xrPhonetic: Akshar-based Phonetic String Similarity

Anonymous ACL submission

Abstract

Establishing String Similarity based on pho-
netics has been widely used in information re-
trieval systems to identify differently spelled
but similar-sounding words. Another common
application often involves calculating a similar-
ity score between two words coming from two
different sources which possibly can be two
different spelling representations of the same
word. A very interesting and common subset of
this is estimating the phonetic similarity of two
words that are transliterated to Roman script
from a different language. For such a use case,
it would be more effective if we can use the
knowledge of the nature of the concerned writ-
ing system from which the words originated as
people usually tend to carry over the nuances of
the underlying writing system during transliter-
ation. We propose xrPhonetic, a novel phonetic
similarity algorithm, for words transliterated to
Roman script from languages using Abugida-
based scripts by treating akshars as the most
fundamental atomic unit of words with conso-
nant and vowel phonemes as its further sub-
atomic units, and by having weighted phoneme
mappings to get a more continuous spectrum
of phonetic similarity.

1 Introduction

Phonetic string similarity is used to identify strings
with different spellings but similar pronunciations.
A lot of words have multiple valid spellings but
with similar pronunciations. For example, at var-
ious places, people might need to communicate
their name verbally which may sometimes lead to
inconsistencies of name spellings in different docu-
ments of the same person. In such a scenario, it is
important to have a method to compare two names
with similar pronunciations, irrespective of their
spelling.

A lot of times words being compared may have
been represented in the Roman script but have ori-
gin in a different language. Since different lan-

guages use scripts with different underlying writ-
ing systems, it can be effective to make use of the
rules and structures of the underlying writing sys-
tem of the originating language and script, as most
of the time people tend to carry over these rules
and nuances during the transliteration process.

Broadly writing systems can be classified into
Alphabets, Syllabaries, Logographies, Abjads, and
Abugidas and have been covered extensively both
from linguistic and computational points of view
(Coulmas, 2003; Daniels and Bright, 1996;Sproat,
2000;Sproat, 2002; Sproat, 2003).

Emeneau (Emeneau, 1956), showed that most
Indian languages use scripts derived from Brahmi,
which can be classified as an Abugida-based sys-
tem. The basic unit in these scripts is Akshar which
more or less corresponds to a syllable, but the map-
ping between syllables and Akshars is not exactly
one-to-one (Singh, 2006). Usually, Akshar consists
of a consonant followed by one or more vowels
represented as diacritics.

Singh et al., 2007 highlighted the advantages
of exploiting the characteristics of the Abugida-
based writing system to enhance the performance
of fuzzy text search for Indian languages in their
corresponding scripts. We can exploit these same
characteristics even while comparing words written
in Roman script(an Alphabetic writing system) if
they have origin in a language with an Abugida-
based writing system since people tend to preserve
these characteristics regardless of the script of rep-
resentation.

In this paper, we focus on the phonetic similarity
of words transliterated to Roman from languages
that use an Abugida-based writing system.

2 Related Works

Soundex (Odell and Russell, 1918) is the most com-
monly used phonetic coding scheme. It converts
the name into a four-character phonetic code with
the aim to have the same code for similar-sounding

names. It was mainly designed to match phoneti-
cally similar English surnames. There have been
various other phonetic coding schemes developed
ever since like Phonix (Gadd, 1988; Gadd, 1990),
Double Metaphone (Philips, 2000), and Caver-
phone (Hood, 2002). There have been some works
on modification of the Soundex to make it suit-
able for Indian languages (Chaware and Rao, 2011;
Shah and Singh, 2014; Gautam et al., 2019).

Editex is a phonetic distance measure that com-
bines the properties of edit distances with the letter-
grouping strategy used by Soundex and Phonix (Zo-
bel and Dart, 1996). Another method integrating
approximate string matching with phonetic string
similarity was presented by Ferri et al., 2018.

Phonetic codes derived from the above ap-
proaches usually do not have any resemblance to
the actual phonetics of the words. While (Zobel and
Dart, 1996) proposed the idea of leveraging string-
to-pronunciation conversion algorithms to first con-
vert the string into a phonetic representation and
then do the matching on strings of phonemes, Kon-
drak (Kondrak, 2000; Kondrak, 2003) highlighted
the idea of phonetic alignment and similarity scor-
ing methods on the basis of multi-valued articula-
tory phonetic features.

Most of the works highlighted above while as-
sessing the phonetic similarity don’t take into ac-
count that many times these words might have ori-
gins in different writing systems. To bridge this
gap, there have been works focusing on making
use of the characteristics of the underlying writing
systems for better estimation of phonetic similarity.
Particularly,(Singh et al., 2007; Gupta et al., 2014)
highlighted the advantages of using Akshar-based
phonetic similarity for the native Indian scripts
which fall under the Abugida-based writing sys-
tem.

Furthermore, it is quite common for words hav-
ing origin in an Abugida-based writing system to
be represented in the Roman script which is an
Alphabet-based writing system. Hindex (Prabhakar
et al., 2021) has tried to exploit these ideas to pro-
vide a phonetic coding and similarity approach for
words transliterated to Roman script from Indian
languages utilizing the character-wise mapping of
Soundex and Editex, and Levenstein edit distance
(Levenshtein et al., 1966) as an approximate string
matching algorithm.

Hindex (Prabhakar et al., 2021) and other ap-
proaches have failed to fully leverage the charac-

teristics of the Abugida-based writing systems in
a unified manner. Even while they have implicitly
highlighted Akshars and phonemes as the primary
building block of sound units for Abugida-based
writing systems, the consistent and primal treat-
ment across some of the most critical sub-tasks like
segmentation, code mappings or even computing
similarity scores is missing. For example, Hindex
still leverages Alphabets to prepare the code map-
pings, which one way contradicts the whole notion
of using Akshars or phonemes as the most atomic
building blocks for sound.

To fully utilize the highly phonetic nature of the
Abugida-based writing systems for calculating the
phonetic similarity of words with origin in such
languages, we propose xrPhonetic, which treats ak-
shar as the most fundamental atomic unit of words
even if they are represented in a Roman script. Fur-
ther, we contribute two novel improvements to the
existing works:

* Historically, all existing code mapping-based
approaches have taken an unweighted
approach to mappings. Given that in the real
world, different units of sound are not always
equally similar or dissimilar to each other,
we propose the introduction of triplet-based
code mappings which can be represented as
(sound—unitl, sound-unit2, similarity).
This enables associating a similarity-weight
with every mapping. Not only it provides a
more natural way to arrive at the overall pho-
netic similarity score which is a continuous
value, but it also helps in striking out a much
better balance between the often contradictory
precision and recall metrics.

* Building on top of akshar-based segmentation
and phoneme mappings, xrPhonetic allows
any edit-distance similarity algorithm to be
used to arrive at the final similarity score. In
addition to supporting the colloquially used
edit-distance algorithms, we also introduce
a new scoring function for calculating pho-
netic similarity for use cases requiring higher
precision.

3 xrPhonetic

For languages that use an Abugida-based script
Akshar forms the most fundamental and atomic
unit of sound in a word which in turn consists of a
consonant phoneme and a vowel phoneme (usually

represented as diacritics unless at the start of the
word). And these akshars are usually written pho-
netically consistent meaning two different sounds
are rarely represented by the same akshar. So, for
words originating in these languages, even if they
are represented in Roman script, if we can prop-
erly segment them into their constituent akshars,
we can utilize the highly phonetic nature of these
scripts to make phonetic comparisons of the words.

Even though these languages when written in
their native script are highly phonetic in nature,
for words with origin in these languages when rep-
resented in Roman script, there can be multiple
characters or groups of characters that can be used
to represent the same or very similar sound. Hence,
we prepare a list of consonant and vowel phoneme
mappings with an assigned similarity score for each
pair that depends on their perceived phonetic simi-
larity and use it to calculate the similarity score of
two words.

Once, we have the segmentation and the map-
pings, either simply a weighted edit distance al-
gorithm (Levenshtein et al., 1966; Wagner and
Fischer, 1974) can be used to compare the words
treating akshars as the fundamental unit instead
of a character, or one can also use the specialized
phonetic scoring function that we are describing in
subsequent sections.

Barring a few exceptions, mostly each consonant
character has an independent sound, while vowels
can have groups acting as a unit having one sound.
Therefore, we segment the string from consonant
to consonant into its constituent akshars. To handle
exceptional cases, where a group of consonants or
consonants and vowels can act as a unit of sound,
we perform some transformations at the preprocess-
ing stage, motivated by the Metaphone algorithm.
We discuss various stages of the algorithm in sub-
sequent sub-sections.

3.1 Preprocessing

Preprocessing stage consists of substituting some
common phoneme variations, and removing any
consecutive repetition of the same character. At
this stage, we can also handle exceptional cases
where a group of consonants can be part of the
same sound unit, or when a consonant takes up a
vowel sound. A small penalty can also be applied
to the score if only one of the strings undergoes
a particular transformation for each such transfor-
mation to ensure that the strings requiring more

String/ String Pair After Transformation
Vineet Vinit
Anoop Anup
Knight Night

Laxman, Laxman
Saumya, Saumya

Lakshman, Laxman
Sowmya, Saumya

Table 1: Preprocessing Examples

String Segmentation

vaishali [(‘v’, ‘ai’), (‘s’, ‘ha’), (I, ‘1)]
nayak [(‘n, “aya’), (°k",)]
tamatar [(‘t’, ‘a’), (‘m’, ‘a’), (‘t’, ‘@’), (r’,)]
byaz [('b, “ya’), (‘z",)]

Table 2: Segmentation Examples

number transformations have a lower score than
the ones that require a lesser number of transfor-
mations to become similar. A few examples are
shown in Table 1.

3.2 Segmentation

We split a string into its constituent akshars, which
is further subdivided into consonant and vowel
phonemes. Barring a few exceptions, consonant
phonemes are always a single character whereas
vowel phonemes can be composed of multiple char-
acters. Each Akshar can be a single consonant
phoneme, a single vowel phoneme, or a combina-
tion of a consonant and a vowel phoneme.

We consider (h, y) as vowels except when they
appear at the beginning of the string. A few exam-
ples are shown in Table 2. In the second column,
each element in parentheses inside the list repre-
sents an Akshar, and the sub-elements represent
consonant and vowel phonemes respectively.

3.3 Mappings

We define some consonant and vowel mapping and
assign varying similarity-weights to each of them to
arrive at a similarity score by combining scores for
each akshar-pair. Consonant mappings are single
characters, while vowel mappings can be multi-
character.

Details of consonant and vowel mappings are
given in Table 3, and Table 4.

3.4 Specialized Phonetic Scoring Function

For comparing each akshar-pair, we assign a score
of 1.0 for an exact match (exact match for both

Phonemel Phoneme2 Similarity

A" g NOO<TO NNZD

k

- O T »vw v K’ T =09 — <

0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.85
0.85
0.85
0.85
0.5
0.4

Table 3: Consonant Mappings

Phonemel Phoneme2 Similarity

e
i
ae
ai
ai
ai
ai
ey
ae
ai
ai
ou
ou
au
u
a
oe
oe
oe
ei
ie
el

1

y
y
y
€1
aya
ay
ay
€
ae
€
au

nn

nn

0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.9
0.8
0.8
0.7
0.7
0.7
0.7

Table 4: Vowel Mappings

consonant and vowel pairs), else we score conso-
nant and vowel phonemes separately. We then look
if the consonant and vowel phoneme pairs can be
matched according to some consonant and vowel
mappings defined above. We assign some empiri-
cally derived scores for each level of mapping and
assign zero scores if the pair doesn’t match at any
level of mapping. Finally, we take a weighted aver-
age of consonant and vowel phoneme pairs’ scores
to get the Akshar pair score.

We introduce a specialized phonetic similarity
scoring approach which is more suitable in places
where more precision is required. The idea is that
when talking about sound units even one highly dis-
similar sound unit can change completely change
the sound of the word, and hence should bring
down the score in a non-linear way. To calcu-
late the final string similarity score, we divide
the Akshar similarity scores into matches and non-
matches keeping the threshold for a match at 0.85.
Such a split is to avoid scores averaging out in the
case of strings with just one Akshar phonetic mis-
match with lots of akshars matching. We can com-
bine the scores of all matches and all non-matches
separately, using either the mean or product of
scores. The final similarity score is calculated as
a weighted average of matches and non-matches
scores.

4 Limitations and Future Work

xrPhonetic provides a holistic way of providing
similarity scores for Abugida-based word pairs us-
ing the underlying akshars even if they are repre-
sented in Roman script. In order for xrPhonetic to
work effectively, the correct identification and treat-
ment of akshars is paramount and requires a strong
understanding of the underlying scripts. This cre-
ates a strong inherent dependency on language ex-
perts when one tries to provide similarity scores for
words across different writing systems.

In order to significantly reduce the dependency
and enhance the portability across writing systems
and languages, such mappings can also be learnt in
a data-driven manner. For example, (Londhe et al.,
2015) provided an interesting way of using translit-
eration models to automatically learn the mappings
bypassing the need for language expertise.

References

Sandeep Chaware and Srikantha Rao. 2011. Rule-based
phonetic matching approach for hindi and marathi.

International Journal of Research in Social Sciences,

1(1):26-41.

Florian Coulmas. 2003. Writing systems: An introduc-
tion to their linguistic analysis. Cambridge Univer-
sity Press.

Peter T Daniels and William Bright. 1996. The world’s
writing systems. Oxford University Press on De-
mand.

Murray B Emeneau. 1956. India as a lingustic area.
Language, 32(1):3-16.

Junior Ferri, Hegler Tissot, and Marcos Didonet
Del Fabro. 2018. Integrating approximate string
matching with phonetic string similarity. In Ad-
vances in Databases and Information Systems: 22nd
European Conference, ADBIS 2018, Budapest, Hun-
gary, September 2—5, 2018, Proceedings 22, pages
173-181. Springer.

TN Gadd. 1988. ‘fisching fore werds’: phonetic re-
trieval of written text in information systems. Pro-
gram, 22(3):222-237.

TN Gadd. 1990. Phonix: The algorithm. Program,
24(4):363-366.

Vishakha Gautam, Aayush Pipal, and Monika Arora.
2019. Soundex algorithm revisited for indian lan-
guage. In International Conference on Innovative
Computing and Communications: Proceedings of

ICICC 2018, Volume 2, pages 47-55. Springer.

Sandeep Gupta, Arun Pratap Srivastava, and Shashank
Awasthi. 2014. Fast and effective searches of per-
sonal names in an international environment. Int J
Innov Res Eng Manag, 1.

David Hood. 2002. Caverphone: Phonetic matching
algorithm. Technical Paper CTP060902, University
of Otago, New Zealand.

Grzegorz Kondrak. 2000. A new algorithm for the
alignment of phonetic sequences. In /st Meeting of
the North American Chapter of the Association for
Computational Linguistics.

Grzegorz Kondrak. 2003. Phonetic alignment and simi-
larity. Computers and the Humanities, 37:273-291.

Vladimir I Levenshtein et al. 1966. Binary codes capa-
ble of correcting deletions, insertions, and reversals.
In Soviet physics doklady, volume 10, pages 707-710.
Soviet Union.

Nikhil Londhe, Vishrawas Gopalakrishnan, Rohini K
Srihari, and Aidong Zhang. 2015. Mess: A mul-
tilingual error based string similarity measure for
transliterated name variants. In Proceedings of the
7th Annual Meeting of the Forum for Information
Retrieval Evaluation, pages 47-50.

Margaret Odell and Robert Russell. 1918. The soundex
coding system. US Patents, 1261167:9.

Lawrence Philips. 2000. The double metaphone search
algorithm. C/C++ users journal, 18(6):38—43.

Dinesh Kumar Prabhakar, Sukomal Pal, and Chiranjeev
Kumar. 2021. Query expansion for transliterated text
retrieval. Transactions on Asian and Low-Resource
Language Information Processing, 20(4):1-34.

Rima Shah and Dheeraj Kumar Singh. 2014. Improve-
ment of soundex algorithm for indian language based
on phonetic matching. International Journal of Com-
puter Science, Engineering and Applications (1JC-
SEA) Vol, 4.

Anil Kumar Singh. 2006. A computational phonetic
model for indian language scripts. In Constraints on
spelling changes: Fifth international workshop on
writing systems, pages 1-19. Nijmegen, The Nether-
lands.

Anil Kumar Singh, Harshit Surana, and Karthik Gali.
2007. More accurate fuzzy text search for languages
using abugida scripts. Improving Non English Web
Searching (iNEWS’07), page 71.

Richard Sproat. 2000. A computational theory of writ-
ing systems. Cambridge University Press.

Richard Sproat. 2002. Brahmi scripts. In Constraints
on Spelling Changes: Fifth International Workshop
on Writing Systems, Nijmegen, The Netherlands.

Richard Sproat. 2003. A formal computational analysis
of indic scripts. In International symposium on indic
scripts: past and future, Tokyo. Citeseer.

Robert A Wagner and Michael J Fischer. 1974. The
string-to-string correction problem. Journal of the
ACM (JACM), 21(1):168-173.

Justin Zobel and Philip Dart. 1996. Phonetic string
matching: Lessons from information retrieval. In
Proceedings of the 19th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 166—172.

