null hypothesis. That is, under this neighborhood parameter condition, the test
with the proposed alternative hypothesis maximizes the probability of the correct detection of OOD
samples. The proposed test is called the locally most powerful Bayesian test (LMPBT).

Because we specify the alternative hypothesis of the LMPBT for a test sample to represent the model
trained on the expanded training set with that test sample, we need to re-train the model for each test
sample. However, the computational cost of this retraining is significant. To address this issue, we
adopt the upweighting method [10]. Using this method, we analyze the influence of upweighting a
test sample on the parameter change and estimate the new parameters without retraining.

However, computational issues are encountered when the upweighting method is directly applied
in practice. First, the upweighting method involves the Hessian matrix, which is assumed to have
all positive eigenvalues. However, the loss function of deep generative models is known to be
nonconvex, and finding the global optimum is infeasible. Consequently, the Hessian can have negative
eigenvalues. Second, the upweighting method requires the computation of the inverse of the Hessian
matrix. However, deep generative models, which have numerous parameters, incur large costs for the
calculation of the Hessian and its inverse.

To address these issues, we use a low-rank approximation [2, 20, 21, 13] of the Hessian. Consequently,
we can ensure that the approximated Hessian has all positive eigenvalues and can significantly reduce
the computational cost for calculating the inverse of the Hessian. We evaluated the performance of
the LMPBT using deep generative models on benchmark datasets and demonstrated a more effective
OOD detection performance than competing methods. In summary, the contributions of this study are
as follows:

• We propose a new OOD detection method—the locally most powerful Bayesian test (LMPBT)—
that maximizes the probability of correct detection of OOD samples under some conditions.

• We address the computational issues encountered when practically implementing the LMPBT for
deep generative models.

• Evaluations conducted of the LMPBT using variational autoencoders (VAEs) [9] and Glows [8] on
benchmark datasets demonstrate state-of-the-art performance for OOD detection (the code for the
LMPBT is available at https://github.com/keunseokim91/LMPBT).

2 Background: Deep Generative Models

Generally, deep probabilistic generative models comprise two sub-models: a generative model and
an inference model. By introducing a latent variable z, the generative model defines the generative
process of x from z, whereas the inference model infers the distribution of x given z. For example, in
flow-based generative models, the generative and inference models are defined using an invertible
function f , which is composed of a sequence of invertible functions, f = f1 ◦ f2 ◦ ... ◦ fk. The
generative and inference processes between x and z can be expressed as

x
f1←→ h1

f2←→ h2 · · ·
fk←→ z,

where the latent variable z has a tractable density pθ(z). Then, the log probability density function of
the model given a sample x is given by

log pθ(x) = log pθ(z) + log

∣∣∣∣det

(
∂z

∂x

)∣∣∣∣ = log pθ(z) +

k∑
i=1

log

∣∣∣∣det

(
∂hi
∂hi−1

)∣∣∣∣ , (1)
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where we define h0 = x and hk = z.

In VAEs, the generative and inference processes are modeled using the encoder–decoder structure. We
assume that x|z ∼ pθ(x|z) and z ∼ p(z), where pθ(x|z) is parameterized using deep neural networks
with parameters θ and p(z) is a tractable prior distribution of z. The maximum likelihood estimate
(MLE) of θ requires maximizing the marginal likelihood pθ(x) =

∫
pθ(x|z)p(z)dz. However, this

computation is intractable, and variational inference is used to derive the evidence lower bound
(ELBO) as follows:

log pθ(x) ≥ Eqφ(z|x) [log pθ(x|z)−DKL(qφ(z|x)||p(z))] = ELBO, (2)

where the variational posterior gφ(z|x) approximates the true posterior pθ(z|x) and is parameterized
by deep neural networks with variational parameters φ and DKL is the Kullback–Liebler (KL)
divergence. By Eq. (2), the ELBO may be used as an approximation of the log-likelihood. Using
the exact likelihood in Eq.(1) and the approximated likelihood in Eq.(2), respectively, flow-based
generative models and VAEs are typically trained by minimizing the negative log-likelihood of the
training dataset {x1,x2, . . . ,xn} as a training loss:

−
n∑
i=1

logL(θ|xi) = −
n∑
i=1

log pθ(xi). (3)

3 Locally Most Powerful Bayesian Test for OOD Detection

We formulate the OOD detection problem as a Bayesian hypothesis test. We compare the null
hypothesis H0 that a test sample xt is an in-distribution sample and the alternative hypothesis H1 that
the test sample xt is an OOD sample. Specifically, we consider simple null and alternative hypotheses
as follows:

H0 : θ = θ0, (4)
H1 : θ = θ1,

where θ0 and θ1 are representative parameters of a deep generative model for the in-distribution and
OOD samples, respectively, and θ is a set of parameters from the parameter space Θ.

The Bayesian hypothesis test is based on the ratio of the posterior odds that the alternative hypothesis
is true given the observed data [3]. The posterior odds in favor of the alternative hypothesis equals
the Bayes factor multiplied by the prior odds in favor of the alternative hypothesis. When the null and
alternative hypotheses are both simple, the Bayes factor represents the ratio of the likelihoods of the
data evaluated under the two hypotheses. The posterior odds for our hypothesis test in Eq.(4) for the
test sample xt can be computed as

P (H1|xt)
P (H0|xt)

=
L(θ1|xt)
L(θ0|xt)

× P (H1)

P (H0)
. (5)

Here, P (Hi) is the prior probability for hypothesis Hi, and L(θ1|xt)/L(θ0|xt) is the Bayes factor in
favor of the alternative hypothesis, where L(θ1|xt) and L(θ0|xt) are the likelihoods of xt under H1

and H0, respectively.

To complete the test, we must specify θ0 and θ1, and the prior probabilities for H0 and H1. Typically,
θ0 is specified as the MLE, denoted by θ̂, which maximizes the log-likelihood function of the training
dataset {x1,x2, . . . ,xn} as follows:

θ̂ = argmax
θ∈Θ

n∑
i=1

logL(θ|xi). (6)

However, the specification of θ1 is difficult owing to the lack of information on the OOD samples. In
fact, the previous likelihood-ratio-based OOD detection methods [15, 16, 18] can be expressed using
the hypothesis test in Eq.(4) with different specifications of θ1. The OOD detection performance is
affected by the specification of θ1; thus, it is important to choose θ1 optimally.
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3.1 Proposed OOD score

In this paper, we propose a theoretically grounded method to specify θ1 optimally in some sense.
Specifically, we specify θ1 as the MLE of the expanded training set with the test sample xt, denoted
as θ̂t, as follows:

θ̂t = argmax
θ

[
logL(θ|xt) +

n∑
i=1

logL(θ|xi)

]
. (7)

Then, for each test sample xt, we need to solve the optimization problem in Eq.(7) to obtain θ̂t.
However, retraining the model for each test sample is computation-intensive. Instead, we use a
computational approximation for the solution of Eq.(7), which allows us to obtain θ̂t easily using the
already obtained θ̂. Specifically, we adopt the upweighting method [10] for the approximation. This
method analyzes the influence of a certain training data point on the parameter change by upweighting
the loss of that point. It is known that the influence of upweighting the loss of a training data point x
by scale ε is given by

dθ̂t
dε
|ε=0 = −H−1

θ̂
∇θ(− logL(θ̂|x)), (8)

where Hθ̂ = 1
n

∑n
i=1∇2

θ(− logL(θ̂|xi)) is the Hessian at θ̂ and ∇θ(− logL(θ̂|x)) is the loss
gradient at x with respect to θ. In our case, the training dataset Xn does not contain the test sample
xt; thus, the weight of xt in the training loss in Eq.(3) can be regarded as zero. Then, adding the loss
of xt to the training loss for Xn is equivalent to upweighting the loss of xt by 1/n. Finally, θ̂t can be
approximated as

θ̂t ≈ θ̃t = θ̂ − 1

n
H−1

θ̂
∇θ(− logL(θ̂|xt)). (9)

Finally, with the specification of θ0 = θ̂ and θ1 = θ̃t with the additional assumption of equal prior
probabilities for H0 and H1 (i.e., P (H1) = P (H2) = 0.5), we propose the log of the posterior odds
in Eq.(5) as an OOD score for test sample xt, denoted by S(xt), as follows:

S(xt) = − logL(θ̂|xt) + logL(θ̃t|xt). (10)

In the next section, we show that the test using the proposed OOD score in Eq.(10) maximizes the
probability that the alternative hypothesis is accepted when it is true (i.e., the probability of the correct
OOD sample detection) provided that the parameter specified under the alternative hypothesis is in
the neighborhood of the parameter specified under the null hypothesis.

3.2 Locally most powerful Bayesian test for OOD detection

Inspired by the uniformly most powerful Bayesian test [7] and the locally most powerful test [14],
we define the locally most powerful Bayesian test (LMPBT) for OOD detection.

Definition 3.1 (Locally most powerful Bayesian test (LMPBT) for OOD detection). Consider the
OOD detection test in Eq. (4) for test sample xt. Let θ∗ be the true parameter associated with xt. The
locally most powerful Bayesian test for evidence threshold γ > 0, denoted by LMPBT(γ), in favor
of the alternative hypothesis H1 : θ = θ1 against a fixed null hypothesis H0 : θ = θ0, is a Bayesian
hypothesis test in which the Bayes factor for the test satisfies the following inequality for any θ∗ ∈ Θ
and all alternative hypotheses H ′1 : θ = θ′1, under the condition 0 < d(θ′1, θ0) < δ, where δ is a
sufficiently small constant and d is a measure of the distance:

Pθ∗

[
L(θ1|xt)
L(θ0|xt)

> γ

]
≥ Pθ∗

[
L(θ′1|xt)
L(θ0|xt)

> γ

]
. (11)

That is, with a fixed null hypothesis H0 : θ = θ0, LMPBT(γ) is a Bayesian test in which the
alternative hypothesis H1 : θ = θ1 is specified to maximize the probability that the Bayes factor
L(θ1|xt)/L(θ0|xt) exceeds the evidence threshold γ for all possible values of the true parameter θ∗
associated with test sample xt, under the condition that θ1 is in the neighborhood of θ0.

Proposition 1. The test using the OOD score in Eq.(10) is LMPBT(γ), given a sufficiently large
training dataset.
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Proof. We prove that, in our OOD detection test with the specification of θ0 = θ̂ and θ1 = θ̃t for
the test sample xt, the Bayes factor L(θ̃t|xt)/L(θ̂|xt) satisfies the inequality in Eq.(11) by showing
that the Bayes factor in favor of the alternative H1 : θ = θ1 (i.e., L(θ1|xt)/L(θ̂|xt)) is maximized
when θ1 = θ̃t. Under the condition that θ1 is in the neighborhood of θ0 = θ̂, we can use the Taylor
expansion of logL(θ1|xt) at θ̂ as follows:

logL(θ1|xt) ≈ logL(θ̂|xt) + (θ1 − θ̂)T∇θ logL(θ̂|xt) +
1

2
(θ1 − θ̂)T (−Hθ̂)(θ1 − θ̂) +R(θ1).

Here, R(θ1) is the remainder term, which has an upper bound M
6 ||θ1 − θ̂||3 (Lagrange error bound

[6]), where M is an upper bound of the third derivative of the log-likelihood for ||θ1− θ̂|| < δ. With a
sufficiently small δ, the first and second terms will dominate the remainder term because higher-order
terms vanish much more rapidly, and the remainder term will be negligible. Then, the log-Bayes
factor can be approximated as

logL(θ1|xt)− logL(θ̂|xt) ≈ (θ1 − θ̂)T∇θ logL(θ̂|xt) +
1

2
(θ1 − θ̂)T (−Hθ̂)(θ1 − θ̂). (12)

To obtain θ1 that maximizes the log-Bayes factor, we find θ1 that makes the gradient of Eq. (12) equal
to zero. That is,

∇θ[logL(θ1|xt)− logL(θ̂|xt)] ≈ ∇θ logL(θ̂|xt) + (θ1 − θ̂)T (−Hθ̂) = 0. (13)

Subsequently, the solution to Eq. (13) is obtained as (θ1− θ̂) = −H−1

θ̂
∇θ(− logL(θ̂|xt)). To ensure

the condition 0 < d(θ1, θ̂) < δ for sufficiently small δ, we rescale (θ1 − θ̂) with a sufficiently small
constant ε as (θ1− θ̂) = −εH−1

θ̂
∇θ(− logL(θ̂|xt)). By setting ε = 1

n with a sufficiently large n, we
can obtain the desired result:

θ1 = θ̂ − 1

n
H−1

θ̂
∇θ(− logL(θ̂|xt)) = θ̃t.

In Definition 3.1, the Bayesian hypothesis test requires a predefined evidence threshold γ. Practically,
we can set the threshold as the specified (e.g., fifth) percentile in the distribution of the LMPBT score
evaluated on the training set. Specifically, we can obtain the empirical distribution of the LMPBT
score using “in-distribution" training samples. Then, we set a specified percentile in the distribution
of the LMPBT score as the threshold, depending on the desired false positive rate. For example, we
can set the fifth percentile in the distribution of the LMPBT score as the threshold, based on the fact
that a false positive rate of 0.05 is typically used as a default value in practice.

4 Computational Issues on the LMPBT

4.1 Low-rank approximation of the Hessian

When using the upweighting method in Eq.(9), Hθ̂ is assumed to be positive definite; that is, Hθ̂
is assumed to have all positive eigenvalues. However, the loss function of deep neural networks is
known to be non-convex, and finding the global optimum is infeasible. In fact, gradient-descent
(GD) methods, which are generally used for deep generative models, are only guaranteed to find
first-order stationary points, including saddle points [19]. Theoretically, GD methods are always able
to escape saddle points, but they can take an exponentially long time [4]. In practice, θ̂ obtained by
running GD methods with early stopping differs from the global optimum and could be a saddle point.
Consequently, Hθ̂ could have negative eigenvalues.

To address this issue, we use a low-rank approximation of the Hessian utilizing eigenvalue decom-
position [13]. Recent empirical studies show that the Hessians of neural networks are typically of
a low rank and often have at least one negative eigenvalue [1]. We empirically demonstrate this
phenomenon in the deep generative models in Figure 1, which shows the distribution of the eigen-
values of Hθ̂ calculated from a Glow trained on the CIFAR-10 dataset (left) and a VAE trained on
the CIFAR-10 dataset (right). We can observe that most of the eigenvalues are zero, which indicates
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Figure 1: Distribution of the eigenvalues of Hθ̂ calculated from a Glow trained on the CIFAR-10
dataset (left) and a VAE trained on the CIFAR-10 dataset (right). We used the stochastic Lanczos
quadrature algorithm [20] to compute the full empirical spectral density of the eigenvalues. It is
notable that most of the eigenvalues are centered around zero and negative eigenvalues exist.

that the Hessian has a low rank. Further, the Hessian has negative eigenvalues. Benefiting from the
low-rank property of the Hessian of deep generative models, we approximate the Hessian using a
low-rank approximation with the top r eigenvalues. Specifically, let the eigenvalue decomposition of
the Hessian be given by

H = UΓUT =

p∑
i=1

γiuiu
T
i , (14)

where p is the number of parameters, eigenvalues γi are sorted with respect to their magnitudes—that
is, γi > γj for i < j—and ui are the corresponding eigenvectors. A low-rank approximation of the
Hessian of rank r is as follows:

H̃ = UrΓrU
T
r =

r∑
i=1

γiuiu
T
i . (15)

In practice, we must determine the appropriate value of the hyperparameter r for each experiment. In
our experiments in Section 5.2, we investigate the change in the performance of the LMPBT with
different specifications of r. Even the models with millions of parameters exhibit effective OOD
performance using a low-rank approximation of the Hessian with only the top 20∼30 eigenvalues.

4.2 Scalability

The computation of the Hessian and its inverse incurs costs proportional to the square and cube of
the model parameter size, respectively. For deep generative models with numerous parameters, the
computation of Eq. (9), which involves the inverse of the Hessian, is not feasible. We can overcome
this issue by computing the Hessian-vector product, rather than explicitly forming the Hessian matrix.
The Hessian-vector product can be computed as follows [20]:

∂gTθ z

∂θ
=
∂gTθ
∂θ

z + gTθ
∂z

∂θ
=
∂gTθ
∂θ

z = Hz, (16)

where gθ = ∇θ(− logL(θ|·)) is the gradient with respect to θ, and z is a random vector. In Eq. (16),
the first equality is obtained from the chain rule, the second equality from the independence of z
and θ, and the third equality from the definition of the Hessian. It is notable that the Hessian-vector
product only incurs a cost that is the same as that of one gradient backpropagation. Then, using
the Hessian-vector product results, the top r eigenvalues and the corresponding eigenvectors of the
Hessian and, hence, H̃ in Eq. (15), can be easily obtained using power iteration [20].

Another advantage of using the low-rank approximation of the Hessian in Eq. (15) is that we can
easily compute Eq. (9), rather than directly computing the inverse of the Hessian, by utilizing the
following:

H̃−1

θ̂
∇θ(− logL(θ̂|xt)) = −

r∑
i=1

1

γi
uiu

T
i ∇θ logL(θ̂|xt). (17)
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Similar to the Hessian-vector product, Eq. (17) can be computed without computing the outer product
uiu

T
i , and it only incurs a computational cost proportional to the model parameter size.

5 Experimental Evaluation

In this section, we evaluate the performance of the LMPBT. Specifically, we show that the LMPBT
yields superior OOD detection performance compared to competing OOD detection methods on
various benchmark datasets.

5.1 Experimental setup

Datasets We used six benchmark image datasets—namely, MNIST, FASHION-MNIST (FMNIST),
CelebA, CIFAR-10, CIFAR-100, and SVHN—and two synthetic datasets: Noise and Constant. To
generate the Noise and Constant datasets, we adopted the sampling methods employed in [18]. We
resized the images such that their width and height were 32 pixels. In the experiments, we used three
datasets, namely, FMNIST, CIFAR-10, and CIFAR-100, as the training datasets. Specifically, we used
the training partitions of the datasets for training. In the experiments using FMNIST, three-channel
images were converted to grayscale to match the number of channels with one-channel FMNIST
images. In the experiments using CIFAR-10 and CIFAR-100, one-channel images were duplicated
three times to match the number of channels with three-channel CIFAR-10 and CIFAR-100 images.
After training the deep generative models on the FMNIST, CIFAR-10, and CIFAR-100 datasets, we
used the test partition of other datasets for testing to evaluate the OOD detection performance.

Base deep generative models We selected two representative deep generative models, VAE [9] and
Glow [8], to evaluate the performance of the LMPBT. To train the VAE, we used the Adam optimizer
to maximize the ELBO in Eq. (2). For the Glow, we adopted the structure used in [8] and used the
Adam optimizer to maximize the log-likelihood in Eq. (1). To approximate the Hessian, we used the
top 20 eigenvalues for the Glow and top 30 eigenvalues for the VAE. We discuss the specification of
the number of eigenvalues in more detail in the following section. In the VAE experiments, we fixed
the decoder and calculated the Hessian with respect to the encoder. The experimental settings and
network structures are described in Supplementary Material.

Metrics To quantitatively evaluate the OOD detection performance, we employed the area under the
receiver operating characteristic curve (AUROC), area under the precision-recall curve (AUPR) [5],
and false positive rate at 80% true positive rate (FPR80) as evaluation metrics [15].

Baseline OOD detection methods for comparison We employed deep generative model-based
OOD detection methods as baselines for comparison. These include the likelihood regret (LR) score
[18], likelihood ratio (LLR) score [15], and input complexity (IC) method [16], as discussed in
Section 1. These OOD detection methods were evaluated for both the Glow and VAE. For the VAE,
we re-implemented the experiments according to the experimental settings in [18]. For the Glow, we
also re-implemented the experiments according to the experimental settings in the original papers of
the LLR [15] and IC [16]. Specifically, we used a PNG compressor to measure the input complexity
when computing the IC. When computing the LR score for each test sample, we started with the
trained encoder of a VAE or the trained Glow, and optimized its parameters for 100 steps.

5.2 Sensitivity and computational cost analysis for the LMPBT

Before the sensitivity analysis, we first visualize the OOD detection ability of the LMPBT, similar to
[12]. Figure 2 (left) shows the histogram of the LMPBT scores when a VAE trained on CIFAR-10
was tested on CIFAR-10 as an in-distribution dataset and SVHN as an OOD dataset. We can observe
that, if the LMPBT scores are higher, the corresponding test samples are more likely to be classified
as OOD samples. As desired, the SVHN test samples (i.e., OOD samples) tended to be assigned
higher LMPBT scores than the CIFAR-10 test samples.

Specification of low-rank approximation Figure 2 (b) shows the OOD detection performance
(AUROC, AUPR, and FPR80) of the LMPBT according to the number of eigenvalues used for a low-
rank approximation of the Hessian. The experiments were conducted using a VAE trained on CIFAR-
10 and tested on CIFAR-10 and SVHN. Although the model has 1.4 million parameters, it achieved
the best performance using only the top 30 eigenvalues. With less than 10 eigenvalues, the LMPBT
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Figure 2: (left) LMPBT scores obtained with a VAE trained on CIFAR-10 and tested on both CIFAR-
10 and SVHN. (right) OOD detection performance (AUROC, AUPR, and FPR80) versus the number
of eigenvalues.

effectively detected OOD samples (AUROC: 0.913). This was possible because the Hessian was
sparse. Interestingly, the performance does not increase monotonically with the number of eigenvalues.
This behavior may be explained by the identifiability issue of the overparameterized models. For
overparameterized models, there are often “degenerate" directions present in the parameter space
[11], which correspond to the smallest eigenvalues of the Hessian. The change in the parameters in
degenerate directions leads to almost no difference in the outputs and causes an identifiability issue.
Deep generative models can also suffer from this identifiability issue. However, this issue can be
obviated by using a low-rank approximation of the Hessian with the largest eigenvalues. Because
changes in the output values in the degenerate directions can be considered random noise, the test
accuracy of a compressed model can sometimes be better than that of the full model.

Computational cost The LMPBT requires the computation of the gradient and Hessian-vector prod-
uct for each test sample, whereas the LLR and IC only require likelihood computation. Meanwhile,
the LR requires several iterations for the optimization for each test sample. To determine whether
the computational cost of the LMPBT is acceptable, we compared it with that of the LR. In our
experiments using a GeForce RTX 2080 GPU and a VAE trained on CIFAR-10, on average, the
LMPBT and LR required 0.11s and 0.30s to test a single sample, respectively. This demonstrates that
the computational cost of the LMBPT is acceptable, although it is higher than those of the LLR and
IC, which required 0.0125 s and 0.0128 s on average to test a single sample, respectively.

Moreover, to evaluate the computational cost for computing the top r Hessian eigenvectors, we
performed two sets of additional experiments. First, we compared the computational cost required
for the Hessian eigenvalue decomposition with that for network parameter estimation, which can be
considered a baseline because network parameter estimation is equally performed for other OOD
detection methods. In our additional experiments using FMNIST (1×32×32) with VAEs, it took
2543 s to obtain the top 30 eigenvectors. This cost is relatively small (approximately 18%) compared
with the cost of network parameter estimation (13448 s).

Second, we evaluated the scalability of Hessian eigenvalue decomposition. Specifically, we measured
the computational cost for the eigenvalue decomposition of the Hessian (top 30 eigenvectors) for the
datasets of various sizes with VAEs. We also calculated the ratio of the time cost to the number of
parameters to investigate the relationship between the dimension of the Hessian and the computational
cost. The results are listed in Table 1. The ratios obtained were 0.0028, 0.0023, and 0.0025 s for
various data sizes. The ratio remained similar, which indicates that the computational cost tends to
increase linearly with the number of parameters. These results show that our method is scalable and
can be applied to large-scale networks.

5.3 Performance comparison with other OOD scores

To evaluate the LMPBT, we compared the ROC curve obtained using the LMPBT with those using
the LR, IC, and LLR for OOD detection with a VAE trained on CIFAR-100 and tested on CIFAR-100
and SVHN in Figure 3 (a) and tested on CIFAR-100 and CelebA in Figure 3 (b). In Figure 3 (a), the
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Table 1: Computational costs for Hessian eigenvalue decomposition

Data size 1×16×16 1×32×32 3×32×32

Number of parameters 504,904 1,074,760 1,337,928
Time cost 1,414 s 2,543 s 3,371 s
Time/Parameter (0.0028 s/dim) (0.0023 s/dim) (0.0025 s/dim)

(a) (b)

Figure 3: Comparison of ROC curves obtained using the LMPBT, LLR, IC, and LR for OOD detection
with a VAE trained on the CIFAR-100 training dataset and (a) tested on the CIFAR-100 test dataset
as in-distribution samples and SVHN test dataset as OOD samples and (b) tested on the CIFAR-100
test dataset as in-distribution samples and CelebA test dataset as OOD samples.

LBPBT (green line) shows higher true positive rates at all false positive rates than all other methods,
including the IC (red purple line), which previously achieved state-of-the-art performance [18]. That
is, the LMPBT universally outperformed the IC, regardless of the threshold for OOD detection. In
contrast, the LLR (violet line) shows inferior performance compared to random guessing (blue line).
This confirms that the LLR is not suitable for OOD detection when a VAE is used [18]. Similarly, in
Figure 3 (b) using the CelebA dataset, the LMPBT achieved superior OOD detection performance
compared to all other methods. All scores showed inferior performance compared with the case using
the SVHN dataset. However, the LMPBT still outperformed the other methods even in this difficult
OOD task.

For an in-depth evaluation of the LMPBT, we measured its performance using the AUROC and
compared it with those of the competing methods, LLR, IC, and LR. We report the average AUROC
over five repeated experiments using different random seeds. In all the experiments, the standard error
of the AUROC was less than 0.001. A higher AUROC value indicates better performance. Tables 2
(a) and 2 (b) present the results for VAEs trained on CIFAR-10 and CIFAR-100, respectively, and
tested on various datasets, including Noise, Constant, FMNIST, SVHN, MNIST, and CelebA. We can
observe that the LMPBT achieved state-of-the-art performance in all cases. In particular, in the case
of the model trained on CIFAR-10 and tested on SVHN, the LMPBT outperformed (AUROC: 0.931)
the IC (AUROC: 0.912), which previously exhibited state-of-the-art performance [18]. Even for the
CelebA test dataset, a more complicated dataset, the LMPBT using the model trained on CIFAR-10
showed superior performance (AUROC: 0.783) to that of the LR (AUROC: 0.714), which previously
exhibited state-of-the-art performance [18]. Similarly, the LMBPT exhibited significantly superior
performance when the model was trained on CIFAR-100, a more complicated dataset. For example,
the LMPBT using the model trained on CIFAR-100 exhibited superior performance (AUROC: 0.683)
to that of the LR (AUROC: 0.598).

We also present the results evaluated with AUPR and FPR80 in Supplementary Material. Further,
we present the results using FMNIST as a training dataset with various test datasets considered in
Table 2 in Supplementary Material. Additionally, we repeated the entire set of experiments using the
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Table 2: Average AUROC of OOD detection methods on various test datasets over five repeated
experiments using different random seeds.

(a) Trained on CIFAR-10
Dataset LMPBT LLR IC LR

Noise 1.0 1 0.032 0.994
Constant 1.0 0.258 1 0.974
FMNIST 0.994 0.074 0.992 0.991
SVHN 0.931 0.193 0.912 0.875
MNIST 0.998 0.008 0.994 0.998
CelebA 0.783 0.465 0.641 0.714

(b) Trained on CIFAR-100
Dataset LMPBT LLR IC LR

Noise 1 1 0.993 0.993
Constant 1 0.042 0.999 0.948
FMNIST 0.997 0.325 0.987 0.970
SVHN 0.956 0.123 0.912 0.820
MNIST 0.998 0.376 0.979 0.995
CelebA 0.683 0.575 0.464 0.598

Glow, and present the results in Supplementary Material. In summary, the results in Supplementary
Material show that the LMPBT consistently outperformed across different metrics and datasets.

6 Conclusion

In this paper, we proposed a new OOD score for deep generative models based on a Bayesian
hypothesis test. Specifically, we proposed the LMPBT for maximizing the probability that the
alternative hypothesis is accepted when it is true among all alternative hypotheses that have the
model parameters in the neighborhood of the model parameter specified under the null hypothesis.
The LMPBT effectively performed OOD detection on all the tasks evaluated. We also addressed
practical computational issues in the implementation of the LMPBT for deep generative models.
For future research, more efficient computation of the LMPBT could be investigated; for example,
recent second-order optimization methods could be used to compute the inverse of the Hessian matrix
or its approximation. The proposed method can support reliable decision making by automatically
detecting anomalies in complex systems in various real-world problems, such as manufacturing
systems monitoring, fraud detection, and disease surveillance. However, there is also a potential risk
that the proposed method could be used as a tool to identify and discriminate against minorities. To
prevent this, we must ensure that the proposed method cannot be used for any purpose that could
have negative social impacts.
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