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Abstract

Coronavirus disease 2019 (COVID-19) is a
global pandemic. Although much has been
learned about the novel coronavirus since its
emergence, there are many open questions re-
lated to tracking its spread, describing symp-
tomology, predicting the severity of infection,
and forecasting healthcare utilization. Free-
text clinical notes contain critical information
for resolving these questions. Data-driven,
automatic information extraction models are
needed to use this text-encoded information
in large-scale studies. This work presents a
new clinical corpus, referred to as the COVID-
19 Annotated Clinical Text (CACT) Corpus,
which comprises 1,472 notes with detailed an-
notations characterizing COVID-19 diagnoses,
testing, and clinical presentation. We in-
troduce a span-based event extraction model
that jointly extracts all annotated phenom-
ena, achieving high performance in identifying
COVID-19 and symptom events with associ-
ated assertion values (0.83-0.97 F1 for events
and 0.73-0.79 F1 for assertions).

1 Introduction

As of June 22, 2020, there were over 8.9 million
confirmed COVID-19 cases globally, resulting in
466 thousand related deaths (World Health Orga-
nization, 2020a). Surveillance efforts to track the
spread of COVID-19 and estimate the true number
of infections remains a challenge for policy makers,
healthcare workers, and researchers, even as test-
ing availability increases. Symptom information
provides useful indicators for tracking potential
COVID-19 infections and disease clusters (Ross-
man et al., 2020). Certain symptoms and underly-
ing comorbidities have directed COVID-19 testing.
However, the clinical presentation of COVID-19
varies significantly in severity and symptom pro-
files (Wu and McGoogan, 2020).

The most prevalent COVID-19 symptoms re-
ported to date are fever, cough, fatigue, and dysp-
nea (Yang et al., 2020), but emerging reports iden-
tify additional symptoms, including diarrhea and
neurological symptoms, such as changes in taste
or smell (Vetter et al., 2020; Qian et al., 2020; Wei
et al., 2020). Certain initial symptoms may be
associated with higher risk of complications; in
one study, dyspnea was associated with a two-fold
increased risk of Acute Respiratory Distress Syn-
drome (Wu et al., 2020). However, correlations be-
tween symptoms, positive tests, and rapid clinical
deterioration are not well understood in ambulatory
care and emergency department settings.

Routinely collected information in the Electronic
Health Record (EHR) can provide crucial COVID-
19 testing, diagnosis, and symptom data needed to
address these knowledge gaps. Test results can eas-
ily be queried and analyzed at scale from structured
EHR data. However, more detailed and nuanced
descriptions of COVID-19 diagnoses, exposure his-
tory, symptoms, and clinical decision-making are
typically only documented in the clinical narrative.
To leverage this textual information in large-scale
studies, the salient COVID-19 and symptom infor-
mation must be automatically extracted.

This work presents a new corpus of clinical
text annotated for COVID-19, referred to as the
COVID-19 Annotated Clinical Text (CACT) Cor-
pus. CACT consists of 1,472 notes from the Univer-
sity of Washington (UW) clinical repository with
detailed event-based annotations for COVID-19 di-
agnosis, testing, and symptoms. Given the recent
rapid emergence of the pandemic, CACT is one of
the first clinical data sets with COVID-19 annota-
tions and includes 29.9K distinct events. We also
present the first information extraction results on
CACT using an end-to-end neural event extraction
model, establishing a strong baseline for identify-
ing COVID-19 and symptom events.



2 Related Work

2.1 Annotated Corpora
Given the recent onset of COVID-19, there are
limited COVID-19 corpora for natural language
processing (NLP) experimentation. Corpora of sci-
entific papers related to COVID-19 are available
(Wang et al., 2020a; World Health Organization,
2020b), and automatic labels for biomedical en-
tity types are available for some of these research
papers (Wang et al., 2020b). However, we are un-
aware of corpora of clinical text with supervised
COVID-19 annotations.

Multiple clinical corpora are annotated for symp-
toms. As examples, South et al. (2009) annotated
symptoms and other medical concepts with nega-
tion (present/not present), temporality, and other
attributes. Koeling et al. (2011) annotated a pre-
defined set of symptoms related to ovarian cancer.
For the i2b2/VA challenge, Uzuner et al. (2011)
annotated annotated medical concepts, including
symptoms, with assertion values and relations.

2.2 Relation and Event Extraction
There is a significant body of information extrac-
tion (IE) work related to coreference resolution,
relation extraction, and event extraction tasks. In
these tasks, spans of interest are identified, and link-
ages between spans are predicted. Many contempo-
rary IE systems use end-to-end multi-layer neural
models that encode an input word sequence using
recurrent or transformer layers, classify spans (en-
tities, arguments, etc.), and predict the relationship
between spans (coreference, relation, role, etc.)
(Zheng et al., 2017; Orr et al., 2018; Shi et al., 2019;
Pang et al., 2019; Chen et al., 2019; Christopoulou
et al., 2020). Of most relevance to our work is a se-
ries of developments starting with Lee et al. (2017),
which introduces a span-based coreference reso-
lution model that enumerates all spans in a word
sequence, predicts entities using a feed-forward
neural network (FFNN) operating on span repre-
sentations, and resolves coreferences using FFNNs
operating on entity span-pairs. Luan et al. (2018)
adapted this framework to entity and relation ex-
traction, with a specific focus on scientific litera-
ture. Luan et al. (2019) extended the method to
take advantage both co-reference and relation links
in a graph-based approach to jointly predict en-
tity spans, co-reference and relations. By updating
span representations in multi-sentence co-reference
chains, the graph-based approach achieved state-of-

the-art on several IE tasks representing a range of
different genres. Wadden et al. (2019) expands on
Luan et al. (2019)’s approach, adapting it to event
extraction tasks. We build on Luan et al. (2018)
and Wadden et al. (2019)’s work, augmenting the
modeling framework to fit the CACT annotation
scheme. In CACT, event arguments are generally
close to the associated trigger, and inter-sentence
events linked by co-reference are infrequent, so the
graph-based extension, which adds complexity, is
unlikely to benefit our extraction task.

Many recent NLP systems use pre-trained lan-
guage models (LMs), such as ELMo, BERT, and
XLNet, that leverage unannotated text (Peters et al.,
2018; Devlin et al., 2019; Yang et al., 2019). A
variety of strategies for incorporating the LM out-
put are used in IE systems, including using the
contextualized word embedding sequence: as the
input to a Conditional Random Field entity extrac-
tion layer (Huang et al., 2019), as the basis for
building span representations (Luan et al., 2019;
Wadden et al., 2019), or by adding an entity-aware
attention mechanism and pooled output states to a
fully transformer-based model (Wang et al., 2019).
There are many domain-specific LM variants. Here,
we use Alsentzer et al. (2019)’s Bio+Clinical
BERT, which is trained on PubMed papers and
MIMIC-III (Johnson et al., 2016) clinical notes.

3 Materials

3.1 Data

This work used inpatient and outpatient clinical
notes from the UW clinical repository. COVID-
19-related notes were identified by searching for
variations of the terms coronavirus, covid, sars-cov,
and sars-2 in notes authored between February 20-
March 31, 2020, resulting in a pool of 92K notes.
This work utilized a subset of 53K notes, including
only notes with at least five sentences and corre-
sponding to one of six types: telephone encoun-
ters, outpatient progress, emergency department,
inpatient nursing, intensive care unit, and general
inpatient medicine. Multiple note types were used
to improve the extraction model generalizability.

Early in the outbreak, the UW EHR did not in-
clude COVID-19 specific structured data; however,
structured fields indicating COVID-19 test types
and results were added as testing expanded. We
used these structured fields to assign a COVID-19
Test label to each note based on the patient test
status at the time of note creation:



• none: patient not tested
• positive: patient tested positive
• negative: patient tested negative

More nuanced descriptions of COVID-19 testing
(e.g. conditional or unordered tests) or diagnoses
(e.g. possible infection or exposure) are not avail-
able as structured data. For the 53K note subset, the
COVID-19 Test label distribution is 90.8% none,
1.3% positive, and 7.9% negative.

Given the sparsity of positive and negative notes,
CACT is intentionally biased to increase the preva-
lence of these labels. To ensure adequate posi-
tive training samples, the CACT training partition
includes 50% positive notes and 50% none and
negative notes. Ideally, the test set would be rep-
resentative of the true distribution; however, the
expected number of positive labels with random
selection is insufficient to evaluate extraction per-
formance. Consequently, the CACT test partition
includes 50% positive and negative notes and 50%
none notes. Notes were randomly selected in equal
proportions from the six note types.

3.2 Annotation Scheme
We created detailed annotation guidelines for two
event types, COVID and Symptom, which are sum-
marized in Table 1. COVID and Symptom are
annotated as events, where each event includes
a trigger and arguments characterizing the event.
COVID trigger is generally an explicit COVID-
19 reference, like “COVID-19” or “coronavirus.”
COVID Test Status characterizes implicit and ex-
plicit references to testing, and Assertion captures
diagnoses and hypothetical references to COVID-
19. Symptom events capture subjective, often pa-
tient reported, indications of disorders and diseases
(e.g “cough”). Symptom trigger identifies the spe-
cific symptom, for example “wheezing” or “fever,”
which are characterized through Assertion, Change,
Severity, Anatomy, Characteristics, Duration, and
Frequency arguments. Labeled arguments (e.g. As-
sertion) include an argument span, type, and sub-
type (e.g. present). Span-only arguments, like
Characteristics, include an argument span and type,
without a subtype label. Notes were annotated
using the BRAT annotation tool (Stenetorp et al.,
2012). Figure 1 presents BRAT annotation exam-
ples.

3.3 Annotation Scoring and Evaluation
Annotation and extraction is scored as a slot fill-
ing task, focusing on information most relevant

Figure 1: BRAT annotation examples for COVID and
Symptom (SSx) event types

to secondary use applications. Figure 2 presents
the same sentence annotated by two annotators,
along with the populated slots for the Symptom
event. Both annotations include the same trigger
and Frequency spans (“cough” and “intermittent”,
respectively). The Assertion spans differ (“present-
ing with” vs. “presenting”), but the assigned sub-
types (present) are the same, so the annotations are
equivalent for purposes of populating a database.
Annotator agreement and extraction performance
are assessed using scoring criteria that reflects this
slot filling interpretation of the labeling task.

⇓
SSx(trigger=“cough”, Assertion=present,

Frequency=“intermittent”)

Figure 2: Annotation examples describing event extrac-
tion as a slot filling task

The Symptom trigger span identifies the spe-
cific symptom. For COVID, the trigger anchors
the event, although the span text is not salient to
downstream applications. For labeled arguments,
the subtype label captures the most salient infor-
mation, and the identified span is less informative.
For span-only arguments, the spans are not easily
mapped to a fixed label set, so the selected span
contains the salient information. Performance is
evaluated using precision, recall, and F1.

Trigger: Triggers, Ti, are represented by a pair
(event type, ei; token indices, xi). Trigger equiva-
lence is defined as

Ti ≡ Tj if (ei ≡ ej) ∧ (xi ≡ xj).

Arguments: Events are aligned based on trig-
ger equivalence. The arguments of events with
equivalent triggers are compared using different
criteria for labeled arguments and span-only argu-
ments. Labeled arguments, Li, are represented as



Event type, e Argument type, a Argument subtypes, Ll Span examples

COVID
Trigger* – “COVID,” “COVID-19”

Test Status†
{positive, negative, pending, conditional,
not ordered, not patient, indeterminate } “tested positive”

Assertion† {present, absent, possible, hypothetical,
not patient} “positive,” “low suspicion”

Symptom

Trigger* – “cough,” “shortness of breath”

Assertion* {present, absent, possible, conditional,
hypothetical, not patient} “admits,” “denies”

Change {no change, worsened, improved, resolved} “improved,” “continues”

Severity {mild, moderate, severe} “mild,” “required ventilation”

Anatomy – “chest wall,” “lower back”

Characteristics – “wet productive,” “diffuse”

Duration – “for two days,” “1 week”

Frequency – “occasional,” “chronic”

Table 1: Annotation guideline summary. * indicates the argument is required. † indicates at least one of the
arguments, Test Status or Assertion, is required

a triple (argument type, ai; token indices, xi; sub-
type, li). For labeled arguments, the argument type,
a, and subtype, l, capture the salient information
and equivalence is defined as

Li ≡ Lj if (Ti ≡ Tj) ∧ (ai ≡ aj) ∧ (li ≡ lj).

Span-only arguments, Si, are represented as a pair
(argument type, ai; token indices, xi). Arguments
with equivalent triggers and argument types, (Ti ≡
Tj) ∧ (ai ≡ aj), are compared at the token-level
(rather than the span-level) to allow partial matches.
Partial match scoring is used as partial matches can
still contain useful information.

3.4 Annotation Statistics
CACT includes 1,472 notes with a 70%/30%
train/test split and 29.9K events annotated (5.4K
COVID and 24.4K Symptom). Figure 3 contains
a summary of the COVID annotation statistics for
the train/test subsets. By design, the training and
test sets include high rates of COVID-19 infection
(present subtype for Assertion and positive subtype
for Test Status), with higher rates in the training
set. CACT includes high rates of Assertion hypo-
thetical and possible subtypes. The hypothetical
subtype applies to sentences like, “She is mildly
concerned about the coronavirus” and “She can-
celled nexplanon replacement due to COVID-19.”
The possible subtype applies to sentences like, “risk
of Covid exposure” and “Concern for respiratory
illness (including COVID-19 and influenza).” Test
Status pending is also frequent.
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Figure 3: COVID annotation summary

There is some variability in the endpoints of
the annotated COVID trigger spans (e.g. “COVID”
vs. “COVID test”); however 98% of the COVID
trigger spans in the training set start with the tokens
“COVID,” “COVID19,” or “coronavirus.” Since
the COVID trigger span is only used to anchor and
disambiguate events, the COVID trigger spans were
truncated to the first token of the annotated span in
all experimentation and results.

The training set includes 1,756 distinct uncased
Symptom trigger spans, 1,425 of which occur fewer
than five times. The identified symptoms were not
normalized to canonical forms (e.g. “shortness of
breath” and “sob” considered distinct symptoms).
Figure 4 presents the frequency of the 20 most
common Symptom trigger spans in the training set



by Assertion subtypes present, absent, and other
(possible, conditional, hypothetical, or not patient).
These 20 symptoms account for 49% of the training
set Symptom events. There is ambiguity in delin-
eating between some symptoms and other clinical
phenomena (e.g. exam findings and medical prob-
lems), which introduces some annotation noise.
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Figure 4: Most frequent symptoms in the training set
broken down by Assertion subtype

Given the long tail of the symptom distribu-
tion and our desire to understand the more promi-
nent COVID-19 symptoms, we focused annotator
agreement assessment and extraction model train-
ing/evaluation on the symptoms that occurred at
least 10 times in the training set, resulting in 185
distinct symptoms that cover 82% of the training
set Symptom events. The set of 185 symptoms was
determined only using the training set, to allow
unbiased experimentation on the test set. All subse-
quent results and experimentation only incorporate
these 185 most frequent symptoms.

3.5 Annotator Agreement
The first two rounds of annotation were doubly
annotated (72 notes in round 1 and 96 notes in
round 2). Figure 5 presents the annotator agree-
ment for each annotation round. For labeled ar-
guments, F1 scores are micro-average across sub-
types. After round 1, annotator disagreements were
carefully reviewed, the annotation guidelines were
updated, and annotators received additional train-
ing. Starting with round 2, potential COVID trig-
gers were pre-annotated using pattern matching
(“COVID,” “COVID-19,” “coronavirus,” etc.), to

improve the recall of COVID annotations. Pre-
annotated COVID triggers were modified as needed
by the annotators, including removing, shifting,
and adding trigger spans. The guideline updates,
additional annotator training, and pre-annotation
of COVID triggers resulted in improved agreement
across all labeled phenomena, except for Change.
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Figure 5: Annotator agreement

4 Event Extraction Model

Event extraction tasks, like ACE05 (Walker et al.,
2006), typically require prediction of the following
event phenomena:
• trigger span identification
• trigger type (event type) classification
• argument span identification
• argument type/role classification

The CACT annotation scheme differs from this
configuration in that labeled arguments require the
argument type (e.g. Assertion) and the subtype
(e.g. present, absent, etc.) to be predicted. Resolv-
ing the argument subtypes require a classifier with
additional predictive capacity.

We implement a span-based, end-to-end, multi-
layer event extraction model that jointly predicts
all event phenomena, including the trigger span,
event type, and argument spans, types, and sub-
types. Figure 6 presents our extraction framework,
which differs from prior related work in that mul-
tiple span classifiers are used to accommodate the
argument subtypes.

Each input sentence consists of tokens, X =
{x1, x2, ...xn}, where n is the number of tokens.
For each sentence, the set of all possible spans,
S = {s1, s2, ...sm}, is enumerated, where m is
the number of spans with token length less than or
equal to M tokens. The model generates trigger



ϕtrigger(sj) 

bi-LSTM

She has been short of breath
BERT

Span scoring (ϕc)

Role scoring (ψd)

ϕassertion(sk) 

ψassertion(sj, sk) 
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Span rep. (gc,i)

∑ Attention

Figure 6: Event extraction model

and argument predictions for each span in S and
predicts the pairing between arguments and triggers
to create events from individual span predictions.

Input encoding: Input sentences are mapped
to contextualized word embeddings using
Bio+Clinical BERT (Alsentzer et al., 2019). To
limit computational cost, the contextualized word
embeddings feed into a bi-LSTM without fine
tuning BERT (no backpropagation to BERT).
The bi-LSTM has hidden size vh. The forward
and backward states, ht,f and ht,b, are concate-
nated to form the 1 × 2vh dimensional vector
ht = [ht,f ,ht,b], where t is the token position.

Span representation: Each span is represented
as the attention weighted sum of the bi-LSTM hid-
den states. Separate attention mechanisms, c, are
implemented for trigger and each labeled argument,
and a single attention mechanism is implemented
for all span-only arguments, c ∈ {1, 2 . . . 6} (1 for
trigger, 4 for labeled arguments, and 1 for span-
only arguments). The attention score for span rep-
resentation c at token position t is calculated as

αc,t = wα,ch
T
t (1)

where wα,c is a learned 1 × 2vh vector. For span
representation c, span i, and token position t, the
attention weights are calculated by normalizing the
attention scores as

ac,i,t =
exp(αc,t)

end(si)∑
k=start(si)

exp(αc,k)

, (2)

where start(si) and end(si) denote the start and
end token indices of span si. Span representation
c for span i is calculated as the attention-weighted
sum of the bi-LSTM hidden state as

gc,i =

end(si)∑
t=start(si)

ac,i,tht. (3)

Span prediction: Similar to the span repre-
sentations, separate span classifiers, c, are imple-
mented for trigger and each labeled argument, and
a single classifier predicts all span-only arguments,
c ∈ {1, 2 . . . 6} (1 for trigger, 4 for labeled ar-
guments, and 1 for span-only arguments). Label
scores for classifier c and span i are calculated as

φc(si) = ws,cFFNNs,c(gc,i), (4)

where φc(si) yields a vector of label scores of size
|Lc|, FFNNs,c is a non-linear projection from size
2vh to vs, and ws,c has size |Lc| × vs.

The trigger prediction label set is
Ltrigger = {null,COVID, Symptom}. Sep-
arate classifiers are used for each labeled
argument (Assertion, Change, Severity, and
Test Status) with label set, Lc = {null ∪ Ll},
where Ll is defined in Table 1.1 For example,
LSeverity = {null,mild,moderate, severe}.
A single classifier predicts all span-only
arguments with label set, Lspan−only =
{null, Anatomy,Characteristics,Duration,
Frequency}.

Argument role prediction: The argument role
layer predicts the assignment of arguments to trig-
gers using separate binary classifiers, d, for each
labeled argument and one classifier for all span-
only arguments, d ∈ {1, 2, . . . 5} (4 for labeled
arguments and 1 for span-only arguments). Argu-
ment role scores for trigger j and argument k using
argument role classifier d are calculated as

ψd(sj , sk) = wr,dFFNNr,d([gj , gk]) (5)

whereψd(sj , sk) is a vector of binary scores of size
2, FFNNr,d is a non-linear projection from size 2vs
to vr, and wr,d has size 2× vr.

Span width pruning: To limit time and space
complexity of the pairwise argument role predic-
tions, only the top-K spans for each span classifier,
c, are considered during argument role prediction.
The span score is calculated as the maximum label
score in φc, excluding the null label score.

5 Experimental Setup

5.1 Model Configuration
The model configuration was selected using 3-fold
cross validation (CV) on the training set. Table 2
summarizes the selected configuration. Training

1The assertion classifier uses the larger label set associa-
teed with Symptom.



loss was calculated by summing the cross entropy
across all span and argument role classifiers.

Parameter Value

Maximum sentence length, n 30
Maximum span length, M 6
Top-K spans per classifier n
Batch size 100
Number of epochs 100
Learning rate 0.001
Optimizer Adam
Maximum gradient L2-norm 100
BERT embedding dropout 0.3
bi-LSTM hidden size, vh 200
bi-LSTM activation function tanh
bi-LSTM dropout 0.3
Span classifier projection size, vs 100
Span classifier activation function ReLU
Span classifier dropout 0.3
Role classifier projection size, vr 100
Role classifier activation function ReLU
Role classifier dropout 0.3

Table 2: Model configuration

5.2 Data Representation

During initial experimentation, Symptom Assertion
extraction performance was high for the absent
subtype and lower for present. The higher absent
performance is primarily associated with the con-
sistent presence of negation cues, like “denies” or
“no.” While there are affirming cues, like “reports”
or “has,” the present subtype is often implied by
a lack of negation cues. For example, an entire
sentence could be “Short of breath.” To provide
the Symptom Assertion span classifier with a more
consistent span representation, we substituted the
Symptom trigger token indices for the Symptom As-
sertion token indices in each event and found that
performance improved. We extended this trigger
token indices substitution approach to all labeled
arguments (Assertion, Change, Severity, and Test
Status) and found performance improved. By sub-
stituting the trigger indices for the labeled argument
indices, trigger and labeled argument prediction
is roughly treated as a multi-label classification
problem, although the model is not constrained to
require trigger and labeled argument predictions
to be paired with the same spans. As previously
discussed, the scoring routine does not consider the
span indices of labeled arguments.

6 Results

Table 3 presents the extraction performance on the
training set using CV and withheld test set. Ex-

traction performance is similar on the train and
test sets, even though the training set has higher
rates of COVID-19 positive notes. COVID trig-
ger extraction performance is very high (0.97 F1)
and exceeds the round 2 annotator agreement (0.95
F1). The COVID Assertion performance (0.73 F1)
is higher than Test Status performance (0.62 F1),
which is likely due to the more consistent Asser-
tion annotation. Symptom trigger and Assertion
extraction performance is high (0.83 F1 and 0.79
F1, respectively), approaching the round 2 annota-
tor agreement (0.86 F1 and 0.83 F1, respectively).
Anatomy extraction performance (0.61 F1) is lower
than expected, given the high round 2 annotator
agreement (0.81 F1). Duration extraction perfor-
mance is comparable to annotator agreement, and
Frequency extraction performance is lower than an-
notation agreement. Change, Severity, and Charac-
teristics extraction performance is low, again likely
related to low annotator agreement for these cases.

As a preliminary analysis, the extraction model
was applied to all of the notes in the 92K note data
set with a positive or negative COVID-19 Test la-
bel derived from the EHR (1.1K positive and 8.0K
negative notes). Figure 7 presents the pointwise
mutual information (PMI) between the EHR de-
rived labels (positive or negative) and the automati-
cally extracted symptoms with Assertion subtypes.
Symptoms with present and absent subtypes are
treated as separate features in this figure. The ex-
tracted symptoms were manually normalized to
aggregate different extracted spans with similar
meanings (e.g. “sob”→ “shortness of breath” or
“fatigued”→ “fatigue”). Only symptoms that occur
in at least 3% of notes are included. These results
affirm several of the known COVID-19 symptoms,
including fever, cough, and shortness of breath.
They also suggest that other symptoms, including
weakness, diarrhea, vomiting, and myalgia, are in-
dicative of COVID-19 infection. Congestion, anxi-
ety, sore throat, wheezing, and swelling appear to
be counter indicators for COVID-19 infection.

This preliminary analysis was performed on a
very biased data set. All notes come from a period
when testing was very limited, and only patients
with prominent COVID-19 symptoms were tested.
Additionally, we did not include any patient demo-
graphics or past medical history in the analysis. In
ongoing COVID-19 work, the extractor will be ap-
plied to a broader set of over 2 million ambulatory
care and emergency department notes created at



Event type Argument Train-CV Test

# Gold P R F1 # Gold P R F1

COVID
Trigger 3,931 0.95 0.97 0.96 1,497 0.96 0.97 0.97

Assertion 2,936 0.70 0.74 0.72 1,075 0.72 0.74 0.73
Test Status 1,068 0.60 0.62 0.61 457 0.63 0.60 0.62

Symptom

Trigger 13,823 0.82 0.85 0.83 5,789 0.81 0.85 0.83

Assertion 13,833 0.77 0.79 0.78 5,791 0.77 0.80 0.79
Change 739 0.45 0.03 0.06 341 0.45 0.05 0.09
Severity 743 0.47 0.30 0.37 327 0.45 0.31 0.37

Anatomy 3,839 0.76 0.59 0.66 1,959 0.78 0.50 0.61
Characteristics 3,145 0.59 0.26 0.36 1,441 0.66 0.25 0.36
Duration 3,744 0.62 0.44 0.51 1,344 0.54 0.56 0.55
Frequency 801 0.64 0.39 0.48 250 0.60 0.51 0.55

Table 3: Extraction performance

UW during the first five months of the pandemic for
a more comprehensive analysis of reported symp-
toms, patient characteristics, and outcomes.
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Figure 7: Top automatically extracted symptoms

7 Conclusions

We present CACT, a novel corpus with detailed
annotations for COVID-19 diagnoses, testing, and
symptoms. CACT includes 1,472 unique notes
across six note types with more than 500 notes from
patients with positive COVID-19 tests. We im-
plement a span-based event extraction model that
jointly extracts all annotated phenomena, including
argument types and subtypes. The extraction model
performs well in the extraction of COVID trigger
(0.97 F1) and Assertion (0.73 F1) and achieves
near-human performance in the extraction of Symp-
tom trigger (0.83 F1) and Assertion (0.79 F1). The
automatic extractor was applied to a pool of 9.1K

unannotated notes, providing a preliminary explo-
ration of key COVID-19 symptoms.

In future work, the extractor will be applied to
a much larger set of clinical ambulatory care and
emergency department notes from UW and col-
laborating institutions nationally. The extracted
symptom information will also be combined with
routinely coded data (e.g. diagnosis and procedure
codes, demographics) and automatically extracted
data (e.g. social determinants of health). Using
these data, we will develop models for predicting
risk of COVID-19 infection amongst individuals
who are tested. These models could better inform
clinical indications for prioritizing testing with con-
strained test availability and more accurately deter-
mine pre-test probability. Additionally, the pres-
ence or absence of certain symptoms can be used
to inform clinical care decisions with greater pre-
cision. This future work may also identify combi-
nations of symptoms (including their presence, ab-
sence, severity, sequence of appearance, duration,
etc.) associated with clinical outcomes and health
service utilization, such as deteriorating clinical
course and need for repeat consultation or hospital
admission. The use of detailed symptom infor-
mation will be highly valuable in informing these
models, but potentially only with the level of nu-
ance that our extraction models provide. With the
COVID-19 pandemic continuing for the foresee-
able future, accelerating the research outlined in
this paper will inform key clinical and health ser-
vice decision making.
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