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 Scientific question  

Do linear models provide an accurate, interpretable, and biologically plausible          

description of brain activity? 

 Background 

Modern cognitive neuroscience heavily relies on linear models. Such models          

are used to map between patterns of brain activity and a measure X, where X can                

be a feature/function of the stimulus (1–10), a behavioral measure (e.g., 11–13),            

or even brain activity in another species (14,15). The use of linear (as opposed to               

nonlinear) models is widespread for two main reasons: (a) linear readout is            

considered to be neurally plausible and thus informative of the underlying neural            

representations (16–19), and (b) linear models are relatively easy to build and can             

generalize successfully even in small data regimes (17,20,21).  

In recent years, increased availability of large datasets and computational          

resources has enabled researchers to overcome some of the practical limitations of            

nonlinear approaches. As a result, many prediction-oriented neuroscience studies         

have begun to apply nonlinear models to identify neural correlates of brain            

disorders (22–25) or behavioral traits (26–28). However, basic cognitive         

neuroscience remains firmly grounded in linear models, resulting in a gap between            

prediction-oriented and explanation-oriented approaches. 

 The Controversy 

Although the linear readout assumption is widely accepted in cognitive          

neuroscience, neural computations are, in fact, often nonlinear (29–35). Further,          

even if we accept the linear readout assumption at the level of individual neurons, it               

might not hold for signals recorded from outside the skull (36–38) or signals based              

on indirect measures of neural activity, such as blood flow (39,40). Finally, even if              

the transmission of signals from one step of a neural computation to another can be               

approximated with a linear transform, the linearity assumption might break down           

once we consider multiple successive computations (41,42) or activity aggregated          

across large neural populations (43–45). As a result, some recent neuroimaging           

studies have advocated the use of nonlinear models, arguing that they represent a             

more plausible view of neural interactions within and between brain regions           

(46–49), at least for higher-level associative cortex (50–52). 

The empirical success of linear models seems to speak to the usefulness of             

the linear readout assumption. However, the persistent focus on linear          

transformations may be stalling the field, and a shift toward nonlinear models may             

yield important insights about brain function. We therefore propose to combine           



theoretical and experimental approaches in order to ​examine the validity, benefits,           

and limitations of linear vs. nonlinear models applied to neuroimaging data​. 

 Competing Hypotheses 

Hypothesis 1: Linear models provide an accurate, interpretable, and         

biologically plausible interpretation of brain activity. 

Hypothesis 2: Nonlinear models provide an accurate, interpretable, and         

biologically plausible interpretation of brain activity, which cannot be achieved with           

linear models alone. 

 Approach 

We propose an integrated, two-pronged approach for evaluating the use of           

linear and nonlinear models in cognitive neuroscience. First, we will synthesize           

existing literature on the linear readout assumption and introduce novel          

information-theoretic approaches for model evaluation. Then, we will build upon          

those theoretical insights to evaluate the models’ performance on existing datasets.  

1. The Theory Branch 

a. Establish the theoretical validity of the linear readout assumptions when          

applied to neuroimaging data. 

b. Develop information-theoretic criteria for evaluating the use of linear and          

nonlinear models in neuroimaging research (see 53–55). 

2. The Empirical Branch 

a. Evaluate practical limitations of linear vs. nonlinear models, such as the           

amount of data required for successful performance and the upper limit on            

feature complexity (see 56–58).  

b. Integrate theory-driven and practical considerations to develop goals and         

metrics enabling a systematic comparison of linear vs. nonlinear model          

performance. 

c. Compare the predictive and explanatory power of linear vs. nonlinear          

models when applied to three different domains: 

i. Mapping from stimulus features to neural activity. 

ii. Mapping from neural activity to behavior. 

iii. Mapping from neural activity in one brain region to neural          

activity in another brain region. 

 Concrete outcomes 

1. An information-theoretic framework for the use of linear vs. nonlinear models           

with neuroimaging data. 

2. A detailed set of guidelines for the use of linear vs. nonlinear models with              

neuroimaging data, based on both theoretical and empirical considerations. 

3. An online platform enabling researchers to systematically compare linear and          

nonlinear models according to a predefined set of metrics (see, e.g., 8). 



 Benefit to the community 

Given the overwhelming use of linear models in the field, we believe that a              

thorough examination of the linear readout assumption is required to ensure that            

researchers do not overlook important insights about the brain by unnecessarily           

restricting the set of models they consider. On the other hand, given the potentially              

unbounded complexity of nonlinear models, neuroscientists must be careful in their           

application and interpretation. If we demonstrate the benefit of nonlinear models,           

at least in some cases, our work may catalyze a new line of inquiry in cognitive                

computational neuroscience. If we demonstrate that linear models satisfy the field’s           

criteria of being accurate, interpretable, and biologically plausible, our work will           

allow future researchers to continue relying on linear rather than nonlinear           

approaches, thus saving money, time, and computational resources.  

Thus, we expect that our findings will be relevant to any neuroscientist who             

uses multivariate methods to analyze neuroimaging data. They also have the           

potential to benefit other researchers investigating complex information processing         

systems (e.g. artificial neural networks).  

 Core members 

Team linear models: Martin Schrimpf (graduate student, MIT)  

 Leyla Isik (assistant professor, Johns Hopkins University) 

Team nonlinear models: Anna Ivanova (graduate student, MIT)  

 Stefano Anzellotti (assistant professor, Boston College) 

The advisory team: Noga Zaslavsky (postdoctoral fellow, MIT)  

 Evelina Fedorenko (associate professor, MIT) 

 Member roles 

All members will contribute to organizing the workshop and writing the           

paper. In addition, we will perform the following tasks: 

Anna Ivanova​: examine the theoretical assumptions underlying linear models       

applied to neuroimaging data. 

Martin Schrimpf​: evaluate linear and nonlinear model performance on existing 

neuroimaging datasets. 

Leyla Isik​: develop goals/metrics to systematically evaluate linear vs. 

nonlinear model performance. 

Stefano Anzellotti​: examine methodological benefits and limitations of linear vs. 

nonlinear models. 

Noga Zaslavsky​: develop information-theoretic methods for studying and 

evaluating linear and non-linear models; guide the theory 

branch of the project.  

Evelina Fedorenko​: guide the empirical branch of the project and the integration 

of final results.  

Signed: ​Anna Ivanova, Martin Schrimpf, Leyla Isik, Stefano Anzellotti, Noga          

Zaslavsky, and Evelina Fedorenko 
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