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Abstract

In the era of large language models (LLMs),001
in-context learning (ICL) stands out as an effec-002
tive prompting strategy that explores LLMs’003
potency across various tasks. However, ap-004
plying LLMs to grammatical error correction005
(GEC) is still a challenging task. In this pa-006
per, we propose a novel ungrammatical-syntax-007
based in-context example selection strategy for008
GEC. Specifically, we measure similarity of009
texts based on their syntactic structure with010
diverse algorithms, and identify optimal ICL011
examples sharing the most similar ill-formed012
syntax to the test sample. Additionally, we013
carry out a two-stage process to further im-014
prove the quality of selection results. On bench-015
mark English GEC datasets, empirical results016
show that our proposed ungrammatical-syntax-017
based strategies outperform commonly-used018
word-matching methods with multiple LLMs.019
This indicates that for a syntax-oriented task020
like GEC, paying more attention to syntactic021
information can effectively boost LLMs’ per-022
formance. Our code will be publicly available023
after the publication of this paper.024

1 Introduction025

Recently, large language models (LLMs) have026

shown awesome power in many areas and ended027

the contest on many tasks (Chowdhery et al., 2023;028

Bubeck et al., 2023; Touvron et al., 2023). Un-029

fortunately for LLMs, grammatical error correc-030

tion (GEC), which aims at automatically correcting031

grammatical errors in erroneous text (Bryant et al.,032

2022), is still a challenging task where they cannot033

beat conventional models yet. Fang et al. (2023b)034

and Loem et al. (2023) explore the performance of035

LLMs on GEC, demonstrating mainstream LLMs036

lag over 10 points behind the state-of-the-art result.037

Therefore, it is significant to explore new strategies038

to further improve the power of LLMs on GEC.039

In the era of LLMs, in-context learning (ICL) has040

achieved impressive results on many tasks (Dong041

et al., 2022; Min et al., 2022). In ICL, several in- 042

context examples are presented to LLMs as demon- 043

strations before the input test sample in order to 044

make LLMs aware of the requirement and out- 045

put format of the specific task, thereby enhancing 046

LLMs’ performance during the subsequent gen- 047

eration process. Since the quality of in-context 048

examples plays a crucial role under the few-shot 049

setting, some special-designed strategies of exam- 050

ple selection and permutation have been proposed 051

(Agrawal et al., 2023; Li et al., 2023a). 052

To the best of our knowledge, most works on 053

ICL example selection focus on superficial word 054

matching like BM25 (Robertson et al., 1994), with- 055

out considering syntactic information. However, 056

GEC aims to correct grammatical errors and is a 057

typical syntax-oriented task. In GEC, common 058

errors can be classified into four types: misuse, 059

missing, redundancy and word order (Bryant 060

et al., 2017; Zhang et al., 2022a), and the last three 061

of which are closely related to syntactic structure. 062

That is, the missing, redundancy or disorder 063

of text constituents may lead to ill-formed syn- 064

tax (Zhang et al., 2022b), suggesting the impor- 065

tant role syntax plays in GEC. Hence, selecting 066

in-context examples based on syntactic structure 067

is likely to benefit LLMs more than conventional 068

word-matching-based approaches. 069

Comparing with other natural language process- 070

ing (NLP) tasks, syntactic similarity of text is less- 071

studied. Previous works have leveraged the simi- 072

larity of dependency trees to help multi-document 073

summarization (Özateş et al., 2016) and semantic 074

textual similarity (Le et al., 2018). To compute 075

syntactic similarity, several effective algorithms of 076

tree similarity have been proposed. Tree Kernel is a 077

typical one, which counts the shared sub-structures 078

of two trees to measure their similarity (Collins and 079

Duffy, 2002; Vishwanathan et al., 2004; Moschitti, 080

2006). Polynomial Distance is another handy one, 081

which converts syntactic trees into polynomials and 082
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Source (Erroneous Sentence) Target (Corrected Sentence)

Input No smoking in the public places. No smoking in public places.

BM25 I am writing to complain about the suggested I am writing to complain about the suggested
bar on smoking in public areas. ban on smoking in public areas.

Poly. No future for the public transport? No future for public transport?

Table 1: An example comparing the selection results of BM25 and polynomial distance ("Poly." in the table).

then computes the distances (Liu et al., 2022).083

In this paper, we propose a new ICL example se-084

lection strategy for GEC, by computing similarities085

of syntactic trees on ungrammatical sentences. Spe-086

cially, we apply the syntactic similarity algorithms087

(Tree Kernel and Polynomial Distance) to depen-088

dency trees generated by a GEC-oriented parser089

(GOPar) proposed by Zhang et al. (2022b), which is090

more reliable and provides error information when091

parsing ungrammatical sentences. Moreover, we092

carry out a two-stage process. In the first stage,093

namely selection, a fast and general method like094

BM25 is applied to filter out most of the irrelevant095

instances from the training data and obtain a much096

smaller candidate set. In the second stage, namely097

ranking, the more powerful syntax-based method098

is implemented to find out the best k instances as099

the final in-context examples.100

To give a quick view of the superiority of our101

method, Table 1 shows an example illustrating102

the difference between BM25 selection and our103

ungrammatical-syntax-based method with poly-104

noimal distance selection. BM25 only selects ex-105

amples with similar words while Polynomial Dis-106

tance is able to select those with similar grammati-107

cal errors, which will benefit more the GEC task.108

We conduct experiments on two English GEC109

datasets, BEA-2019 (Bryant et al., 2019) and110

CoNLL-2014 (Ng et al., 2014). According to ex-111

perimental results, Polynomial Distance and its112

weighted version achieve competitive results even113

under the single-stage setting, improving the perfor-114

mance by around 3 points and 2 points on BEA-19115

and CoNLL-14 respectively. With the help of our116

two-stage selection, Tree Kernel gets its power un-117

locked and Polynomial Distance also benefits, lead-118

ing to a further 1-point and 0.4-point improvement119

on BEA-19 and CoNLL-14 respectively. Overall,120

our ungrammatical-syntax-based in-context exam-121

ple selection methods secure the best results under122

all settings, outperforming conventional baselines123

by a margin of nearly 3 F0.5 points on average.124

Our contributions can be summarized as follows:125

• We propose a novel ICL example selection 126

method based on ungrammatical syntactic 127

similarity to improve LLMs’ performance on 128

GEC. To the best of our knowledge, this is the 129

first time that syntactic structure knowledge is 130

introduced to ICL example selection for GEC. 131

• We explore a two-stage selection strategy on 132

GEC, where superficial word-similarity-based 133

methods are used in the first stage and deep 134

syntax-similarity-based ones are used in the 135

second stage. It further improves LLMs’ per- 136

formance and achieves competitive results. 137

• We want to re-draw the NLP community’s 138

attention to the significance of syntactic infor- 139

mation. In this work, we show that syntax- 140

related knowledge helps LLMs correct gram- 141

matical errors better. We believe our methods 142

can be smoothly transferred to many other 143

syntax-related tasks like machine translation 144

(MT), information extraction (IE), etc. 145

2 Related Work 146

2.1 Grammatical Error Correction 147

In the past few years, the GEC task has been dom- 148

inated by sequence-to-sequence machine transla- 149

tion models (Junczys-Dowmunt et al., 2018; Rothe 150

et al., 2021) and sequence-to-edit tagging models 151

(Omelianchuk et al., 2020; Tarnavskyi et al., 2022), 152

both based on Transformer (Vaswani et al., 2017). 153

Nowadays, with the finalization of mainstream 154

models, further explorations on GEC mainly focus 155

on two aspects. For one thing, injecting all kinds of 156

additional knowledge into GEC models has been 157

proved helpful. The additional knowledge can be 158

part-of-speech (POS) (Wu and Wu, 2022), syntax 159

tree (Zhang et al., 2022b), speech representation 160

(Fang et al., 2023a), abstract meaning representa- 161

tion (AMR) (Cao and Zhao, 2023), error type (Yang 162

et al., 2023), etc. For another, multi-stage strate- 163

gies help refine models’ predictions. The multi- 164

stage workflow can be permutation & decoding 165
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Figure 1: Our two-stage selection and ICL workflow. For each input test sample, Stage I computes word similarities
with BM25 or BERT representation between the input and all training data and select the top-1000 as candidates.
Then, Stage II computes ungrammatical syntactic similarities with tree kernel or polynomial distance between
the input and candidates to select the most similar k example(s). After that, we concatenate the input after the k
examples to construct the prompt for LLM inference. In the end, the LLM outputs the final result.

(Yakovlev et al., 2023), detection & correction (Li166

et al., 2023b), re-ranking (Zhang et al., 2023a), etc.167

With the rising of powerful large language mod-168

els (LLMs), some works have begun exploring their169

performance on GEC (Loem et al., 2023; Fang170

et al., 2023b), showing that LLMs cannot beat con-171

ventional models on GEC yet.172

2.2 Syntactic Similarity173

In computational linguistics (CL), previous works174

compared syntax trees of different languages to175

measure their similarities (Oya, 2020; Liu et al.,176

2022). In NLP, most works on text similarity focus177

on the semantic perspective (Gomaa et al., 2013,178

Reimers and Gurevych, 2019; Chandrasekaran and179

Mago, 2021), syntactic similarity of text is less-180

studied. Özateş et al. (2016) used similarity of181

dependency trees to help multi-document summa-182

rization. Le et al. (2018) proposed ACV-tree (At-183

tention Constituency Vector-tree), which combines184

word weight, word representation and constituency185

tree, to help the task of semantic textual similarity.186

Syntactic similarity is usually represented by187

similarity between syntax trees. Tree similarity188

can be measured by Edit Distance (de Castro Reis189

et al., 2004), Polynomial Distance (Liu et al., 2022), 190

Subset Tree Kernel (SSTK) (Collins and Duffy, 191

2002), SubTree Kernel (STK) (Vishwanathan et al., 192

2004), Patial Tree Kernel (PTK) (Moschitti, 2006), 193

etc. 194

2.3 Large Language Models and In-context 195

Learning 196

In recent years, LLMs have shown their awesome 197

power in many areas (Brown et al., 2020; Chowdh- 198

ery et al., 2023). Due to the limitation of computing 199

resources, the focus of research on LLMs turns to 200

the inference stage, trying to exploit the potency of 201

LLMs with inference-only strategies. 202

ICL is a successful inference strategy that can 203

make LLMs perform as well as fine-tuned models 204

on many tasks (Brown et al., 2020; Von Oswald 205

et al., 2023), where several in-context examples 206

are given to LLMs as demonstrations before the 207

actual test sample. Instead of randomly sampling 208

examples from the training set, recent works have 209

boosted the performance of ICL by selecting in- 210

context examples using strategies based on simi- 211

larity (Agrawal et al., 2023; Li et al., 2023a) or 212

diversity (Zhang et al., 2023b). 213
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LLaMA-2 GPT-3.5
There is an erroneous sentence between ’<erroneous sen-
tence>’ and ’</erroneous sentence>’. Then grammatical
errors in the erroneous sentence will be corrected. The cor-
rected version will be between ’<corrected sentence>’ and
’</corrected sentence>’.
<erroneous sentence> {e1} </erroneous sentence>
<corrected sentence> {c1} </corrected sentence>
<erroneous sentence> {e2} </erroneous sentence>
<corrected sentence> {c2} </corrected sentence>
<erroneous sentence> {e3} </erroneous sentence>
<corrected sentence> {c3} </corrected sentence>
<erroneous sentence> {e4} </erroneous sentence>
<corrected sentence> {c4} </corrected sentence>
<erroneous sentence> {etest} </erroneous sentence>
<corrected sentence>

"system": You are a grammar correction assistant. The user
will give you a sentence with grammatical errors (between
’<erroneous sentence>’ and ’</erroneous sentence>’). You
need to correct the sentence (between ’<corrected sentence>’
and ’</corrected sentence>’). Requirements: 1. Make as few
changes as possible. 2. Make sure the sentence has the same
meaning as the original sentence. 3. If there is no error, just
output ’No errors found’.
"user": <erroneous sentence> {e1} </erroneous sentence>
"assistant": <corrected sentence> {c1} </corrected sentence>
"user": <erroneous sentence> {e2} </erroneous sentence>
"assistant": <corrected sentence> {c2} </corrected sentence>
"user": <erroneous sentence> {e3} </erroneous sentence>
"assistant": <corrected sentence> {c3} </corrected sentence>
"user": <erroneous sentence> {e4} </erroneous sentence>
"assistant": <corrected sentence> {c4} </corrected sentence>
"user": <erroneous sentence> {etest} </erroneous sentence>

Table 2: Prompts we use. e and c denote the erroneous and corrected sentences of in-context examples or test
samples respectively.

But there were no buyers .

Root

cc

expl

nsubj

punct

det

(a) The correct sentence.

Bat there were no buyers .

Root

S

expl

nsubj

punct

det

(b) Substituted errors.

But there were no any buyers .

Root

cc

expl

nsubj

punct

det

R

(c) Redundant errors.

But there were no ∅ .

Root

cc

expl

M

det

(d) Missing errors.

Figure 2: Original illustration of GOPar from Zhang et al. (2022b). ∅ denotes the missing word.

Besides normal ICL, Chain-of-thought (CoT)214

(Wei et al., 2022; Kojima et al., 2022) is another215

effective inference strategy in current favor, where216

LLMs are prompted to think step by step and an-217

swer with intermediate rationales.218

3 Methodology219

3.1 In-context Learning Workflow for GEC220

Based on LLMs, our ungrammatical-syntax-based221

example selection and few-shot ICL workflow is222

illustrated in Figure 1. Specially, when faced with223

a test sample, we search through the training data224

to find the best example(s) for in-context learning.225

Then, both the source (erroneous) and the target226

(corrected) sentences of the example(s) are inserted227

into the prompt as demonstrations, with the test228

sample concatenated at the end. In this way, LLMs229

can learn the GEC task from the demonstrations230

and perform better correction on the test sample.231

In this framework, a set of high-quality in-context232

examples are crucial to lead LLMs to a better per-233

formance. Prompts used in this work are shown in234

Table 2.235

3.2 Syntax Parser for Ungrammatical236

Sentences237

Unlike most NLP tasks, which take correct sen-238

tences as input, the GEC task considers erroneous239

text as input. This gives rise to an issue that main- 240

stream parsers may fail to obtain the expected de- 241

pendency tree for the erroneous text. 242

To solve this problem, Zhang et al. (2022b) 243

built a tailored GEC-Oriented dependency Parser 244

(GOPar) based on the parallel GEC training data, 245

which is much more reliable when handling un- 246

grammatical sentences than conventional parsers. 247

Concretely, GOPar sets "S" (Substituted), "R" (Re- 248

dundant) or "M" (Missing) labels to deal with dif- 249

ferent kinds of grammatical errors in the sentence, 250

which inject additional information of errors into 251

the dependency tree. Figure 2 shows the original 252

illustration of GOPar from Zhang et al. (2022b). 253

Most previous works computing syntactic sim- 254

ilarity base on grammatical sentences with stan- 255

dard parsing trees (Özateş et al., 2016; Oya, 2020). 256

However, in GEC, we only have the ungrammatical 257

source sentences, on which conventional parsers 258

may perform poorly. So we apply the algorithms of 259

tree similarity on the parsing results of GOPar, to 260

compute syntactic similarities between test sample 261

and training instances. 262

3.3 Syntactic Similarity with Tree Kernel 263

We follow the unified Tree Kernel method proposed 264

by (Moschitti, 2006), which can compute kernels 265

of subset trees defined by Collins and Duffy (2002), 266
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subtrees defined by Vishwanathan et al. (2004) and267

partial trees defined in their own work.268

For brevity, we imitate the algorithm described269

in Le et al. (2018) and design the following al-270

gorithm (shown in Algorithm 1) to implement a271

simple version of Tree Kernel.272

Algorithm 1 Similarity with Tree Kernel
procedure COMPSIM(N1, N2)

K ← 0
for each node ni in N1 do

for each node nj in N2 do
if n1.label = n2.label then

if n1 and n2 are both leaves then
K ← K + 1

else if n1 and n2 are both non-leaves then
K ← K + COMPSIM(n1, n2)

end if
end if

end for
end for
K ← K/(N1.size×N2.size)
return K

end procedure

For two trees T1 and T2, we conduct COMPSIM273

between their root nodes N1 and N2 to get a simi-274

larity score.275

3.4 Syntactic Similarity with Polynomial276

Distance277

Liu et al. (2022) converted trees into polynomi-278

als and took the distances between polynomials as279

tree distances to measure syntactic similarities of280

dependency trees.281

Given the number of dependency labels d, the282

dependency trees will be represented into poly-283

nomials recursively on two variable set: X =284

{x1, x2...xd} and Y = {y1, y2, ...yd}. In the de-285

pendency tree, for each leaf nl with label l, the286

corresponding polynomial is P (nl, X, Y ) = xl.287

Then, for each non-leaf ml with label l, the cor-288

responding polynomial is P (ml, X, Y ) = yl +289 ∏k
i=1 P (ni, X, Y ), where n1, ..., nk are all child290

nodes of ml. In this way, the polynomial of the291

root node is regarded as the polynomial representa-292

tion of a tree.293

To compute similarity more conveniently, for
each term cx

ex1
1 x

ex2
2 ...x

exd
d y

ey1
1 y

ey2
2 ...y

eyd
d in the

dependency polynomial, we write it as a term vec-
tor with 2d+ 1 entries:

t = [ex1 , ex2 , ..., exd
, ey1 , ey2 , ..., eyd , c],

where each entry represents the exponent of the294

corresponding variable. In this way, a polynomial295

P can be written as a set of term vectors VP . Then, 296

we compute the distance between two polynomials 297

as: 298

d(P,Q) =

∑
s∈VP

min
t∈VQ

∥ s− t ∥1 +
∑

t∈VQ

min
s∈VP

∥ s− t ∥1

| VP | + | VQ |
,

(1) 299

where ∥ s− t ∥1 denotes the Manhattan distance 300

(Craw, 2017) between term vector s and t. 301

Weighting Ungrammatical Nodes We hypothe- 302

size that LLMs benefit more from similar grammat- 303

ical errors, and error nodes with similar neighbor- 304

ing syntactic structure lead to similar error patterns. 305

Therefore, assigning higher weights to ungrammat- 306

ical nodes can select examples with error patterns 307

closer to the test sample. Hence, besides the origi- 308

nal algorithm, we also explore a weighted version. 309

When computing the Manhattan distance between 310

two term vectors, we assign a higher weight to 311

entries corresponding to labels with error informa- 312

tion ("S", "R" and "M"). In our experiment, as a 313

preliminary attempt, we set the weight to 2. 314

3.5 Two-stage Selection 315

In previous works, a two-stage select-then-rank 316

strategy performs well in in-context learning (Wu 317

et al., 2023; Agrawal et al., 2023). To be specific, a 318

fast and general method is used to filter out most of 319

the not-so-relevant instances from training data and 320

get a much smaller candidate set with high quality, 321

which is called selection. After that, a specific and 322

powerful method is used to rank the instances in 323

the candidate set and obtain the top-k best training 324

instances, which is called ranking. Motivated by 325

this, we also design a two-stage sample selection 326

mechanism for GEC. 327

Stage 1: BM25/BERT Selection First, we ex- 328

plore selection with BM25 or BERT representation 329

to obtain candidate examples, and the size of can- 330

didate set is 1000 in our experiment. 331

BM25 (Robertson et al., 1994) is a widely-used 332

retrieval algorithm based on term frequency, in- 333

verse document frequency and length normaliza- 334

tion. Many recent works regard BM25 as a strong 335

baseline for in-context example selection (Agrawal 336

et al., 2023; Li et al., 2023a). In our work, we 337

take the input test sample as the query and source 338

sentences of all training data as the document. 339

BERT Representation Li et al. (2023a) make 340

use of SentenceBERT (Reimers and Gurevych, 341
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I II

BEA-2019 CoNLL-2014

LlaMA-2-7B LlaMA-2-13B GPT-3.5-turbo LlaMA-2-7B LlaMA-2-13B GPT-3.5-turbo

P R F0.5 P R F0.5 P R F0.5 P R F0.5 P R F0.5 P R F0.5

-

Rand. 50.1 57.7 51.5 49.0 61.2 51.0 47.0 70.4 50.3 59.4 48.8 56.9 58.6 51.3 57.0 56.5 59.9 57.1
BM25 50.9 58.2 52.2 51.6 61.1 53.3 46.8 69.6 50.1 59.7 47.7 56.8 59.3 50.1 57.2 56.6 60.8 57.4
BERT 50.7 56.8 51.8 51.0 61.2 52.8 47.6 70.0 50.9 58.6 45.4 55.4 60.1 52.0 58.3 56.0 60.8 56.9
T. K. 50.0 57.0 51.2 52.5 59.0 53.6 47.2 69.8 50.5 57.9 47.5 55.5 61.8 48.0 58.5 57.3 60.3 57.9
Poly. 53.1 57.9 54.0 52.9 60.2 54.3 49.5 70.0 52.6 59.5 49.5 57.2 61.7 51.8 59.4 58.2 59.9 58.6

W. Poly. 53.2 58.2 54.2 53.4 60.5 54.7 50.3 69.6 53.2 60.1 49.2 57.5 61.6 52.3 59.5 58.4 60.5 58.8

BM25

T. K. 55.1 55.9 55.2 54.9 58.7 55.6 49.7 69.3 52.7 62.2 45.7 58.0 61.9 47.3 58.3 58.3 59.7 58.6
Poly. 51.2 57.1 52.3 50.9 59.8 52.5 48.8 69.5 51.9 62.1 47.7 58.6 60.9 49.8 58.3 57.2 59.7 57.7

W. Poly. 54.4 57.4 55.0 54.0 59.7 55.0 49.3 69.8 52.4 61.4 47.7 58.1 60.8 50.4 58.4 57.6 60.4 58.1

BERT

T. K. 53.6 56.0 54.1 53.7 59.3 54.7 50.0 69.7 53.0 60.7 46.3 57.1 60.8 49.9 58.3 57.6 59.2 57.9
Poly. 53.3 57.2 54.0 53.8 60.4 55.0 49.0 69.5 52.1 60.5 47.6 57.4 59.8 50.8 57.8 57.6 60.7 58.2

W. Poly. 53.8 57.4 54.5 54.2 60.7 55.4 49.9 69.7 52.9 61.0 48.3 57.9 59.8 51.5 57.9 57.3 60.5 57.9

Table 4: Experimental results under the few-shot setting with 4 examples. I and II denote the first (selection)
and second (ranking) stage of the two-stage selection respectively. "-" means the Stage I is absent and these are
single-stage models. "Rand.", "T. K.", "Poly." and "W. Poly." refer to "Random", "Tree Kernel" "Polynomial
Distance" and "Weighted Polynomial Distance", respectively. The dashed line separates results of conventional
baselines and our proposed methods: the former on the upper side and the latter on the lower side. The best F0.5

scores of each group are displayed in bold, and the best F0.5 scores of all settings are displayed in underlined bold.

2019) to get sentence representations and then342

compared similarities of sentences. For brevity,343

we adopt the more frequently-used BERT (Devlin344

et al., 2019) instead. In our work, we take the345

BERT representation of the [CLS] token as the rep-346

resentation of the sentence. Then we compute the347

cosine similarities between the representations of348

the input test sentence and all source sentences in349

the training data.350

For comparison, we also experiment on single-351

stage BM25 and BERT representation selection,352

which serve as baselines in Section 4.353

Stage 2: Ungrammatical-syntax-based Ranking354

Further, we employ ranking via syntactic simi-355

larity computing with Tree Kernel or Polynomial356

Distance, to obtain the best k matching examples357

from the candidate set.358

4 Experimental Results359

4.1 Datasets and Evaluation Metrics360

Dataset #Sentences %Error Usage

W&I+LOCNESS 34,308 66 Demonstration

BEA-19-Test 4,477 - Testing
CoNLL-14-Test 1,312 72 Testing

Table 3: Statistics of GEC datasets used in this work.
#Sentences refers to the number of sentences.%Error
refers to the percentage of erroneous sentences.

We carry out experiments on English GEC datasets. 361

Since no model training is involved, most large- 362

scale GEC data is unnecessary, but the data quality 363

matters for example selection. Thus in this work, 364

we only use the relatively small but high-quality 365

Write&Improve+LOCNESS (W&I+LOCNESS) 366

(Bryant et al., 2019) as the training data. 367

For evaluation, we report P (Precision), R (Re- 368

call) and F0.5 results on BEA-19 test set (Bryant 369

et al., 2019) evaluated by ERRANT (Bryant et al., 370

2017) and on CoNLL-14 test set (Ng et al., 2014) 371

evaluated by M2Scorer (Dahlmeier and Ng, 2012). 372

We primarily compare the F0.5 among different 373

methods, which shows the comprehensive perfor- 374

mance of models on GEC. 375

Statistics of datasets mentioned above are shown 376

in Table 3. 377

4.2 Large Language Models 378

We use two mainstream LLM series: LLaMA-2 379

(Touvron et al., 2023) and GPT-3.5 (OpenAI, 2023) 380

for experiment. 381

For LLaMA-2, we use llama-2-7b-chat and 382

llama-2-13b-chat with 7B and 13B parameters 383

respectively. For GPT-3.5, we use the official 384

gpt-3.5-turbo API for inference. 385

For the sake of reproductivity, we turn off the 386

sampling and set the temperature to zero for all 387

these models we use. 388
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4.3 Results389

The experimental results are shown in Table 4.390

With different LLMs and on both datasets, our391

ungrammatical-syntax-based selection strategy ob-392

viously outperforms traditional methods (BM25393

and BERT representation). On BEA-2019 data, the394

method with first BM25 selection and then Tree395

Kernel ranking improves the performance by 3.7,396

4.6 and 2.4 F0.5 points, using llama-2-7b-chat,397

llama-2-13b-chat and gpt-3.5 respectively.398

Performance of Tree Kernel When applied as a399

single-stage method, the Tree Kernel similarity per-400

forms poorly and even achieves a lower F0.5 score401

than conventional baselines. However, with the402

help of a preliminary selection stage, it improves403

by a margin of about 2 to 3 percentage points, and404

even achieves the highest F0.5 score on BEA-2019405

data with LLaMA-2.406

Performance of Polynomial Distance Differ-407

ent from Tree Kernel, Polynomial Distance per-408

forms fairly well even without a preliminary selec-409

tion. Among those single-stage approaches, both410

polynomial-based methods outperform traditional411

baselines by an average margin of 2 to 3 percentage412

points in all cases, which indicates the superior-413

ity of syntactic similarity on GEC. The weighted414

version, with a higher weight on labels with error415

tags, brings a slight improvement in most cases,416

which shows the effectiveness of error information417

in GOPar-based dependency trees.418

Performance of Two-stage Selection As for419

Tree Kernel, the two-stage selection strategy con-420

sistently boosts performance, whether using BM25421

or BERT representation as the preliminary selec-422

tion approach. But for Polynomial Distance, the423

two-stage selection fails to improve performance424

in most cases, and we leave it for future research.425

5 Model Analysis426

5.1 Experiments with Different Numbers of427

Prompt Examples428

To explore the consistency and robustness of our429

methods, we conduct 1-shot, 2-shot, 4-shot and430

8-shot experiments on llama-2-7b-chat. The re-431

sults on BEA-2019 are shown in Table 5, and re-432

sults on CoNLL-2014 are listed in Appendix A to433

save space.434

When there is only one example, the model per-435

forms relatively poor. When the number of ex-436

amples comes to two, the performance improves 437

significantly. Then, further increasing the number 438

of examples brings a slight but consistent perfor- 439

mance gain. 440

When the number of examples is small, the su- 441

periority of syntax-based methods compared with 442

those conventional is evident. When the number 443

of examples increases, conventional baselines im- 444

prove a lot while syntax-based methods gain rel- 445

atively less, which shows a marginal benefit. But 446

syntax-based methods always secure the highest 447

score, indicating the consistency of their advan- 448

tages. Especially, the single-stage Polynomial Dis- 449

tance and the two-stage BM25 plus Tree Kernel 450

using 2 examples achieve very competitive results 451

with traditional selection methods using 8 exam- 452

ples. 453

5.2 Ungrammatical Parser or Standard 454

Parser? 455

I go swimming a public pool .

Root

nsubj xcomp
pobj

punct

M amod

(a) GOPar.

I go swimming a public pool .

Root

nsubj xcomp

obj

punct

det
amod

(b) Stanford Parser.

Figure 3: An example of parsing tree by GOPar and
Stanford Parser.

To explore the affect of different parsers on 456

model performance, we also experiment with Stan- 457

ford Parser (Dozat and Manning, 2017), which 458

is a widely-used conventional parser. For a clear 459

demonstration, an example is illustrated in Figure 460

3 to show the different parsing results of GOPar 461

and Stanford Parser. 462

The experimental results comparing GOPar and 463

Stanford Parser on BEA-2019 test set are shown in 464

Table 6. Here, we adopt llama-2-7b-chat as the 465

LLM and Tree Kernel as the ranking method. 466

Without using the two-stage selection, Stanford 467

Parser performs slightly worse than GOPar. With 468

the two-stage selection, GOPar gains more im- 469

provement than Stanford Parser and outperforms it 470

by a margin of more than 2 points. This indicates 471
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I II
1-shot 2-shot 4-shot 8-shot

P R F0.5 P R F0.5 P R F0.5 P R F0.5

-

Rand. 47.3 29.8 42.3 49.6 50.9 49.8 50.1 57.7 51.5 52.2 58.8 53.4
BM25 48.4 35.8 45.2 50.4 53.1 50.9 50.9 58.2 52.2 52.5 59.0 53.7
BERT 47.3 33.8 43.8 50.0 51.4 50.2 50.7 56.8 51.8 53.6 59.3 54.6
T. K. 47.1 27.4 41.2 49.0 53.2 49.8 50.0 57.0 51.2 53.6 55.9 54.0
Poly. 50.1 31.5 44.8 53.9 51.9 53.5 53.1 57.9 54.0 54.3 58.3 55.1

W. Poly. 50.4 31.5 45.0 52.7 51.5 52.4 53.2 58.2 54.2 53.3 58.0 54.2

BM25

T. K. 51.7 37.5 48.1 53.3 53.8 53.4 55.1 55.9 55.2 57.2 55.6 56.9
Poly. 51.3 36.6 47.5 52.9 54.5 53.2 51.2 57.1 52.3 55.5 56.9 55.8

W. Poly. 51.1 36.6 47.4 52.8 54.7 53.2 54.4 57.4 55.0 56.3 57.0 56.4

BERT

T. K. 50.7 35.6 46.8 53.3 52.4 53.1 53.6 56.0 54.1 57.1 57.0 57.1
Poly. 50.9 35.5 46.9 52.1 53.4 52.4 53.3 57.2 54.0 55.5 58.2 56.1

W. Poly. 50.6 35.7 46.7 52.1 53.8 52.4 53.8 57.4 54.5 56.5 57.8 56.7

Table 5: Results of different numbers of shots on BEA-19 test set.

Source (Erroneous Sentence) Target (Corrected Sentence)
Input So, they have to also prepare mentally. So, they also have to prepare mentally.
BM25 Also you can see how they prepare your food in front of you. Also, you can see how they prepare your food in front of you.
T. K. Nowadays people get around constantly. Nowadays, people are constantly on the move.

BM25 + T. K. that have limitation also there. There are also limitations there.

Table 7: A one-shot example showing the tree kernel method benefiting from the two-stage selection.

I II
GOPar Stanford Parser

P R F0.5 P R F0.5

-

T. K.

50.0 57.0 51.2 49.6 56.4 50.8
BM25 55.1 55.9 55.2 51.8 56.2 52.7
BERT 53.6 56.0 54.1 50.6 57.2 51.8

Table 6: Results on BEA-2019 test set with 4 examples,
using GOPar and Stanford Parser respectively.

GOPar is more suitable for GEC, and its superi-472

ority lies in two aspects. First, it performs more473

robust on ungrammatical sentences (e.g., it cor-474

rectly recognizes the prepositional object "pool"475

in the sentence shown in Figure 3 while Stanford476

Parser fails to). Second, it provides extra informa-477

tion about the grammatical errors (e.g., the Missing478

error in Figure 3).479

5.3 Effect of Two-stage Selection480

In order to find out how the two-stage strategy ben-481

efits the Tree Kernel method, we conduct a case482

study and compare three selection settings: BM25483

only ("BM25"), Tree Kernel only ("T. K.") and484

Tree Kernel after a BM25 selection ("BM25 + T.485

K.").486

In the example shown in Table 7, the input sen-487

tence is ungrammatical in word order. "BM25"488

selects a sentence with a punctuation missing er-489

ror that is similar to the input sample in words490

("also", "they" and "prepare"). "T. K." selects a 491

sentence with an improper expression "get around 492

constantly" which is similar to "prepare mentally" 493

in syntactic structure but has little to do with the 494

grammatical errors. "BM25 + T. K." selects a sen- 495

tence that is similar to the input sample both in 496

word occurrences ("also" and "have") and in error 497

form (improper word order). 498

Since similar words are more likely to form sim- 499

ilar errors, with the help of a preliminary selec- 500

tion, Tree Kernel can select from a more relative 501

candidate set, leading to a better example selec- 502

tion involving both word and syntactic similarity 503

in erroneous constituents. Moreover, it also shows 504

the disadvantage of conventional selection method 505

BM25 on GEC, which cannot effectively select 506

examples similar in syntax. 507

6 Conclusion 508

In this work, we make use of two conventional tree- 509

based syntactic similarity algorithms and the select- 510

then-rank two-stage framework to select in-context 511

examples for the GEC task. Empirical results show 512

that our syntax-based in-context example selection 513

method is effective for GEC. We call on the NLP 514

community to pay more attention to the help of 515

syntactic information for many other syntax-related 516

tasks besides GEC. 517
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Limitations518

First, we only experiment on English datasets. The519

performance of our method on other languages520

requires further exploration. Second, besides de-521

pendency tree, constituent tree is also worth trying.522

However, unfortunately, we do not have access523

to GEC-oriented constituent trees (Zhang and Li,524

2022) at the time of writing this paper. Third, many525

previous outstanding methods of both in-context526

example selection and tree similarity computation527

have not been explored in our work. Fourth, due528

to limited time, we do not explore the effect of the529

size of candidate set after the selection stage and530

the choice of weight of ungrammatical nodes in531

the Polynomial Distance method. There may exist532

a better size than the values we use in our exper-533

iments. Last, except for the Stanford Parser, our534

experiments do not split sentences on both train-535

ing and test data. Some instances in GEC datasets536

contains more than one sentence. Directly pars-537

ing these instances without splitting sentences may538

hurt the parsing performance and lead to unreliable539

results.540

Ethics Statement541

Use of Scientific Artifacts. We make use of542

GOPar provided by Zhang et al. (2022b), which is543

publicly available based on the MIT license 1.544

About Computational Budget. Computation545

time is shown in Table 8.

Method Time

BM25 440
BERT 4500

Tree Kernel 3600
Polynomial Distance 3200

Table 8: Computation time of different methods on
BEA-19 test set, all in seconds. BERT runs on an
NVIDIA GeForce RTX 2080 Ti and the other three
run on an Intel® Xeon® Gold 5218 CPU.

546

About Reproducibility. All the experiments are547

completely reproducible since we disable sampling548

and set the temperature to zero for all LLMs we549

use, as discussed in Section 4.2.550

1https://github.com/HillZhang1999/SynGEC
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I II
1-shot 2-shot 4-shot 8-shot

P R F0.5 P R F0.5 P R F0.5 P R F0.5

-

Rand. 54.7 21.2 41.6 58.0 42.3 54.0 59.1 48.2 56.6 60.9 49.3 58.2
BM25 55.7 25.2 44.9 57.5 42.5 53.7 59.7 47.7 56.8 60.4 47.8 57.4
BERT 55.9 22.5 43.1 58.0 39.0 52.8 58.6 45.4 55.4 60.7 48.0 57.6
T. K. 51.5 17.7 37.3 57.9 44.1 54.5 57.9 47.5 55.5 61.7 47.0 58.1
Poly. 54.7 21.3 41.6 58.6 41.4 54.1 59.6 49.5 57.2 60.5 48.5 57.6

W. Poly. 52.3 20.6 40.0 58.6 42.9 54.6 60.1 49.2 57.5 61.0 49.8 58.4

BM25

T. K. 57.9 27.3 47.3 60.5 44.7 56.5 62.2 45.7 58.0 62.5 45.3 58.1
Poly. 57.2 25.1 45.5 60.5 43.5 56.2 62.1 47.7 58.6 61.6 46.7 57.9

W. Poly. 57.1 24.6 45.1 60.7 43.7 56.3 61.4 47.7 58.1 62.7 47.7 59.0

BERT

T. K. 58.3 25.1 46.1 59.9 42.7 55.4 60.7 46.3 57.1 63.1 46.2 58.8
Poly. 56.0 24.7 44.7 59.3 43.8 55.4 60.5 47.6 57.4 61.9 47.7 58.4

W. Poly. 57.1 24.9 45.4 59.5 44.6 55.8 61.0 48.3 57.9 62.8 47.8 59.1

Table 9: Results of different numbers of shots on CoNLL-14 test set.
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