
Published as a conference paper at ICLR 2022

REPRESENTATION-AGNOSTIC SHAPE FIELDS

Xiaoyang Huang1, Jiancheng Yang1, Yanjun Wang1, Ziyu Chen1, Linguo Li1, Teng Li2,
Bingbing Ni1∗, Wenjun Zhang1
1School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University
2Anhui University
{huangxiaoyang, nibingbing}@sjtu.edu.edu

ABSTRACT

3D shape analysis has been widely explored in the era of deep learning.
Numerous models have been developed for various 3D data representation
formats, e.g., MeshCNN for meshes, PointNet for point clouds and VoxNet for
voxels. In this study, we present Representation-Agnostic Shape Fields (RASF),
a generalizable and computation-efficient shape embedding module for 3D deep
learning. RASF is implemented with a learnable 3D grid with multiple channels
to store local geometry. Based on RASF, shape embeddings for various 3D shape
representations (point clouds, meshes and voxels) are retrieved by coordinate
indexing. While there are multiple ways to optimize the learnable parameters
of RASF, we provide two effective schemes among all in this paper for RASF
pre-training: shape reconstruction and normal estimation. Once trained, RASF
becomes a plug-and-play performance booster with negligible cost. Extensive
experiments on diverse 3D representation formats, networks and applications,
validate the universal effectiveness of the proposed RASF. Code and pre-trained
models are publicly available1.

1 INTRODUCTION

3D shape analysis is the foundation to understand the physical world. It has a wide range of
applications in real life including robotics (Liu et al., 2020; Liang et al., 2018), autopilot (Shi et al.,
2020; Song et al., 2019; Qi et al., 2018; Zhou & Tuzel, 2018), medical imaging (Yang et al., 2021b;
Li et al., 2018a; Yang et al., 2021a) and movie animation (Xu et al., 2019; Aberman et al., 2020;
Hertz et al., 2020). In recent years, the research on this topic has prevailed and showed promising
results in various tasks, such as object classification, part segmentation, scene segmentation, etc.

84

86

88

90

92

94

96

98

100

0 5 10 15 20 80 90 100

84

86

88

90

92

94

96

98

100

200 220 240

Latency \ ms

S
eg

m
en

ta
ti

o
n
 \

m
IO

U

C
la

ss
if

ic
at

io
n
 \

A
C

C

MeshCNN Cls

PointNet Cls

KPConv Cls

MeshCNN Seg

DGCNN Seg

KPConv Seg

Solid symbols: w. RASF; Hollow symbols: w/o. RASF

// //

100

98

96

94

92

90

88

86

84

100

98

96

94

92

90

88

86

84
0 5 10 15 20 80 90 100 200 220 240

.
Figure 1: Vertical Axis: Performance; Horizontal
Axis: Latency. Diverse backbones with (solid
symbols) and without RASF (hollow symbols) are
evaluated. RASF could be seamlessly plugged
into any 3D deep learning pipeline to improve
performance across diverse downstream tasks
and datasets, with little code modification and
computation cost.

Shape could be represented in different data
formats, among which meshes, point clouds
and voxels are most commonly used. In the
deep learning era, most studies on these three
representations use coordinates or coordinates-
like feature as input to feed into the backbone
network. For point clouds, the direct input
to the network is the point coordinates. For
meshes, the node feature of the graph is the
vertices coordinates. For volumetric data,
the 3D shape is denoted by whether a voxel
in a particular position is occupied or not.
Using coordinates to characterize a shape is
simple and straightforward. However, the
major problem with this is that coordinate lacks
contextual geometric information. Hence the
capacity of the backbone network could be
restricted. Even though various operators and

∗Corresponding Author
1https://github.com/seanywang0408/RASF

1

https://github.com/seanywang0408/RASF

Published as a conference paper at ICLR 2022

backbones are proposed to extract high-level feature from the combination of coordinates by
aggregating the local geometry, the effect of the input feature is not clear yet.

The practice in Natural Language Processing (NLP) and Data Mining (DM) might shed some light
on this issue. Word embeddings (Mikolov et al., 2013; Pennington et al., 2014) is proposed very
early in NLP to map words into an embedding space using embedding layers, which work as lookup
tables that are indexed by the one-hot encoding of words. The word embeddings retrieved from
embedding layers have similar values for words with similar meanings. This technique is widely
adopted across the NLP area and notably boosts the overall performance, regardless of how the
text data is distributed and which language model is used (Brown et al., 2020; Devlin et al., 2019;
Radford et al., 2019; Vaswani et al., 2017). Studies in the field of data mining (DM) also learn
continuous embedding representation for graph nodes (Grover & Leskovec, 2016; Perozzi et al.,
2014). Embedding learning in NLP and DM indicates that the effect of input feature and the
capacity of the backbone network are somehow orthogonal to each other. It raises the question
that whether there is a better way to denote a shape instead of vanilla coordinates, so as to facilitate
the backbone network to execute downstream tasks, regardless of which backbone model is used.

In this work, we introduce Representation-Agnostic Shape Fields (RASF), a shape embedding layer
that maps coordinates to shape embeddings with rich geometry information. RASF is implemented
using a learnable multi-channel 3D grid. Similar to the lookup table in word embedding layer,
coordinates within a local shape index from this 3D grid and retrieve shape embeddings. With
simple operation on data, we make RASF compatible with major 3D representations, including
point clouds, meshes and voxels. To obtain the weights of RASF, we investigate several pre-training
schemes for RASF, among which we find that self-supervised training schemes, i.e., reconstruction
and normal estimation, yield the best performance and generalizability. Once trained, RASF could
be seamlessly plugged into any 3D deep learning pipeline to improve performance across diverse
downstream tasks and datasets, with little code modification and computation cost (See Fig. 1). We
empirically show that RASF consistently brings significant improvement under diverse backbones
and applications, including object classification, part segmentation and scene segmentation.

Contributions In this work, we introduce a generalizable (i.e., it could be used in different
3D representations, backbones and downstream tasks) and computation-efficient shape embedding
layer for 3D deep learning, named Representation-Agnostic Shape Fields (RASF). It applies a
learnable multi-channel 3D grid to store local geometry. Shape embeddings for various 3D shape
representations (point clouds, meshes and voxels) are retrieved by coordinates indexing. While there
are multiple ways to obtain the coefficients of RASF, we provide two effective schemes among all
in this paper for RASF pre-training, that is shape reconstruction and normal estimation. Abundant
experiments across different representations, backbones and downstream tasks are conducted to
validate the generalization and efficiency of our proposed RASF.

2 RELATED WORK

2.1 3D SHAPE ANALYSIS

Point clouds Point cloud data could be directly obtained from 3D LiDAR sensors. Due to its
compactness that represents only the surface of the objects and its aligned format (an N × 3 matrix)
that suits the common deep learning frameworks, point clouds are the most extensively discussed
representation in the field of 3D shape analysis. PointNet (Qi et al., 2017a) is the pioneering deep
learning network to process point clouds. It learns the feature of each point with a shared MLP and
aggregates all points by global max-pooling. PointNet++ (Qi et al., 2017b) supports hierarchical
points aggregation to extract geometric information at different scales. DGCNN (Wang et al., 2019)
builds a dynamic graph in each layer of the network to incorporate neighbor nodes by its proposed
EdgeConv module. PointCNN (Li et al., 2018b), RSCNN (Liu et al., 2019c), DPAM (Liu et al.,
2019a), ShellNet (Zhang et al., 2019) and KPConv (Thomas et al., 2019) extend 3D convolution
operation to the irregular point clouds data in different ways, while PAT (Yang et al., 2019) and PCT
(Guo et al., 2021) leverage transformer to process point clouds. Shape Self-Correction (Chen et al.,
2021) proposed a self-supervised method to for point clouds analysis.

Meshes Meshes are mostly used in computer graphics (Kato et al., 2018; Liu et al., 2019b; Pfaff
et al., 2020; Smirnov & Solomon, 2021). GWCNN (Ezuz et al., 2017) maps unstructured geometric
data to a regular domain for nonrigid shape analysis. MeshCNN (Hanocka et al., 2019) adopts
specialized convolution and pooling operations on mesh edges. The convolution is conducted on the

2

Published as a conference paper at ICLR 2022

edge and the four adjacent edges around the incident triangles, while the pooling operation generates
new geometry via adaptive edge collapse. Besides, MeshCNN designs several hand-crafted features
that characterize the edge geometry, that is the dihedral angle, two inner angles and two edge-
length ratios for each face. The 5-dimensional vector is fed into the MeshCNN network as input.
Alternatively, MeshNet (Feng et al., 2019) regards faces as units. It introduces face-unit and feature-
splitting to learn on meshes directly. A more recent work, HodgeNet (Smirnov & Solomon, 2021),
operates on feature of vertices and edges simultaneously. There are also works in the field of single
image reconstruction, which consider mesh data as graphs (Wang et al., 2018; Gkioxari et al., 2019;
Pan et al., 2019; Wen et al., 2019). In this case, graph convolutions on nodes (vertexes) are adopted
to aggregate local geometry.

Voxels Volumetric data provides regular grids to represent 3D shapes. They could be processed
by methods analogous to 2D grids. 3DShapeNets (Wu et al., 2015) proposed to represent 3D
shapes with volumetric grids and introduced 3D Convolution Neural Networks (3DCNN) for
voxel classification. VoxNet (Maturana & Scherer, 2015) utilized 3DCNN for robust 3D object
recognition. The Voxception-ResNet (VRN) (Brock et al., 2016) introduced popular 2D network
blocks into volumetric networks. The drawback of volumetric representations lies in that 3DCNN is
computationally expensive. In recent years, LP-3DCNN (Kumawat & Raman, 2019) is proposed to
alleviate the computation issue. It applies 3D Short Term Fourier Transform (STFT) to replace the
3D convolution layers.

2.2 SHAPE DESCRIPTORS AND EMBEDDING LEARNING

Surface feature descriptors or shape descriptors for non-rigid objects (generally in mesh format)
are another line of work in 3D shape analysis, often applied in shape correspondence, retrieval
and segmentation. Shape descriptors aim at representing the local geometry around a point in a
non-rigid shape. Classic surface descriptors describe a local shape patch based on diffusion and
spectral geometry to achieve isometry-invariance, for example, heat kernel signature (HKS) (Sun
et al., 2009), wave kernel signature (WKS) (Aubry et al., 2011) and optimal spectral descriptors
(OSD) (Litman & Bronstein, 2013). Masci et al (Masci et al., 2015) proposed to automatically learn
various shape descriptors for Riemannian manifolds using a geodesic convolutional neural network.

Studies in NLP embedding learning maps the one-hot encoding of words to a real-value vector via
a learnable embedding layer. An embedding layer is a lookup table, using words as indices and
retrieve word embeddings from it. The embedding layer could be trained in an unsupervised manner
for general proposes, or in a supervised manner for a specific task, e.g., document classification.

3 METHODOLOGY

3.1 REPRESENTATION-AGNOSTIC SHAPE FIELDS (RASF)

We propose a shape embedding layer named Representation-Agnostic Shape Fields (RASF), to
facilitate 3D shape analysis across various representations. As shown in Fig. 2 (a), RASF is
implemented as a trainable 3D grid with the shape of R × R × R × C, where R is the resolution
of the grids and C is the channel dimension. Common 3D shape representations are based on point
coordinates. Suppose the shape is denoted as a point set X ∈ RN×3. For each point P in the shape,
we extract the K-Nearest-Neighbor points Pneigh from the whole point set. Regarding P as the
central point, we normalize the coordinates of the local point set A = [P,Pneigh] to the range of
the grid. In other words, P would be placed at the center of the grid, while the farthest neighbor to
P would be placed at the border of the grid. Similar to the word embedding layer that is indexed by
one-hot encoding of words, the normalized local point set serves as indexes to retrieve shape features
from the grid. The difference is that one-hot encoding is discrete while coordinates are continuous.
Therefore the indexing is accomplished via trilinear interpolation. This operation inspired by Spatial
Transformer Networks (STNs) (Jaderberg et al., 2015) could be efficiently implemented by modern
deep learning frameworks (e.g., grid sample in PyTorch (Paszke et al., 2017)). This function enables
continuous indexing in batches to retrieve feature from discrete regular grid data. The trilinear
interpolation returns a K ×C matrix for P (K includes the point P itself), which is then reduced to
1× C by max-pooling on the first dimension. The C − dim vector, named shape embedding (SE),
encodes the shape in the local area A around the central point P . The whole process to obtain shape

3

Published as a conference paper at ICLR 2022

Shape Embedding

(a)

RASF Grid

: 1

: 0

Sample on

Surface
Mesh

Voxel

Point Cloud

RASF Grid

RASF Grid

RASF Grid

(b)

Trilinear

Interpolate

…

Max-Pool

Normalize

Figure 2: (a) Inference of RASF. The process to obtain shape embedding of P via RASF grid.
We extract the K-Nearest-Neighbor of P from the whole point set and normalize the local point set
around P to the range of RASF grid. In other words, P would be placed at the center of the grid,
while the farthest neighbor to P would be placed at the border of the grid. The normalized local point
set serves as indexes to fetch feature from the grid via trilinear interpolation. The K×C interpolated
feature is reduced to 1 × C by max-pooling, named shape embedding. (b) RASF implementation
for point clouds (top), meshes (middle) and voxels (bottom). C denotes the channel of RASF. Point
Clouds: N denotes the number of points. Meshes: V,E denotes the vertexes and edges of meshes.
We re-sample points on the faces of meshes and combine them with vertexes to fetch vertexes feature
from RASF. Voxels: N denotes the size of voxels. We leverage the points with value of 1 to fetch
voxel feature from RASF.

embedding SE(P) of point P could be formulated as follows:

SE(P) = max(GS(N ([P,Pneigh]))), (1)

where GS denotes the grid sample function and N denotes the normalization. Note that the central
point always corresponds to the central feature of RASF due to the normalization. Since RASF is a
cubic grid, we use L1-distance in KNN searching for parameters efficiency. After processing each
point in this way, we obtain shape embeddings SE ∈ RN×C for all the points. The computation in
RASF is negligible compared to the backbone networks, as analyzed in Sec. 5.

3.2 RASF FOR VARIOUS REPRESENTATIONS

RASF for Point Clouds. 3D shape using point clouds representation could be denoted by a N ×3
matrix, where N is the number of points. Therefore applying RASF on point clouds is natural.
During the downstream tasks, the N × C matrix is fed into the backbone network together with
coordinates as auxiliary features.
RASF for Meshes. Suppose a mesh {V,E, F} is denoted by three elements: vertexes V ∈
RNV ×3, edges E and faces F . Since mesh-based backbone networks receive different elements
as units, there are minor adjustments on how the shape embedding is obtained in the RASF. Some
backbone networks accept vertex features as input. Since the vertex positions in meshes are irregular
(meaning that some vertexes are closer to others, while some are further), it is hard to extract
meaningful shapes given only the vertex positions. In this regard, we re-sample denser points
P ∈ RNP×3 on the faces of meshes and combine the re-sampled points along with the vertexes
together, as shown in the middle of Fig. 2 (b). Then we feed the combined point set [V, P] into
RASF, to obtain shape embedding of the vertexes SE ∈ RNV ×C . Some backbone networks accept
edge features as input, e.g. MeshCNN (Hanocka et al., 2019). For similar reasons, we combine the
midpoint of the edges with the re-sampled points P to obtain the shape embedding of the edges in
a similar way. For those backbone networks that receive face feature as input (Feng et al., 2019),

4

Published as a conference paper at ICLR 2022

we combine the barycenter of faces with the re-sampled points P to obtain the shape embedding
of faces. Note that the shape embeddings obtained through the above approaches are entirely
compatible with any mesh-based backbone networks, owing to the flexibility of RASF.

RASF for Voxels. An equivalent representation to volumetric data is that points lie in positions
where the voxel value is 1 while no point exists when the voxel value is 0. We leverage these
“virtual” points to fetch voxel features from RASF during the downstream tasks, as shown at the
bottom of Fig. 2 (b). Besides, we adjust the receptive field of RASF to a determinant distance
instead of K-Nearest-Neighbors. In this case, voxels that are outside and far from the shape surface
(no occupied voxel exists within the receptive field of RASF), would yield a shape embedding of a
zero vector. Voxels that are inside and far from the shape surface (all voxels around it are occupied),
would yield a shape embedding of the same value. The N×N×N×1 volumetric data is transformed
to an N ×N ×N × C tensor and fed into the backbone network.

3.3 LEARNING RASF IN PRETEXT TASKS

Reconstruction. We provide several schemes to pre-train RASF. The major scheme that we use in
most of the experiments is reconstruction. Given the shape embeddings of each point SE ∈ RN×C ,
we randomly sample Ns embeddings from N , and concatenate the embeddings with the coordinates.
The coordinates are indispensable since the shape embeddings only encode the local geometry,
without knowledge of the global geometry. The Ns × (C + 3) tensor is fed into the reconstruction
network, which consists of a shared MLP, a max-pooling layer, and several linear layers. The last
linear layer outputs (N ∗ 3) elements. We reshaped the output to N × 3, which is the predicted point
set Xpred. The loss function is the chamfer distance between Xpred and the ground-truth X .

Normal Estimation. This pretext task is to predict the normal of each point. We feed the shape
embeddings and coordinates of each point SE ∈ RN×(C+3) into a shared MLP, which outputs the
predicted normals Npred ∈ RN×3. We use cosine similarity as the loss function.

Supervised. The supervised task is shape classification, given only a small portion of points and
their shape embeddings. The overall process is quite similar to that of the reconstruction task, only
that the output of the network is the probability of each class, instead of coordinates.

Each of these pre-training pushes RASF to encode the local geometry. We empirically find that self-
supervised pre-training schemes (reconstruction and normal estimation) outperform the supervised
one (classification). The self-supervised training enables RASF to be robust and transferable across
different datasets and downstream tasks. For simplicity, we show the experimental results of
reconstruction in Sec. 4 and then analyze different ways of pre-training in ablation study (Sec.
5). In practical implementations, we pre-train RASF using ShapeNetPart (Yi et al., 2016) and fix
its weights in downstream tasks. (All the downstream tasks use the same RASF.) Empirical study
shows that fine-tuning the weights during the downstream tasks leads to unstable performance. The
detailed pre-training settings and hyper-parameter analysis are presented in the appendix A.1, A.6.

4 EXPERIMENTS

4.1 PERFORMANCE OF PRETEXT TASKS

We analyze the performance of pretext tasks by visualizing RASF weights in two ways (Fig. 3) and
verify RASF using a linear evaluation protocol.

The first visualization is to directly illustrate the channels in 3D and 2D. The 3D illustrations use
visvis (Klein, 2020) to show the three-dimensional grids, while the 2D illustrations show the max-
pooling output on one axis of the grids. We figure that each channel focuses on a different area,
representing a particular local geometry. The other visualization is to investigate RASF’s response to
geometrically-varying shapes. Practically, we feed RASF with a set of semi-ellipsoids with different
curvatures, as shown in Fig. 3. It is observed that some of the channels (channel 6, 11, 12, 20, 25,
29, 30) have strong correspondence to the ellipsoid curvature, i.e., the response of these channels
changes gradually from large curvature to small curvature. On the other hand, some channels have
the same response given different curvatures. We conjecture these channels could be related to
other geometries, such as cones or cubes. (We randomly choose some channels for demonstrations.
Visualizations of all channels and detailed settings could be found in appendix A.4.)

5

Published as a conference paper at ICLR 2022

(a)

(b)

G
en

er
at

ed
E

ll
ip

so
id

s

32 channels of RASF embeddingsGenerated Ellipsoids

Figure 3: (a) RASF visualization in 3D and 2D. (b) We
generate multiple Ellipsoids by deformation along Z-Axis and
see their responses in RASF embeddings. Some channels have
strong correspondence to the ellipsoid curvature.

Table 1: Linear classification
protocol. We test several kinds
of linear classifier and report the
ACC on ModelNet40. It is
shown that RASF feature is more
discriminative than raw feature.

Classifier Raw +RASF

PLY
Max + FC 25.57 32.17

Point-Wise FC + Max + FC 85.90 87.28
Flattened Feature & FC 9.52 39.10

Voxel Flattened Feature & FC 67.65 68.33

Moreover, we verify RASF by a linear classification protocol on point clouds and voxels data. For
point clouds, we experiment on three kinds of linear classifier: 1) max-pooling on the number of
points followed by a fully-connected (FC) layer; 2) a point-wise (shared) FC layer followed by max-
pooling and a FC layer; 3) flatten the N ×C input to one dimension and use a FC layer as classifier.
For voxels data, we simply flatten the N ×N ×N × C input to one dimension and use a FC layer
as a classifier. The results are shown in Table 1. It is observed that RASF feature outperforms raw
feature in all settings, indicating RASF feature is more discriminative than raw feature. Especially
for flattened points cloud, the out-of-order raw feature leads to extreme performance degradation,
while RASF feature still yields an accuracy of 39.10.

4.2 DATASETS IN DOWNSTREAM TASKS

We use five different datasets to evaluate the general effectiveness of RASF, which are various on
tasks, characteristics, and shape representations. The summarized introduction is listed in Table 2.
All settings are identical for each backbone with and without RASF, including training hyper-
parameters, train-test splits, and so on.
Table 2: Datasets used in this study, with their train-test splits, data representation formats,
descriptions and tasks. See Appendix A.5 for detailed demonstrations of each dataset.

Dataset Train Test Representation Description Task Metric

ModelNet10 (Wu et al., 2015) 3,991 908 Point Cloud & Voxel 3D Objects (Rigid) Classification ACC
ModelNet40 (Wu et al., 2015) 9,843 2,468 Point Cloud & Voxel 3D Objects (Rigid) Classification ACC
ShapeNetPart (Yi et al., 2016) 12,137 2,874 Point Cloud 3D Objects (Rigid) Part Segmentation mIOU
S3DIS (Armeni et al., 2016) 6-Fold Cross-Val Point Cloud Indoor Scene (Rigid) Semantic Segmentation mIOU
SHREC10 (Lian et al., 2011) 300 300 Mesh 3D Objects (Rigid & Non-Rigid) Classification ACC
SHREC16 (Lian et al., 2011) 480 120 Mesh 3D Objects (Rigid & Non-Rigid) Classification ACC
HUMAN (Maron et al., 2017) 370 18 Mesh Human Bodies (Non-Rigid) Part Segmentation mIOU

4.3 TRANSFER TO POINT CLOUDS

Settings. For point cloud representation, we conduct experiments on ModelNet40 for
classification, ShapeNetPart for part segmentation and S3DIS for semantic scene segmentation. We
compare the performance with and without the RASF input on various point cloud backbones.
For classification, we experiment on PointNet, PointNet++, KPConv, DGCNN and PCT. For
part segmentation, we experiment on PointNet, PointNet++, KPConv and DGCNN. For scene
segmentation, we evaluate the performance of RASF in DGCNN. All the results are obtained by
running the public official code ourselves. For RASF, we simply increase the input channel of all the
backbone by C (the channel dimension of RASF), while other hyper-parameters remain unchanged
and default. Normals are excluded for all the backbones. The number of sample points and the data
augmentation techniques for each backbone are aligned with its original setting.

Results. As shown in Table 3 and Table 4. RASF consistently improves the performance of all
the backbone models on different tasks. For PointNet which lacks local operations, RASF notably
improve 2.14% over baseline. For other backbones which contain various neighbor-based operators,
RASF still brings consistent improvement, even though RASF is also based on local operations.
It demonstrates that the effect of input feature and the capacity of the backbone network could

6

Published as a conference paper at ICLR 2022

Table 3: Results on point clouds data of 3D
objects. We compare performance on different
point-clouds-based backbones and downstream
tasks with and without RASF.

ModelNet40 ShapeNetPart
Method ACC mIOU

PointNet 88.78 84.19
PointNet +RASF 90.92 84.85
Gain +2.14 +0.66

PointNet++ 91.55 84.86
PointNet++ +RASF 91.82 85.32
Gain +0.27 +0.46

KPConv 92.18 85.57
KPConv +RASF 92.80 86.24
Gain +0.62 +0.67

DGCNN 92.71 84.50
DGCNN +RASF 92.95 84.91
Gain +0.24 +0.41

PCT 92.93 -
PCT +RASF 93.18 -
Gain +0.25 -

Table 4: Results on point clouds data of 3D
scenes (S3DIS). We compare performance on
DGCNN with and without RASF.

Method mIOU Overall ACC

DGCNN 59.04 86.71
DGCNN +RASF 59.73 86.82
Gain +0.69 +0.11

Table 5: Results on meshes data with MeshCNN.
SHREC10 SHREC16 HUMAN

Method ACC ACC mIOU

MeshCNN 96.00 99.17 91.35
MeshCNN +RASF 100.00 100.00 93.90
Gain +4.00 +0.83 +2.55

Table 6: Results on voxels with VoxNet.

Method ModelNet10 ModelNet40

VoxNet 91.48 82.78
VoxNet +RASF 92.46 83.07
Gain +0.98 +0.29

complement each other. In the scene segmentation task, where the point clouds contain richer and
more complex local geometry, RASF notably improves the result over DGCNN. It demonstrates that
RASF remains robust even when the downstream data distribution is thoroughly distinct from the
pre-training data. With the additional shape embedding input, networks have a better understanding
of the shape semantics than just using coordinates. RASF is able to generally boost the performance
under various backbones and tasks with little memory and computation cost.

4.4 TRANSFER TO MESHES

Settings. For Mesh Representation, we use MeshCNN to evaluate the effectiveness of RASF.
We conduct classification on SHREC dataset and segmentation on HUMAN dataset, following the
settings in MeshCNN. MeshCNN considers the edge as the unit of meshes. It manually calculates
the edge feature based on the two adjacent triangles. For classification, we train the model for
200 epochs using Adam (Kingma & Ba, 2014) optimizer with an initial learning rate of 0.002 and
linearly decrease the learning rate to 0 from the 100th epoch. For segmentation, the number of
epochs is 600 while the initial learning rate is set to 0.002. For RASF, we extract shape embeddings
of the edges following our proposed method for mesh, concatenate it with its original feature, then
increase the channel of the first layer of the model to feed them in the network.

Results. As shown in Table 5, RASF notably boosts the performance of MeshCNN over diverse
datasets and tasks. Especially, MeshCNN with RASF reaches a classification accuracy of 100% on
SHREC10 and SHREC16. Besides, we observed that the increment of the performance on meshes
is much more significant compared to other representations. For one reason, the surface sampling
of meshes yields a similar data distribution to point clouds, meaning little mismatch between pre-
training and downstream training in terms of shape embedding. For another, the sampling on the
mesh surface actually introduces new geometry compared to using vertexes and edges only. Through
RASF, the geometry is encoded in the shape embedding, resulting in a higher performance boost.
Moreover, RASF could be integrated to mesh networks seamlessly without sacrificing efficiency in
terms of training time and model size.

Noticed that MeshCNN accepts not only coordinates input but also the hand-crafted edge feature. In
this case, RASF is still able to increase the performance of the network. The comparison between
the hand-crafted feature and RASF will be thoroughly discussed in Sec. 5.

7

Published as a conference paper at ICLR 2022

4.5 TRANSFER TO VOXELS

Settings. We adopt VoxNet to evaluate RASF on voxels data, using ModelNet10 and ModelNet40
for classification task. The voxels data is in a shape of 32 × 32 × 32. We train the model for 100
epochs using Adam optimizer with an initial learning rate of 0.001 and multiply the learning rate
by 0.5 for every 20 epochs. We obtain shape embedding of each voxel from RASF following the
proposed RASF implementation for voxels. Then we feed the 32× 32× 32× 32 shape embedding
into VoxNet, by changing the input channel of the first layer. The best accuracy on test-set among
all epochs is reported.
Results. RASF boosts the performance of VoxNet on both datasets (Table 6). Note that RASF is
pre-trained on point clouds, in which the scale is different from voxels. What’s more, point clouds
only exist on the surface of the objects, while voxels are solid, which indicates they have entirely
different distributions. Even in this case, RASF could still increase the performance by aggregating
local geometry. It enriches the shape semantics of voxel representation by transferring the learned
geometry to distinct data distributions, demonstrating the robustness of RASF.

5 DISCUSSION

5.1 ABLATION STUDY

Module Design The adoption of a learnable grid in the shape embedding layer is motivated from
embedding layer in NLP. In this part we investigate how a learnable grid is superior to other module
architecture choices, including a PointNet model (consisting of a point-wise MLP, a Max-pooling
layer and global MLP) and a simplified PointNet-like module (consisting of a single fully-connected
layer and a Max-pooling layer). Besides, we include EdgeConv module in DGCNN, which has
been proved to be an effective neighborhood-based point clouds operator. We pre-train these three
modules using the same reconstruction pre-text task described in Sec. 3. As the results shown in
Table 7, RASF has better performance in each downstream task. EdgeConv yields comparable
performance on point clouds, yet it rapidly deteriorates on mesh data. We argue that RASF is a
better choice with respect to generalizability.
Comparison of Pre-Training Schemes We compare the performance of the three pre-training
schemes, including reconstruction, normal estimation and classification. We experiment on
ModelNet40 for point clouds, SHREC10 for meshes and ModelNet10 for voxels. We use PointNet,
MeshCNN and VoxNet as the backbones for point clouds, meshes and voxels respectively. As shown
in the middle bar of Table 8, all the pre-training schemes improve the performance over baseline.
RASF obtained from self-supervised pre-training consistently outperforms the supervised one. We
argue that self-supervised pre-training enables RASF to learn more general and robust embeddings
that are more related to the local geometry while less related to high-level semantics.
Fixed weights vs. Fine-Tuned vs. Random-Initialized. We evaluate the effect of the pre-trained
RASF weights by comparing fixed, fine-tuned, and random-initialized RASF in the downstream
tasks. Fixed RASF is the setting we use in all the experiments. Fine-tuned RASF refers to optimizing
the pre-trained RASF together with the backbone network in the training of the downstream tasks,
while random-initialized refers to a non-pre-trained RASF that is optimized within the downstream
tasks. The detailed settings are the same as described in the previous paragraph. As shown in the
bottom bar of Table 8, random-initialized RASFs are consistently worse than fixed RASFs by a large
margin. It proves that RASF considered as a feature layer would not work without pre-training.
Besides, fine-tuned RASFs yield unstable results compared to fixed RASFs. This phenomenon
demonstrates the pre-trained RASF generalizes well in downstream tasks.

5.2 COMPLEXITY ANALYSIS

We analyze the complexity of RASF. The most computationally-intense step in RASF occurs in
K-Nearest-Neighbors algorithm, in which the time complexity is O(N2), while the trilinear step
yields O(8NK). The number of parameters in RASF is R×R×R× C. As RASF could be fixed
in the downstream tasks, it introduces no additional memory cost apart from its parameters. We
evaluate the actual running time of RASF and multiple backbones with a batch size of 1 (Table 9).
Note that our current implementation of K-Nearest-Neighbors is a naive version with PyTorch. The

8

Published as a conference paper at ICLR 2022

Table 7: Analysis of module design as shape
embedding layers.

Point Cloud Mesh Mesh
Methods ModelNet40 SHREC10 HUMAN

Baseline 88.78 96.00 91.35

PointNet 87.84 - -
FC + Max 90.59 98.00 93.68
EdgeConv 90.90 85.33 80.53
RASF 90.92 100.00 93.90

Table 8: Analysis of RASF pre-training schemes
(top) and the effects of fixed / fine-tuned / random-
initialized weights (bottom).

Point Cloud Mesh Voxel
Method ModelNet40 SHREC10 ModelNet10

Baseline 88.78 96.00 91.48

Reconstruction 90.92 100.00 92.46
Normal Estim. 91.97 99.67 92.32
Supervised 89.34 98.00 92.21

Fixed 90.28 98.17 92.46
Fine-Tuned 89.64 99.33 91.36
Random 88.47 95.67 92.09

Table 9: Time complexity analysis of RASF. The
actual running time of RASF is almost negligible
compared to the backbones.

Task Latency of Backbone Backbone+RASF

Cls.

PointNet 2.47ms 2.75ms (+11.3%)
KPConv 2.54ms 2.71ms (+6.6%)
DGCNN 2.96ms 3.43ms (+15.8%)

MeshCNN 86.14ms 86.98ms (+0.9%)

Seg.

PointNet 2.54ms 2.80ms +10.2%)
KPConv 12.8ms 13.5ms (+5.4%)
DGCNN 10.9ms 11.8ms (+8.2%)

MeshCNN 214ms 217ms (+1.4%)

Table 10: Comparison between RASF and hand-
crafted (HC) features. The baselines are PointNet
for ModelNet40 (ACC), PointNet for ShapeNetPart
(mIOU) and MeshCNN for SHREC10 (ACC).

Point Cloud Point Cloud Mesh
Method ModelNet40 ShapeNetPart SHREC10

Baseline 88.78 84.19 64.67
+HC 89.85 84.66 96.00
+RASF 90.92 84.85 97.33
+HC +RASF 91.33 85.00 100.00

actual time cost is expected to be lower by integrating more sophisticated KNN implementation,
e.g., Faiss (Johnson et al., 2017). All the results are measured on an RTX 2080 Ti.

5.3 COMPARISON WITH HAND-CRAFTED FEATURES

In point clouds analysis, the point normals are widely used as auxiliary features to improve
performance. In meshes analysis, MeshCNN proposed to use the geometric statistics around the
edges as auxiliary features, that is the dihedral angle, two inner angles and two edge-length ratios
for each face. In this work, we learn local geometry by optimizing the RASF grid in pre-text tasks.
We compare shape embeddings from RASF with these two hand-crafted features. For the point
cloud baseline, we only feed the point coordinates as input, using a PointNet backbone. For the
mesh baseline, we remove the hand-crafted features on edges and replace them with the mid-points
of the edges, representing the position of the edges. We experiment on SHREC10 for meshes and
ModelNet40 (classification), ShapeNetPart (segmentation) for point clouds.

Backbones with RASF consistently outperform baselines by large margins (Table 10). Hand-crafted
features also improve the performance, but not as good as RASF, indicating that RASF provides
richer geometric information than hand-crafted features. We reckon that RASF is pre-trained
through a reconstruction task which requires RASF to provide comprehensive local geometric
information. We also noticed that combining RASF and the hand-crafted feature could further
increase the performance. It demonstrates that the effect of RASF is somehow orthogonal to these
hand-crafted features. RASF brings additional notable improvements over the existing methods.

6 CONCLUSION

We propose Representation-Agnostic Shape Fields (RASF), a generalizable and computation-
efficient shape embedding layer for 3D deep learning. Shape embeddings for various 3D shape
representations (point clouds, meshes and voxels) are retrieved by coordinates indexing. We provide
two effective schemes for RASF pre-training, that is shape reconstruction and normal estimation, to
enable RASF to learn robust and general shape embeddings. Once trained, RASF could be plugged
into any 3D neural network with negligible cost. RASF widely boosts the performance for various
3D representations, neural backbones and applications.

9

Published as a conference paper at ICLR 2022

7 ACKNOWLEDGEMENT

This work was supported by National Science Foundation of China (U20B2072, 61976137).

REFERENCES

Kfir Aberman, Peizh Uo Li, Dani Lischinski, Olga Sorkine-Hornung, Daniel Cohen-Or, and
Baoquan Chen. Skeleton-aware networks for deep motion retargeting. ACM Transactions on
Graphics (TOG), 39(4):62–1, 2020.

Adobe. Adobe fuse 3d characters, 2016. https://www.mixamo.com.

Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, and James
Davis. Scape: shape completion and animation of people. In ACM SIGGRAPH 2005 Papers, pp.
408–416. 2005.

Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer, and Silvio
Savarese. 3d semantic parsing of large-scale indoor spaces. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1534–1543, 2016.

Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. The wave kernel signature: A quantum
mechanical approach to shape analysis. In 2011 IEEE international conference on computer
vision workshops (ICCV workshops), pp. 1626–1633. IEEE, 2011.

Federica Bogo, Javier Romero, Matthew Loper, and Michael J Black. Faust: Dataset and evaluation
for 3d mesh registration. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3794–3801, 2014.

Andrew Brock, Theodore Lim, James Millar Ritchie, and Nicholas J Weston. Generative and
discriminative voxel modeling with convolutional neural networks. In Neural Inofrmation
Processing Conference: 3D Deep Learning, 2016.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam
McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-
shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Ye Chen, Jinxian Liu, Bingbing Ni, Hang Wang, Jiancheng Yang, Ning Liu, Teng Li, and
Qi Tian. Shape self-correction for unsupervised point cloud understanding. In IEEE International
Conference on Computer Vision (ICCV), pp. 8382–8391, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Danielle Ezuz, Justin Solomon, Vladimir G Kim, and Mirela Ben-Chen. Gwcnn: A metric alignment
layer for deep shape analysis. In Computer Graphics Forum, volume 36, pp. 49–57. Wiley Online
Library, 2017.

Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, and Yue Gao. Meshnet: Mesh neural network
for 3d shape representation. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 8279–8286, 2019.

Daniela Giorgi, Silvia Biasotti, and Laura Paraboschi. Shape retrieval contest 2007: Watertight
models track. SHREC competition, 8(7), 2007.

10

https://www.mixamo.com
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Published as a conference paper at ICLR 2022

Georgia Gkioxari, Jitendra Malik, and Justin Johnson. Mesh r-cnn. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 9785–9795, 2019.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864, 2016.

Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and Shi-Min Hu.
Pct: Point cloud transformer. Computational Visual Media, 7(2):187–199, 2021.

Rana Hanocka, Amir Hertz, Noa Fish, Raja Giryes, Shachar Fleishman, and Daniel Cohen-Or.
Meshcnn: a network with an edge. ACM Transactions on Graphics (TOG), 38(4):1–12, 2019.

Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel Cohen-Or. Deep geometric texture synthesis.
ACM Transactions on Graphics (TOG), 39(4):108–1, 2020.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial transformer
networks. arXiv preprint arXiv:1506.02025, 2015.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734, 2017.

Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. Learning 3d mesh segmentation and
labeling. In ACM SIGGRAPH 2010 papers, pp. 1–12. 2010.

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 3907–3916, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2014.

Almar Klein. visvis. https://github.com/almarklein/visvis, 2020.

Sudhakar Kumawat and Shanmuganathan Raman. Lp-3dcnn: Unveiling local phase in 3d
convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 4903–4912, 2019.

Xiaomeng Li, Hao Chen, Xiaojuan Qi, Qi Dou, Chi-Wing Fu, and Pheng-Ann Heng. H-denseunet:
hybrid densely connected unet for liver and tumor segmentation from ct volumes. IEEE
transactions on medical imaging, 37(12):2663–2674, 2018a.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn:
Convolution on χ-transformed points. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, pp. 828–838, 2018b.

Z Lian, A Godil, B Bustos, M Daoudi, J Hermans, S Kawamura, Y Kurita, G Lavoua, and
P Dp Suetens. Shape retrieval on non-rigid 3d watertight meshes. In Eurographics workshop
on 3d object retrieval (3DOR). Citeseer, 2011.

Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun. Deep continuous fusion for multi-
sensor 3d object detection. In Proceedings of the European Conference on Computer Vision
(ECCV), pp. 641–656, 2018.

Roee Litman and Alexander M Bronstein. Learning spectral descriptors for deformable shape
correspondence. IEEE transactions on pattern analysis and machine intelligence, 36(1):171–180,
2013.

Jinxian Liu, Bingbing Ni, Caiyuan Li, Jiancheng Yang, and Qi Tian. Dynamic points agglomeration
for hierarchical point sets learning. In IEEE International Conference on Computer Vision
(ICCV), pp. 7546–7555, 2019a.

Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft rasterizer: A differentiable renderer
for image-based 3d reasoning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 7708–7717, 2019b.

11

https://github.com/almarklein/visvis

Published as a conference paper at ICLR 2022

Xingyu Liu, Rico Jonschkowski, Anelia Angelova, and Kurt Konolige. Keypose: Multi-view
3d labeling and keypoint estimation for transparent objects. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 11602–11610, 2020.

Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong Pan. Relation-shape convolutional neural
network for point cloud analysis. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8895–8904, 2019c.

Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer, Vladimir G
Kim, and Yaron Lipman. . ACM Trans. Graph., 36(4):71–1, 2017.

Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. Geodesic
convolutional neural networks on riemannian manifolds. In Proceedings of the IEEE international
conference on computer vision workshops, pp. 37–45, 2015.

Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network for real-time
object recognition. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 922–928. IEEE, 2015.

Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013 conference of the north american chapter of the
association for computational linguistics: Human language technologies, pp. 746–751, 2013.

Junyi Pan, Xiaoguang Han, Weikai Chen, Jiapeng Tang, and Kui Jia. Deep mesh reconstruction
from single rgb images via topology modification networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 9964–9973, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 701–710, 2014.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh-
based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 652–660, 2017a.

Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++ deep hierarchical feature learning
on point sets in a metric space. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, pp. 5105–5114, 2017b.

Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J Guibas. Frustum pointnets for 3d
object detection from rgb-d data. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 918–927, 2018.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Hanyu Shi, Guosheng Lin, Hao Wang, Tzu-Yi Hung, and Zhenhua Wang. Spsequencenet: Semantic
segmentation network on 4d point clouds. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4574–4583, 2020.

Dmitriy Smirnov and Justin Solomon. HodgeNet: Learning spectral geometry on triangle meshes.
SIGGRAPH, 2021.

12

Published as a conference paper at ICLR 2022

Xibin Song, Peng Wang, Dingfu Zhou, Rui Zhu, Chenye Guan, Yuchao Dai, Hao Su, Hongdong
Li, and Ruigang Yang. Apollocar3d: A large 3d car instance understanding benchmark for
autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5452–5462, 2019.

Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A concise and provably informative multi-scale
signature based on heat diffusion. In Computer graphics forum, volume 28, pp. 1383–1392. Wiley
Online Library, 2009.

Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette,
and Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6411–6420,
2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, pp. 6000–6010, 2017.

Daniel Vlasic, Ilya Baran, Wojciech Matusik, and Jovan Popović. Articulated mesh animation from
multi-view silhouettes. In ACM SIGGRAPH 2008 papers, pp. 1–9. 2008.

Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. Pixel2mesh:
Generating 3d mesh models from single rgb images. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 52–67, 2018.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics (tog), 38(5):
1–12, 2019.

Chao Wen, Yinda Zhang, Zhuwen Li, and Yanwei Fu. Pixel2mesh++: Multi-view 3d mesh
generation via deformation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 1042–1051, 2019.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1912–1920, 2015.

Zhan Xu, Yang Zhou, Evangelos Kalogerakis, and Karan Singh. Predicting animation skeletons for
3d articulated models via volumetric nets. In 2019 International Conference on 3D Vision (3DV),
pp. 298–307. IEEE, 2019.

Jiancheng Yang, Qiang Zhang, Bingbing Ni, Linguo Li, Jinxian Liu, Mengdie Zhou, and Qi Tian.
Modeling point clouds with self-attention and gumbel subset sampling. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 3323–3332, 2019.

Jiancheng Yang, Shixuan Gu, Donglai Wei, Hanspeter Pfister, and Bingbing Ni. Ribseg dataset and
strong point cloud baselines for rib segmentation from ct scans. In International Conference
on Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 611–621.
Springer, Cham, 2021a.

Jiancheng Yang, Xiaoyang Huang, Yi He, Jingwei Xu, Canqian Yang, Guozheng Xu, and Bingbing
Ni. Reinventing 2d convolutions for 3d images. IEEE Journal of Biomedical and Health
Informatics, 2021b.

Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu Lu, Qixing
Huang, Alla Sheffer, and Leonidas Guibas. A scalable active framework for region annotation in
3d shape collections. ACM Transactions on Graphics (ToG), 35(6):1–12, 2016.

Zhiyuan Zhang, Binh-Son Hua, and Sai-Kit Yeung. Shellnet: Efficient point cloud convolutional
neural networks using concentric shells statistics. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1607–1616, 2019.

Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–
4499, 2018.

13

Published as a conference paper at ICLR 2022

A APPENDIX

A.1 DETAILS OF PRE-TRAINING RASF

To demonstrate the general effectiveness of RASF, we use the same RASF weights in all the
experiments below. We pre-train RASF based on a large point clouds dataset, ShapeNetPart (Yi
et al., 2016). It includes training samples of 12, 137 and testing samples of 2, 847. We randomly
sample 2, 048 points for each object as the input shape to RASF. We set the resolution R of RASF to
16 and the channel dimension C to 32. During the pretraining in ShapeNetPart, we set the number of
neighbors K to 64 for 2048 points per sample. K changes adaptively according to the total number
of points in one sample, so as to preserve a relatively stable scale in RASF across different shapes.
In the reconstruction pre-text task, we sample Ns = 24 rows in the 2048× 32 shape embeddings to
feed into the reconstruction network. The choosing of the RASF hyper-parameters are analyzed in
Sec. A.6.

The training lasts for 150 epochs, with an initial learning rate of 0.001 using Adam. We decay the
learning rate by 0.2 for every 50 epochs. The chamfer distance on the test-set converges to 0.003 at
the end. It is hard to tell the difference between the reconstructed shape and the ground-truth with
human eyes.

A.2 DETAILS OF IMPLEMENTING RASF

When RASF is used in down-stream tasks, it is used only before the first layer in the backbones
networks, making it very simple to implement. Suppose RASF embeddings have C channels and
the original backbone receives input of Co channels. We simply enlarge the channels of the first layer
to C + Co to implement backbones with RASF. All other settings are identical between bakcbones
with and without RASF.

A.3 VISUALIZATION OF RECONSTRUCTED SHAPE

We illustrate the reconstructed shapes during the reconstruction task for RASF pre-training in
Fig. 4. The predicted shapes are obtained on test-set after convergence. As shown in the
figure, the reconstructed shapes and the ground truths are hardly distinguishable with human eyes,
demonstrating that RASF has learned the local geometry for favourable reconstruction performance.

Ground

Truth

Predicted

Figure 4: The predicted shapes and ground-truths during
the reconstruction task.

90.91

90.36
90.04 90.2

90.56

89.88

89.23

90.78 90.92
90.6 90.69

85

86

87

88

89

90

91

92

Accuracy (R, C, K, Ns)

Figure 5: Sensitivity analysis of RASF
hyper-parameters.

A.4 VISUALIZATION OF RASF

We design two approaches to visualize the pre-trained RASF. One is directly illustrating the weights.
The other is feeding RASF with a set of semi-ellipsoids with different curvatures to explore how
RASF would respond to geometrically-varying shapes.
Illustrations of RASF Weights. We visualize each channel of the pre-trained RASF. First, we
visualize the three-dimensional grid using visvis, a python library (Klein, 2020). Besides, we reduce
the three-dimensional grid of each channel to two-dimensional by conducting max-pooling on the

14

Published as a conference paper at ICLR 2022

x-axis (the other two axes have a similar phenomenon). The max-pooling here corresponds to the
max-pooling in RASF to obtain shape embeddings. As illustrated in Fig. 6, we find that each channel
focus on a different area, representing a particular local shape. Besides, some of the channels show
a characteristic of symmetry, which might represent a symmetrical local shape.

Visualization with Deformed Ellipsoids. We explore how RASF would respond to
geometrically-varying shapes by designing a proof-of-concept experiment. We generate a set of
semi-ellipsoids in diverse curvatures by varying the radius lengths on the three axes. A portion of
the generated semi-ellipsoids are illustrated in Fig. 7 (left). A semi-ellipsoid could be parameterized
by spherical coordinates. Suppose the semi-ellipsoid axes coincide with coordinate axes, we have:

x = asin(θ)cos(φ) (2)
y = bsin(θ)sin(φ) (3)

z = ccos(θ) (4)

where a, b, c denote the radius lengths on x-axis, y-axis and z-axis, 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ 2π.
To vary the radius length along the x-axis, we set b, c as 1 and increases a from 0.1 to 2 in a step
of 0.1, so as y-axis and z-axis. In this way, we generate three groups of semi-ellipsoids, each of
which contains 20 semi-ellipsoids in different shapes for one axis. We feed these shapes into the
pre-trained RASF and obtain their shape embeddings. We consider the peak of the semi-ellipsoids
as the central point of RASF, which are marked red in Fig. 7 (left), while the others are considered
as the local shape of the peak. At last, we obtain 20 shape embedding vectors for 20 shapes in each
group. We illustrate the shape embeddings by arranging them in order in rows, as shown in Fig. 7
(right).

It is observed that some channels (channel 6, 11, 12, 20, 25, 29, 30) have strong correspondence
to the ellipsoid curvature. The response of these channels changes gradually from large curvature
shapes to small curvature shapes. On the other hand, some channels have the same response given
different curvature shapes. We suppose these channels could be related to other geometries, such as
cones or cubes.

A.5 DATASETS IN DOWNSTREAM TASKS

ModelNet. The ModelNet datasets are introduced by Wu et al. (Wu et al., 2015) for 3D object
classification. ModelNet40 includes 40 categories of 3D rigid objects. ModelNet10 is a subset of
ModelNet40. Point clouds (Qi et al., 2017a) and volumetric representations (Wu et al., 2015) are
available for this dataset.
ShapeNetPart. ShapeNetPart (Yi et al., 2016) is a point cloud dataset for benchmarking 3D shape
segmentation. It contains 16, 881 shapes from 16 categories. Each point in the point cloud is
annotated with one of 50 labels. Most categories are labeled with two to five parts. The size of
the train-set and test-set are 12, 137 and 2, 847 respectively.
S3DIS. The Stanford Large-Scale 3D Indoor Spaces (S3DIS) (Armeni et al., 2016) is for a
semantic indoor scene segmentation task, containing 6 indoor areas with 271 rooms. Each point
is annotated with one of the 13 categories, e.g., board, chair, ceiling, etc. plus clutter. We conduct
cross-validation on the 6 areas, the same protocol as prior works (Armeni et al., 2016; Qi et al.,
2017a; Wang et al., 2019).
SHREC. SHREC (Lian et al., 2011) is a 30-classes dataset for mesh classification, with 20
examples for each class. The categories include rigid objects such as lamps, and also non-rigid
objects such as aliens. We follow the protocol in (Ezuz et al., 2017), which generates two kinds
of split for training and testing. The first is to randomly sample 10 examples from 20 per class for
training to form SHREC10, yielding a 1 : 1 train-test-split. The other is to randomly sample 16 from
20 for training, named SHREC16. Since (Ezuz et al., 2017) did not release their train test split, we
conduct the random split ourselves.
HUMAN. The HUMAN dataset is proposed by Maron et al. (Maron et al., 2017) for mesh
segmentation. The train-set includes 370 models from SCAPE (Anguelov et al., 2005), FAUST
(Bogo et al., 2014), MIT (Vlasic et al., 2008) and Adobe Fuse (Adobe, 2016), while the test-set
includes 18 models from SHREC07 (Giorgi et al., 2007) (humans) dataset. The 388 models in total
are manually annotated with 8 labels based on (Kalogerakis et al., 2010).

15

Published as a conference paper at ICLR 2022

A.6 HYPER-PARAMETERS.

We analyze the sensitivity of the hyper-parameters in RASF. There are four hyper-parameters in
RASF, that is the resolution R, the channel C, the number of neighbor points K to obtain shape
embedding, and the number of shape embeddings Ns to feed into the reconstruction network. We
change one parameter at a time, using the set of hyper-parameters to pre-train the RASF and adopt it
in the downstream task. At last, we decrease the R, C and the neighbor points, while increasing Ns

at the same time, given that the reconstruction network needs more input shape embeddings when
RASF models smaller shapes. We adopt PointNet (Qi et al., 2017a) on ModelNet40 (Wu et al.,
2015) for demonstration. The results are shown in Fig. 5. The results show that RASF grid needs a
proper size to achieve the best performance. However, increasing the size (resolution and channel)
brings more harm than decreasing it. We argue that RASF needs a proper resolution and number of
channels to achieve optimal performance.

16

Published as a conference paper at ICLR 2022

Channel 0 Channel 1 Channel 2 Channel 3

Channel 4 Channel 5 Channel 6 Channel 7

Channel 8 Channel 9 Channel 10 Channel 11

Channel 12 Channel 13 Channel 14 Channel 15

Channel 16 Channel 17 Channel 18 Channel 19

Channel 20 Channel 21 Channel 22 Channel 23

Channel 24 Channel 25 Channel 26 Channel 27

Channel 28 Channel 29 Channel 30 Channel 31

Figure 6: Visualization of RASF weights. For each channel, we show the 3D visualization and the
2D figure after max-pooling on the x-axis. It is observed that each channel focus on a different area,
representing a particular local shape.

17

Published as a conference paper at ICLR 2022

(a)

(c)

(b)

Figure 7: left: The input semi-ellipsoids with different curvatures. right: The visualization of
shape embeddings given three groups of semi-ellipsoids input. (a)(b)(c) are the three groups of
semi-ellipsoids (deformed along three axes) with their corresponding shape embeddings. The shape
embeddings are arranged in order row by row. Each row represents one shape embedding. It is
observed that the response of several channels changes gradually from large curvature shapes to
small curvature shapes.

18

	Introduction
	Related Work
	3D Shape Analysis
	Shape Descriptors and Embedding Learning

	Methodology
	Representation-Agnostic Shape Fields (RASF)
	RASF for Various Representations
	Learning RASF in Pretext Tasks

	Experiments
	Performance of Pretext Tasks
	Datasets in Downstream Tasks
	Transfer to Point Clouds
	Transfer to Meshes
	Transfer to Voxels

	Discussion
	Ablation Study
	Complexity Analysis
	Comparison with Hand-Crafted Features

	Conclusion
	Acknowledgement
	Appendix
	Details of Pre-training RASF
	Details of implementing RASF
	Visualization of Reconstructed Shape
	Visualization of RASF
	Datasets in Downstream Tasks
	Hyper-Parameters.

