
Published as a conference paper at ICLR 2023

ON THE DATA-EFFICIENCY WITH CONTRASTIVE IMAGE
TRANSFORMATION IN REINFORCEMENT LEARNING

Sicong Liu1 2 3
∗

Xi Sheryl Zhang2 3 5
†

Yushuo Li2 Yifan Zhang2 3 5 Jian Cheng2 3 4

1NJUST, 2Institute of Automation, Chinese Academy of Sciences,
3AIRIA, 4School of Future Technology, University of Chinese Academy of Sciences,
5University of Chinese Academy of Sciences, Nanjing
{sicongliu1014;sheryl.zhangxi}@gmail.com,
yushuo.li@ia.ac.cn, {yfzhang;jcheng}@nlpr.ia.ac.cn

ABSTRACT

Data-efficiency has always been an essential issue in pixel-based reinforcement
learning (RL). As the agent not only learns decision-making but also meaning-
ful representations from images. The line of reinforcement learning with data
augmentation shows significant improvements in sample-efficiency. However, it
is challenging to guarantee the optimality invariant transformation, that is, the
augmented data are readily recognized as a completely different state by the agent.
In the end, we propose a contrastive invariant transformation (CoIT), a simple
yet promising learnable data augmentation combined with standard model-free
algorithms to improve sample-efficiency. Concretely, the differentiable CoIT lever-
ages original samples with augmented samples and hastens the state encoder for a
contrastive invariant embedding. We evaluate our approach on DeepMind Control
Suite and Atari100K. Empirical results verify advances using CoIT, enabling it to
outperform the new state-of-the-art on various tasks. Source code is available at
https://github.com/mooricAnna/CoIT.

1 INTRODUCTION

Improving data-efficiency to accomplish sequential decisions has always been a crucial problem in
pixel-based reinforcement learning. As the agent has to learn an optimal policy with a meaningful
information abstraction from observations parallel. Unlike supervised representation learning with
strong supervised high-dimensional signals, the training process in RL is fragile. It could be harmful
to the training process and cause performance degradation consequently using inappropriate manners.
Hence, it is an urgent request to seek subtle representation learning methods for visual RL.

Previous works have been proposed in the literature to demonstrate that introducing auxiliary loss
functions such as pixel reconstruction (Yarats et al., 2019) and contrastive learning (Laskin et al.,
2020b) alleviates this issue. In particular, data augmentations have already proven beneficial to data-
efficiency. RAD (Laskin et al., 2020a) performs an extension of experiments and widely analyzes the
impact of various techniques in data augmentation. DrQ (Yarats et al., 2020) and DrQ-v2 (Yarats
et al., 2021) make use of appropriate image augmentation with great success. Also, previous works
have carried out the potential of data augmentation in terms of generalization (Hansen et al., 2021;
Raileanu et al., 2020; Zhang & Guo, 2021; Hansen & Wang, 2021; Fan et al., 2021).

Despite the mentioned efforts, it is pretty hard to guarantee that the augmented representations are
sufficiently diverse yet semantically consistent. To this end, we explore the underlying condition for
representation learning in RL. It is rational to hypothesize that there is an optimal transformation
enabling an encoder to abstract informative latent space. This line of works belongs to the regime of
state abstraction (Du et al., 2019; Zhang et al., 2020b; Tomar et al., 2021; Wang et al., 2022), which
derives from grouping similar world-states for descriptions of the environment (Dietterich, 2000;
Andre & Russell, 2002; Castro & Precup, 2010). Inspired by spatial transformer networks (STN)
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(Jaderberg et al., 2015), a data augmentation model in the vision domain, we consider that merging
the parameterized transformation with visual RL could be beneficial. The designed transformation
not only discovers the optimality of state abstraction but also produces diverse virtual samples for the
agent. To do so, we enforce a learnable data augmentation that updates its parameters along with the
RL objective.

To understand parameterized augmentation and its relation to representation learning in RL, we focus
on fundamental data manipulation by generating augmented data from a learnable Gaussian distri-
bution. To be clear, we present the image transformation to control the margin of the augmentation
under an RL training-friendly data distribution. Since changed data distributions meanwhile being
controlled by learning algorithms would be helpful in high-dimensional cases (Balestriero et al.,
2021). Here we raise our idea:

Figure 1: Percentage (%) of score
solved in the DMC. We set the score
of DrQ-v2 as 100% and report the
result of CoIT and CURL: Up: in
500K steps. Bottom: in 100K
steps. The task is solved when re-
turn nearly reaches the upper bound.

Can we parameterize the data augmentation by sampling from
a dynamic distribution to obtain a training-friendly state dis-
tribution along with model-free RL?

In light of this challenge, we present a contrastive invariant
transformation (CoIT), a novel contrastive learning to ame-
liorate the data-efficiency for visual RL. CoIT integrates a
learnable transformation for model-free methods with minimal
modification to the architecture and training pipeline. Specif-
ically, we parameterize the mean and variance of a Gaussian
distribution for transforming data and update the parameters
together with RL by using constraints to urge faster algorithm
convergence empirically. As the learning goes on, the agent
approximates the TRANSFORM distribution that is optimal for
the task at hand to solve the task. In addition, we evaluate
CoIT on DeepMind Control Suite and Atari100K, and exper-
imental results demonstrate that the learnable transformation
outperforms the current SOTA methods. Besides, our method
does not claim any custom architecture choices and is essential
for reproducing end-to-end training. Based on these results,
we demonstrate that a learnable transformation improves data-
efficiency effectively for visual RL.

Key Contributions: (i) We present CoIT, a simple yet ef-
fective framework with a learnable image transformation that
integrates invariant representations with model-free RL to im-
prove data-efficiency. (ii) We propose a theoretical analysis of how our method can approximate
a stationary distribution over the transformed data by the optimal invariant metric, thus learning
better representations. (iii) We evaluate CoIT on popular benchmarks and show that our method
outperforms previous state-of-the-art methods on data-efficiency and stability.

2 RELATED WORK

Several concurrent methods have been proposed for improving data-efficiency whose common
ingredients containing data augmentation and self-supervised learning are listed.
Data augmentation in RL. Like the success of data augmentation in computer vision (Zhong
et al., 2020; DeVries & Taylor, 2017; Yun et al., 2019; Zhang et al., 2017), these methods have
played a key role in improving the data-efficiency of visual RL problems Mnih et al. (2013); Yarats
et al. (2019); Hafner et al. (2019); Lee et al. (2019). RAD (Laskin et al., 2020a) conducted mounts
of experiments and finds out that different data augmentations lead to entirely different results. It
provides a broader perspective for the follow-up study of data augmentation in RL. DrQ (Yarats et al.,
2020) proposed an effective augmentation method called random shift and introduced a regularization
term for Q-learning. Based on DrQ, the DrQ-v2 (Yarats et al., 2021) conducted minimal changes and
demonstrated that merely a simple augmentation method could match the state-of-the-art model-based
algorithm on data-efficiency and performance.
Self-supervised learning in RL. Motivated by the breakthrough in self-supervised learning (Chen
et al., 2020; He et al., 2020; Caron et al., 2020; Grill et al., 2020), it is natural to combine these
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methods with visual RL to learn rich representations. CURL (Laskin et al., 2020b) introduces
a framework similar to SimCLR (che) into visual RL. CoBERL (Banino et al., 2021) also tried
to minimize the consistency between positive samples by semantic-preserving data augmentation.
Besides, STDIM (Mazoure et al., 2020) and PI-SAC (Lee et al., 2020) maximize the temporal mutual
information (MI) between the nearby states. SPR (Schwarzer et al., 2020) and PlayVirtual (Yu
et al., 2021) follow their idea, but they utilize the dynamics model to predict nearby states in latent
space. DBC (Zhang et al., 2020b) and PSM (Agarwal et al., 2021) focus on learning task-relevant
information. They utilize signals in the environment to achieve an invariant representation learning
and thereby generalize the agent to unseen environments.

3 PRELIMINARIES

3.1 REINFORCEMENT LEARNING FROM OBSERVATIONS

Visual RL control is formulated as an infinite-horizon Markov Decision Process (MDP) (Bellman,
1957), as the observations can not fully describe the underlying state. To address this problem, we
stack multiple consecutive frames together to represent the current underlying state s (Mnih et al.,
2013). In this mind, the MDP M is a 5-tuple ⟨O,S,A, r, γ⟩. Here, the observation space O generally
consists of multiple-stack frames. The state space S is either observable or unobservable (Silver et al.,
2017; Zhang et al., 2020a). The agent uses observations O to sample actions from the action space
A. Every time the agent interacts with the environment, it obtains a reward r. The end goal is to
train an agent to maximize the cumulative reward R. The policy evaluation used as estimating the
performance of the policy πϕ is normally defined by rewards in infinite-horizon tasks,

E[R] = E

[
∞∑
t=0

γtrt(st,at, st+1)
∣∣∣ πϕ

]
. (1)

where γ ∈ [0, 1) is the discount factor and rt denotes the reward at time t.

3.2 Q LEARNING

The state-action value function Qθ is trained by minimizing the Bellman error to estimate the
cumulative reward at the current state:

Jθ(D) = Ee∼D[(Qθ(st,at)− rt − γQθ̄(st+1, πϕ(st+1)))
2] (2)

where e is a transition from the replay buffer D. And θ̄ denotes an exponential moving average of θ.
For the continuous control tasks, we utilize an actor-critic algorithm called Deep Deterministic Policy
Gradient (DDPG) (Silver et al., 2014; Lillicrap et al., 2015) which consists of the aforementioned
state-action value function Qθ and a deterministic policy πϕ. The policy πϕ aims at maximizing
Jϕ(D) = ED[Qθ(st, πϕ(st)]. Various effective improvements have also been lead to DDPG. The Q-
learning process incorporates n-step returns (Watkins, 1989; Peng & Williams, 1994). The scheduled
exploration noise is produced by a linear decay σ̃(t) for the variance σ̃2 which provides different
levels of exploration at different training steps: σ̃(t) = σ̃init + (1−min(t/T, 1))(σ̃final − σ̃init). The
initial and final value for standard deviation are defined by σ̃init and σ̃final, and the decay horizon T is
related to the total training steps of the environment.
For the discrete control, we use the data-efficient Rainbow DQN (Van Hasselt et al., 2019) which
applied multiple improvements on top of the original Nature DQN (Mnih et al., 2015).

3.3 STATE ABSTRACTION

While visual RL has achieved many successes in simulated tasks, it remains challenging to learn
robust representations from real vision, where images reveal detailed scenes of a complex and
unstructured world (Zhang et al., 2020b; Agarwal et al., 2021; Wang et al., 2022). Therefore,
abstracting meaningful elements from the visual scene to present the underlying state is significantly
important for visual RL.
We follow the Block Markov Decision Process (BMDP) (Du et al., 2019), which refers to episodic
learning tasks via an unobservable latent space S and an observable context space X . The environment
generates a context by x ∼ p(·|s). They present a fundamental assumption as: each observation x
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uniquely determines its generating state s. Similarly, in model-free RL without modeling dynamics,
the manipulated context x can be conditioned on a certain probability given an environment transition
e which is x ∼ p(·|e).

4 THE COIT

4.1 LEARNABLE INVARIANT TRANSFORMATION

Following the motivation of smoothing training experiences to stabilize the target Q network (Mnih
et al., 2013; Lillicrap et al., 2015), the transformed x′ is required to satisfy x′ ∼ p(·|e), where
environment transition e is ideally in the replay distribution D. Note that e is a random variables.
Formally, we are ready to introduce the optimal invariant metric to reach the stationary distribution D
over the augmented context x′, through the definition,
Definition 4.1. (Optimal Invariant Metric). Given a transition distribution D for tuples in the replay
buffer, suppose the block structure assumption holds, the shift between transitions x and its context
x′ can be measured by a conditional divergence:

d(x,x′|e) ≜ Ee∼D
[
dKL

(
p(x|e = e)||p(x′|e = e)

)]
=

∫
e

dKL

(
p(x|e = e)||p(x′|e = e)

)
dp(e) (3)

where dKL(·||·) is the Kullback-Leibler (KL) divergence. It indicates the expected distance between x
and x′ conditioning on e. One may argue that the dynamics cannot be assumed as a fixed distribution
when it comes to new observations, especially after data manipulation. Nevertheless, it generally
claims that the experiences are uniformly sampled in a replay memory (Mnih et al., 2013). Also,
the fact that the given conditions of the transition are consistent for the observed data as well as the
transformed data, makes the above definition reasonable. Next, we will show why the conditional
divergence defined in Eq.(3) is an optimal invariant metric from theoretical perspectives.

We employ the Bayes’ rule on the conditionally distribution p(x|e) = p(e|x)p(x)/p(e),∀x ∈
O, e ∈ D. Then the transition operator p(e|x) can be further divided as p(e|s)p(s|x) for any x ∈ O,
if e and x are conditional independent given s1. Eq.(3) is rewritten as,

Ee

[
dKL

(
p(x|e)||p(x′|e)

)]
= Ee|s

[
dKL

(
p(s|x)p(x)||p(s|x′)p(x′)

)]
(4)

Therefore, minimizing the conditional divergence leads to encoding the observation x and the
transformed context x′ into an invariant latent state space S. As a consequence, the learnable pixel
transformation is an optimality invariant combining a qualified encoder.

Now we have the observation encoder g : O → S mapping from the observed state O to the latent
state S by a non-trivial function g such that g(x) = p(s|x),∀x. Traditionally, there is only one
encoder dubbed feature backbone in RL models. Since the pixel transformation could drift away,
e.g., supported by different components with those supporting x (Du et al., 2019). To enforce
the invariant hidden states, another state encoder g′ that can map x′ to s should exist, which is
g′(x′) = p(s|ν(x, ·)),∀x′, ν(x, ·) is the transformation.
So far, the goal of learning the optimal transformed data and encoders boils down to minimizing the
distance between representations g(x) and g′(x′). To tackle the issue, we first provide two definitions
to introduce measurements as follows,
Definition 4.2. (ϵ-Approximation). Given a distance metric d : O×S → R+ satisfies d(s, s) = 0,∀s,
and let g, g′ : O → S be two functions. Let ϵ ≥ 0, given a distribution D̂ on O, then g and g′ are
ϵ-approximate w.r.t. (d,D) if Ex∼D̂ [d(g(x), g′(x))] ≤ ϵ.
Definition 4.3. (β-Similarity). Given a distance metric d : O × S → R+ satisfies d(s, s) = 0,∀s.
There exists g : O → S . Let β ≥ 0, given distributions D̂ and D̂′ on O, then x and x′ are β-similar
if Ex∼D̂,x′∼D̂′ [d(g(x), g(x′))] ≤ β.

Without loss of generality, the distance between the encoded states g(x) and g′(x′) can be expressed
as the following triangular inequality. To obtain a metric, Kullback-Leibler divergence is rewritten in
a form of the square root of Jensen-Shannon divergence. Therefore, we have,

d(g(x), g′(x′)) ≤ d(g(x), g′(x))︸ ︷︷ ︸
encoding: ϵ-Approximation

+ d(g′(x), g′(x′))︸ ︷︷ ︸
augmentation: β-Similarity

(5)

1The tuples in reply buffer can be written as e = (st,at, rt, st+1) after encoding, which makes s an
intermediate random variable.
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From the view of invariant learning, minimizing the right side of the inequality can upper bound our
problem. The first term on the right side is the so-called ϵ-approximation to measure the functional
similarity after state abstraction, whereas the second term exists based on the procedure of data
augmentation. Thus, we learn the encoders and shifted data simultaneously through the upper bound.

4.2 OPTIMAL STATE ABSTRACTION

To restrict the functional similarity of Eq.(5) from the perspective of learning a good encoding
function with consistent semantics, the approaches formulating the main and momentum feature
learning are utilized, motivated by contrastive learning (He et al., 2020). In particular, we enforce the
encoding functions with exactly the same architecture, and use ξ̄t = (1− τm)ξ̄t−1+ τmξt at timestep
t to update the parameters of momentum function gξ̄ with gξ, where τm ∈ [0, 1] is the updating
rate. Furthermore, we design a projection that is f : S → Y using a ReLU network (Petersen
& Voigtlaender, 2018) to upper bound the divergence by minimizing the distance in the projected
space Y . Previously, the projection has been proposed by Chen et al. (2020), while the theoretical
guarantees of the underlying mechanism with momentum updating for model-free RL are explained
in this work.
Suppose the Markov chain O g−→ S f−→ Y holds. For two functions g and f in the compatible
ranges, we use f ◦ g to denote the function composition f(g(·)). Before showing the proposed data
transformed method, we introduce technical lemmas to take advantage of the designable projection
function by leveraging the convexity. The momentum updating paradigm is capable of turning into
momentum feature updating through a convex function or an equivalence of the convex function.

Lemma 4.1. Assume that h : R|S| → R|Y| can be written as h(ξ) = f(< ξ, s >), for some s ∈ R|S|,
and f : R|Y| → R|Y| with parameter ξ. Then, convexity of f implies the convexity of h.

Lemma 4.2. Given the dynamical updating: ξ̄t = (1− τm)ξ̄t−1 + τmξt. By Lemma 4.1, fξ = fξ̄
holds after convergence. As a result, the problem of minEx[∥fξ ◦ gξ(x)− fξ̄ ◦ gξ̄(x)∥] is equivalent
to the problem of minEx[∥gξ(x)− gξ̄(x)∥].
To meet the requirement of a small upper bound, we state a theorem that provides some insights into
why it is necessary to learn optimal transformed data together with the encoders.

Theorem 4.1. (CoIT) Suppose that Lipschitzness holds for functions gξ, gξ̄, fξ and fξ̄, respectively.
The updating dynamics is: ξ̄t = (1 − τm)ξ̄t−1 + τmξt, τm ∈ [0, 1]. For any input x ∼ D̂ and
transformed x′ obtained via the transform operator ν(x, ·), optimizing the conditional divergence in
Definition 4.1 means to minimize the upper bound as follows,

Ex

[
d(fξ̄ ◦ gξ̄(x), fξ ◦ gξ(x

′))
]
≤ ρEx

[
∥x− x′∥

]
(6)

where ρ = Lg (CLf + ∥ξf∥) , C = 1+τ
1−τ , τ = 1 − τm are constants. Lf and Lg are Lipschitz

constants of the functions f(s) and g(x), respectively.

The upper bound of the right side measures the margin of augmentation between original and
transformed data. The left side measures the distribution changes in the latent space. Since both
transformed data x′ and encoder g are updating, incorporating augmentation directly cannot well meet
the basic stationary environment. Hereby, the theorem suggests us that the automatic transformation
is used to bound the representation learning so that the abstracted states enhance the stationary
distribution of tuples e and facilitate efficient training. Proofs are given in Appendix A. The empirical
comparisons of the projection network are presented in Appendix D.

4.3 PARAMETERIZABLE OBSERVATION

From the Theorem 4.1, we know the relation between the parameterized augmentation and the
learnable latent state. That is, image transformation needs to be constrained by the distance between an
observation and its associated augmentation. The optimal embedding can be obtained by minimizing
of Eq.(5). Particularly, we parameterize the transformed data x′ as ν(x,G), where G is a Gaussian
distribution dynamically changed along with the RL training.

In Algorithm 1, it defines the MDP M with Gaussian random variables G0 ∼ G|O| for initialization.
The TRANSFORM operator is fulfilled by the aforementioned pixel transformation ν which is a shift
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Figure 2: Overall architecture of CoIT. The observations are transformed following a Gaussian
distribution G(µ, σ) and encoded by the state encoder gξ. The observation encoder gξ̄ and projection
fξ̄ are the exponentially moving average version of the state encoder gξ and projection fξ.

subject following Gaussian distribution Gt(µt, σt) on the top of data interpolation. The transformation
x′ = ν(x,G) is normalized according to both x and learned distribution G, and thereby contributes
to the cumulative reward maximization in an interactive way. We use the scope to the observation
sampling for an optimal state abstraction. It can be regarded as data sampling from the replay buffer
to reach a training-friendly distribution, dubbed Contrastive Invariant Transformation.

4.4 STABILIZING REWARD FUNCTION

Algorithm 1 Parameterized Transformation in RL

1: Initialization: Draw distribution G0 ∼ G|O|

with given mean µ0 and variance σ2
0 ;

Set cumulative reward R = 0.
2: Training:
3: for each timestep t in 0, · · · , T do
4: x′

t = TRANSFORM(xt,Gt)
5: R = R+ γtr(x′

t,at)
6: Adjust to an optimal Gt(µt, σt).
7: end for

∗ Details about learning µt and σt are given in Algo-
rithm 2 in Appendix B.

It identifies one of the key impacts that CoIT
in the RL training procedure as parametriz-
ing the underlying invariant optimization to
smooth the distribution D in the replay buffer.
To further stabilize the reward function, we
propose a mixed CoIT that samples multiple
transformed data from the learned distribution
G(µ, σ), and then mix up the learned obser-
vation x′. Similarly, we provide the invariant
learning guarantee by optimizing the right side
transformation in Theorem 4.2.

Theorem 4.2. (Mixed CoIT) Suppose that
Lipschitzness holds for functions gξ, gξ̄, fξ
and fξ̄, respectively. The updating dynamics
is: ξ̄t = (1− τm)ξ̄t−1 + τmξt. For any input
x ∼ D̂ and transformed x′, the divergence
with mixed transformed observation can be
bound by,

Ex

[
d(fξ̄ ◦ gξ̄(x), fξ ◦ gξ(Ex′ [x′]))

]
≤ ρExEx′

[
||x− x′||

]
(7)

where ρ = Lg (CLf + ∥ξf∥) , C = 1+τ
1−τ , τ = 1 − τm. Lf and Lg are Lipschitz constants of the

functions f(s) and g(x) respectively. The proof of Theorem 4.2 is straightforward based on Theorem
4.1, and the details are presented in the supplement.

4.5 LEARNING CONTRASTIVE INVARIANT TRANSFORMATION

With theoretical analysis of invariant transformations, we presented a new framework with normaliza-
tion variants to ensure above discussed learning guarantees by optimizing parameters. We initialize a
distribution Gt(µ, σ) and use the TRANSFORM operator to produce different views of xt (Algorithm
1). The transformed data x′

t is viewed as the positive pair of xt. We also utilize a similarity metric d
to learn contrastive invariant transformation for the encoder gξ(·).
We first apply the bilinear interpolation to xt and sample shift terms from Gt to produce multiple
positive samples x1

t ,x
2
t , ..,x

n
t and mix them together as x′

t following Theorem 4.2. To prevent the
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distribution of transformed data from shifting too far away from the replay buffer D, we borrow
a similar idea from Yin et al. (2020) to regularize and smooth the distribution shift between the
transformed and overall data. We use the statistical data stored in the BatchNorm layers to approximate
the distribution of the overall data. In this way, the distribution shift between the transformed and
overall data can be estimated by the following formulation,

Kω(x
′
t) =

∑
l

∥∥µ̃(x′
t)− E(µ̃l(x)|O)

∥∥
2
+
∑
l

∥∥σ̃2(x′
t)− E(σ̃2

l (x)|O)
∥∥
2 (8)

where µ̃(x′
t) and σ̃2(x′

t) are the mean and variance of the transformed data and ω represents parameter
collection {µt, σt} of the Gaussian distribution Gt(µ, σ). The expectation terms E(µ̃l(x)|O) and
E(σ̃2

l (x)|O) respectively denote the estimation of the batch-wise mean and variance for the feature
map corresponding to the l-th convolution layer, and O is the given observations.
Second, we utilize the similarity metric d proposed by Chen et al. (2020) for learning the encoder
gξ(·) which maps high-dimensional observation to embeddings to meet the invariant transformation
in Eq.5. Given a positive observation pair (xt,x

′
t), the loss is given by

Lξ,ξ̄,ω(D) ≜
∥∥fξ(gξ(x′

t))− fξ̄(gξ̄(xt))
∥∥2
2
= 2− 2 ·

〈
fξ(gξ(x

′
t)), fξ̄(gξ̄(xt))

〉
∥fξ(gξ(x′

t))∥2 ·
∥∥fξ̄(gξ̄(xt))

∥∥
2

(9)

Here ξ̄ denotes the momentum version of parameters ξ and fξ(·) is a non-linear projection of the
representations embedded by gξ(·). D indicates the tuples stored in the replay buffer.
Next, we update the critic network Qθ with transformed data x′

t and x′
t+n to minimize the TD error

for n-steps returns. This is regarded as a regularized Q learning by Yarats et al. (2020) where the
regularized representation learning is beneficial for optimal action taking (Zhang et al., 2020a).

JQ(D; θ, ω, ξ) =

(
Qθ

(
gξ(x

′
t),at

)
−

n−1∑
i=0

γirt+i − γnQθ̄

(
gξ(x

′
t+n), π(·|gξ(x′

t+n))
))2

(10)

Eventually, we give the unified objective function as the full version of the CoIT,

Jθ,ξ,ω(D) = JQ(D) + αLξ,ξ̄,ω(D) + λKω(D) (11)

where α and λ are hyper-parameters and the overall architecture is presented in Figure 2. We replace
the vanilla Q-learning by Jθ,ξ,ω(D) and the entire algorithm is presented in Algorithm 2 in Appendix
B. Then, we evaluate CoIT on popular benchmarks to demonstrate the benefits of our method.

5 EXPERIMENTS

In this section, we benchmark our method on the DeepMind control suite and Atari100K. We compare
CoIT with prior model-free methods first, then we present ablation studies to show the details of our
method. Implementation details can be found in Appendix C.

5.1 ENVIRONMENTS

DMControl. DeepMind control suite (Tassa et al., 2018) is a widely used benchmark with several
robot control tasks. Each episode is set to be 1, 000 frames and we use the total experienced frames
to measure the data-efficiency. The per-frame reward is in the unit interval [0, 1], so each episode
contains a total reward of no more than 1, 000. Considering the different difficulties depending on
tasks, we refer to setting more episodes with hard tasks for better evaluation.
Atari100K. There have been a number of prior papers that have benchmarked data-efficiency on
the Atari 2600 Games for discrete control. Van Hasselt et al. (2019) and Kielak (2019) propose the
data-efficient version of Rainbow DQN (Hessel et al., 2018) compared with human performance
(Kaiser et al., 2019) within 100K time steps (400K frames, frame skip of 4). This sample-constrained
evaluation is the so-called Atari100K and we benchmark CoIT on all 26 Atari Games.

5.2 BASELINES

DMControl. For continuous control we present several baselines, including methods of using data
augmentation and contrastive learning to improve data-efficiency: (i) DrQ-v2 (Yarats et al., 2021), (ii)
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Figure 3: Results of complex tasks in DMControl. These tasks are chosen to offer multiple degrees
of challenges, including complex dynamics, sparse rewards, hard exploration, and more.

CURL (Laskin et al., 2020b), (iii) Pixel SAC, and (iv) Pixel DDPG : Vanilla SAC and DDPG training
directly from pixels. All methods are evaluated with the same periodicity of frames and average over
10 episodes return for evaluation query.
Atari100K. To benchmark the data-efficiency of CoIT for discrete control tasks, we compare our
method to (i) DrQ (Yarats et al., 2020), (ii) CURL (Laskin et al., 2020b), (iii) SPR (Schwarzer et al.,
2020), (iv) Random Agent, and Human Performance (Kaiser et al., 2019). All the algorithms are
evaluated within 100K time steps for interaction. We average CoIT’s performance over 10 random
seeds and report the best score for each game following prior works.

5.3 MAIN RESULTS

DMControl. We choose 8 complex tasks from the DMControl for evaluation and present the results
in Figure 3 and Table 2 in Appendix C. We also report the percentage (%) of score solved in the
DMControl for baselines and CoIT in 500K and 100K steps in Figure 1. Below are key findings: (i)
CoIT outperforms vanilla DDPG and SAC in a wide range. (ii) We also compare CoIT with DrQ-v2,
a remarkable method for continuous control, to better demonstrate our method’s data-efficiency. (iii)
From general trends of the learning curves, CoIT improves or keeps the data-efficiency in a more
stable manner which is not trivial on DMControl tasks.
Atari100K. We present results for Atari100K in Table 1 and below are key findings: (i) CoIT
achieves top-performance on 10 of 26 games while still being competitive in the rest. (ii) CoIT
surpasses superhuman performance on 6 games on the basis of Rainbow DQN . (iii) We also report
the mean and std of the scores achieved by CoIT in 10 of 26 games which are top-performance. We
present the results of two versions of CoIT (mixed & no-mixed) in Figure 6 in the appendix. From
the histogram, we find that CoIT has much better stability, which is similar to the observation in the
DMControl.

5.4 ABLATION STUDIES

We first visualize the TRANSFORM operator to demonstrate that there exists an invariant transforma-
tion for each task. We initialize the Gaussian distribution Gt(µ, σ) based on the range of pixel shifts
and plot the curves of the mean µ and std σ during training in the DMControl in Figure 4.

Figure 4: Visualization of the parameters of the Gaussian distribution for TRANSFORM.
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Table 1: Mean episodic returns achieved by CoIT and baselines on 26 Atari games benchmarked at
100K environment steps. The results are recorded and averaged over 10 random seeds.

Game Human Random SimPLe CURL DrQ SPR CoIT

Aline 7127.7 227.8 616.9 558.2 771.2 801.5 1206.7
Amidar 1719.5 5.8 88.0 142.1 102.8 176.3 182.3
Assault 742.0 222.4 527.2 600.6 452.4 571.0 635.7
Asterix 8503.3 210.0 1128.3 734.5 603.5 977.8 709.0
Bank Heist 753.1 14.2 34.2 131.6 168.9 380.9 124.8
Battle Zone 37187.5 2360.0 5184.4 14870.0 12954.0 16651.0 13760.0
Boxing 12.1 0.1 9.1 1.2 6.0 35.8 23.6
Breakout 30.5 1.7 16.4 4.9 16.1 17.1 16.1
Chopper Command 7387.8 811.0 1246.9 1058.5 780.3 974.8 1338.0
Crazy Climber 35829.4 10780.5 62583.6 12146.5 20516.5 42923.6 17538.0
Demon Attack 1971.0 152.1 208.1 817.6 1113.4 545.2 846.4
Freeway 29.6 0.0 20.3 26.7 9.8 24.4 29.6
Frostbite 4334.7 65.2 254.7 1181.3 331.1 1821.5 2069.8
Gopher 2412.5 257.6 771.0 669.3 636.3 715.2 746.8
Hero 30826.4 1027.0 2556.6 6279.3 3736.3 7019.2 7572.8
Jamesbond 302.8 29.0 125.3 471.0 236.0 349.0 336.0
Kangaroo 3035.0 52.0 323.1 872.5 940.6 3276.4 4116.6
Krull 2665.5 1598.0 4539.9 4229.6 4018.1 3688.9 3426.2
Kung Fu Master 22736.3 258.5 17257.2 14307.8 9111.0 13192.7 9250.0
Ms Pacman 6951.6 307.3 1480.0 1465.5 960.5 1313.2 1509.6
Pong 14.6 −20.7 12.8 −16.5 −8.5 −5.9 1.5
Private Eye 69571.3 24.9 58.3 218.4 −13.6 124.0 145.7
Qbert 13455.0 163.9 1288.8 1042.4 854.4 669.1 2117.5
Road Runner 7845.0 11.5 5640.6 5661.0 8895.1 14220.5 11758.5
Seaquest 42054.7 68.4 683.3 384.5 301.2 583.1 554.0
Up N Down 11693.2 533.4 3350.3 2955.2 3180.8 28138.5 4734.2

According to the curves below, we find that the mean and std converge to an interval as the training
goes on. These results demonstrate that the gaussian distribution proposed in CoIT could automati-
cally find a TRANSFORM to smooth the distribution shift between the different views of the same
observation, therefore being beneficial to the representation learning.

Then, we study the effects of different components in Eq.(11). This object function is composed of
two parts: Kω(x

′
t) for regularization and Lξ,ξ̄,ω(D) for similarity metric. On this basis, we divide

CoIT into 4 versions: (i) Critic. Transformation is only updated with the critic. (ii) X-stats & Critic.
Transformation is updated by critic and Kω(x

′
t) together. (iii) H-dist & Critic. Transformation is

updated by critic and Lξ,ξ̄,ω(D) together. (iv) Unified Objective. We evaluate all of these versions on
8 representative tasks from the DMControl and present the results in Figure 9 in the appendix.

Compared Critic with other variants, we demonstrate that both of the components are beneficial to
the performance. Though Critic is data-efficient on most tasks, it may fall into trivial solutions. To
solve this issue, we utilize the regularization in Eq.(8) with the similarity metric in Eq.(9) to meet
the invariant transformation. Thus the Unified Objective’s performance leads ahead of all tasks. See
Appendix C for extra ablation studies.

6 CONCLUSION

A novel pixel transformation CoIT under model-free RL algorithms that significantly improves the
data-efficiency and stability for visual tasks is introduced in this work. We theoretically analyze how
the learnable transformation constrains the distribution of transformed data, and dissect its benefits
to representation learning. CoIT is no need for any additional modifications to the backbone RL
algorithm and is easy to implement. We compare CoIT to SOTA methods on popular benchmarks and
certify that it gains promising performance with advanced stability. Hopefully, contrastive invariant
transformation can lead to a new branch for representation learning in RL.
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