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Abstract

Artificial electromagnetic materials (AEMs), including metamaterials, derive their
electromagnetic properties from geometry rather than chemistry. With the ap-
propriate geometric design, AEMs have achieved exotic properties not realizable
with conventional materials (e.g., cloaking or negative refractive index). However,
understanding the relationship between the AEM structure and its properties is
often poorly understood. While computational electromagnetic simulation (CEMS)
may help design new AEMs, its use is limited due to its long computational time.
Recently, it has been shown that deep learning can be an alternative solution to infer
the relationship between an AEM geometry and its properties using a (relatively)
small pool of CEMS data. However, the limited publicly released datasets and
models and no widely-used benchmark for comparison have made using deep
learning approaches even more difficult. Furthermore, configuring CEMS for a
specific problem requires substantial expertise and time, making reproducibility
challenging. Here, we develop a collection of three classes of AEM problems:
metamaterials, nanophotonics, and color filter designs. We also publicly release
software, allowing other researchers to conduct additional simulations for each sys-
tem easily. Finally, we conduct experiments on our benchmark datasets with three
recent neural network architectures: the multilayer perceptron (MLP), MLP-mixer,
and transformer. We identify the methods and models that generalize best over the
three problems to establish the best practice and baseline results upon which future
research can build.

1 Introduction

Artificial electromagnetic materials (AEMs) are a class of materials that derive their electromagnetic
properties primarily from their physical structure rather than their chemistry. With the appropriate
structural design, AEMs have achieved exotic properties that are not realizable with conventional
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materials, including invisibility cloaking [1] and negative refractive index [2]. AEM research
comprises a large community, now encompassing major areas of research around specific classes of
AEMs such as metamaterials[2], photonics[3] and plasmonics[4].

One invaluable tool in AEM research is the ability to evaluate their electromagnetic properties,
s, based upon that AEM’s structure, g. This capability is crucial to enable scientific exploration,
i.e., AEM design and many other activities. Although Maxwell’s equations fundamentally govern
the properties of AEMs, for advanced designs, there is often no explicit mathematical relationship
between s and g, or it is not yet known. In these scenarios, researchers can still utilize computational
electromagnetic simulation (CEMS) to obtain estimates of the AEM properties for a specific design.
CEMS is a form of scientific computing that relies upon numerically solving Maxwell’s equations to
obtain the (complex-valued) electric and magnetic fields over a 3-dimensional mesh. This process
is computationally intensive, however, and it must be repeated from scratch for each variation of
AEM structure under consideration - sometimes millions or (recently) billions [5] - creating a major
research bottleneck.

In recent years, it has been shown that machine learning models - especially deep neural networks
(DNNs) - can leverage (relatively) small datasets of design-property pairs from CEMS simulation,
D = {gi, si}Ni=1, to infer computationally efficient surrogate models of the CEMS process (e.g.,
s = f(g)). Although these models require an initial investment of simulations, once trained, they are
often several orders of magnitude faster than CEMS (e.g., 105 times faster [5]). This substantially
mitigates the computational bottleneck imposed by CEMS, accelerating research for many AEM
systems and bringing problems of unprecedented complexity within reach.

Figure 1: The number of papers published that
use a data-driven surrogate method in the AEM
community, cited in a recent review [6]. *Note
that in 2020 the count is incomplete, as the review
ended its literature review section in 2020.

The use of data-driven surrogate models has
grown rapidly in AEM research over the past
several years [6]. Fig. 1 illustrates this growth
for DNN-based publications - the dominant
model, by far. Despite this success, however,
there is a near-complete absence of replication
and benchmarking of models across different
studies, making it difficult to determine whether,
or to what extent, real scientific progress is be-
ing made over time and invested research funds.
Among the studies compiled in a recent review
of this literature [6], we find that no dataset has
yet been utilized in more than one study (i.e.,
no replication), and the specific architectures,
validation schemes, and performance metrics
employed for surrogate models varied widely.

One fundamental reason for the lack of replica-
tion and benchmarking in AEM research may be
the difficulty of reproducing the CEMSs from a
previous study, which requires substantial expertise and computation time. Furthermore, the details
needed to reproduce the CEMS are incomplete. One potential solution to this problem is for authors
to release their CEMS datasets and models. However, as illustrated in Fig. 1, thus far, this has rarely
been done in AEM research. The absence of replication and benchmarking has been noted in recent
reviews on AEM research [6, 7], however, to our knowledge no studies have yet to address this
problem.

1.1 Contributions of this Work

In this work we address these problems by developing a benchmark dataset of three diverse AEM
simulation problems: metamaterials, nanophotonics, and color filter designs. These problems were
adopted from recently-published AEM research, helping to ensure their significance and relevance
to the broader AEM community. This also enabled us to include models employed by the original
authors of each dataset in our benchmark experiments, strengthening our results and establishing a
precedent of comparison with prior work. We also included problems from several unique sub-fields
within AEM research, with the goal of again increasing relevance, and increasing likelihood that any
conclusions drawn from our benchmark will generalize across AEM problems.
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We then employed our benchmark to study three state-of-the-art DNN architectures: the multilayer
perceptron (MLP), MLP-Mixer [8], and Transformer [9]. We systematically optimize and compare
these three models to determine whether a particular architecture generalizes best for solving AEM
problems (i.e., Maxwell’s equation). Through our optimization process, we also compare a variety of
hyperparameter and processing choices that have been considered in the AEM literature (e.g., batch
normalization [10] and skip connections [11]), but until now had not been systematically compared.
We summarize the contribution of this work as follows:

1. We create the first publicly available and easily accessible set of benchmark surrogate
modeling problems for the AEM community. (i) This benchmark will enable researchers to
identify the best models and practices, and act as means to measure research progress in
the field. (ii) By establishing this benchmark we hope to encourage greater replication and
comparison in the AEM community, as well as practices of sharing code and simulation
data.

2. We conduct the first benchmarking of data-driven surrogate models for the AEM community.
Using our new benchmark we systematically compare several state-of-the-art models, pro-
viding initial guidance to the AEM community on the types of models and training practices
that work best to solve scientific computing problems involving Maxwell’s equation. To our
knowledge this is the first replication, or comparison against, prior data-driven surrogate
modeling results within the AEM community. Our benchmarking is also the first experimen-
tation with Transformers or MLP-Mixers to solve AEM surrogate modeling problems as
well.

2 Related Work

The AEM simulation problem considered here is a special case of scientific computing, which has
become a ubiquitous tool in science [12]. In particular, data-driven surrogate models (e.g., DNNs)
have been proven effective as solutions to a variety of scientific computing problems, including the
approximation of solutions to partial differential equations [13, 14, 15, 16, 17].

AEM research is primarily concerned with approximating solutions to Maxwell’s equations, param-
eterized by the initial conditions of the problem (i.e., the structure of the AEM). Nearly all recent
data-driven surrogates in the AEM research employed conventional feed-forward DNNs, sometimes
also called multi-layer perceptrons (MLPs). The main differences between these models are variations
on common practices, such as the addition or exclusion of skip connections [18], batch-normalization
[19], dropout [20], etc [21, 22, 23, 24, 25, 26, 27]. More details of the current state of machine
learning enabled AEM simulation can be found in recent reviews [28, 29, 7, 30]. Therefore, in this
work we adopt the MLP as a representative baseline model for our benchmarking experiments, and
we systematically tested all those variations in our optimization.

As discussed in Section 1.1, despite a large number of publications on this topic, few researchers
have published their software, models, or datasets [31]; and we have not found any public benchmark
problems. These limitations of existing AEM research have been noted in recent publications,
including review articles [6, 7]. Therefore, we aim to provide the first public benchmark in this
community, with an accessible suite of software and data, as well as standardized evaluation metrics.

3 Background and Problem Formulation

3.1 AEM properties and Maxwell’s Equations

The electromagnetic properties of AEMs are governed by Maxwell’s equations, a set of partial
differential equations (PDEs), given as,

∇×E = −∂B
∂t
, ∇×H =

∂D

∂t
+ J, ∇ ·D = ρ, ∇ ·B = 0 (1)

where E is the electric field strength (V/m), B is the magnetic flux density (V·s/m2), J is the electric
current density (A/m2), and ρ is the electric charge density (A·s/m3). D and H are the auxiliary fields,
and sometimes referred to as the electric displacement (A·s/m2), and the magnetic field strength
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(A/m), respectively. The bold characters denote time-varying vector fields and are real functions of
spatial coordinates r, and time t. The relationship between E,B and D,H is given by the constitutive
equations, and the general case (ignoring magneto-optical coupling) [32] can be written as:

D(ω) = ¯̄ε(ω) · E(ω), B(ω) = ¯̄µ(ω) ·H(ω) (2)

where ω is the angular frequency, and ¯̄ε(ω) and ¯̄µ(ω) are rank 2 tensors termed the permittivity
and permeability, respectively. In nature, all materials have their own distinctive – and relatively
simple – ε and µ values (dropping the explicit frequency dependence and tensor notation) that directly
determine the three-dimensional field solutions to Maxwell’s equations. When solving Maxwell’s
equations in a 3D space, we need to know two main elements: the incident field and the material
properties (ε, µ) [33], which is given by the AEM in our case. With the set up of accurate boundary
conditions in the material space, it has been shown that we can find analytical solutions in a 3D space
for simple geometries [34, 35]. In AEM design, the permittivity and permeability are determined
by the AEM geometry, instead of the chemistry or band-structure of the constituent elements, thus
resulting in effective optical constants – denoted by εeff and µeff . Referring to Eqs. 1 and 2, the
prescription for AEM design using CEMS can be written as:

m(r), ε(r, ω), µ(r, ω) → E(r, ω),H(r, ω) → s(ω) (3)

where s(ω) denotes the resulting electromagnetic scattering, which may be the reflectance R(ω), the
transmittance T (ω), or the absorptance A(ω) = 1 − T (ω) − R(ω), etc. The size of the geometry
mesh m(r) and material properties ε(r, ω), µ(r) is determined by the mesh of the AEM, which is of
order r ∼ 106. Although the resulting fields E(r, ω),H(r, ω) are also of order r, the scattering s(ω)
is typically a size of ω ∼ 103.

3.2 Computational Methods to Solve Maxwell’s Equations

It becomes increasingly difficult to map the geometry g to its property s analytically as the geometry
grows more complex. Conventionally, we either fabricate the AEM and experimentally measure
its scattering s or use CEMS to determine the geometry required to give a desired s. The CEMS
is a much more preferred approach than experimental verification because of the much lower total
time and cost. Most CEMS utilize Finite Element Method (FEM) [36], Finite Difference Time
Domain (FDTD) [37], or Finite Difference Frequency Domain (FDFD) [38] methods to solve partial
differential equations within the defined boundary conditions to find solutions to Maxwell’s equations.

3.3 Data-driven Surrogate Models

Although CEMS can accurately solve Maxwell’s equations to provide electromagnetic properties s
for AEMs, their computational time can rise exponentially as AEMs turn into free-form geometry. On
the other hand, the data-driven surrogate models can obtain electromagnetic properties s of interest in
milliseconds. In training the data-driven surrogate models, we simplify the steps down to mapping
a parameterized geometry g of AEMs as input to desired property and feed the surrogate model
geometry parameters as input g and desired property as target s. The simplification of the problem
for the surrogate model also avoids the complexity of handling 3D inputs of geometry or fields as 3D
vectors. The data-driven approach can be written as::

g → Surrogate Model → s(ω) (4)

where the surrogate model is f̂ learned by the neural network through training on geometry spectral
pairs D = {gi, si}Ni=1, i.e. s = f̂(g).

4 Benchmark Design and Resources

The objective of our benchmark is to establish a shared set of problems on which the AEM research
community can compare data-driven surrogate models and thereby demonstrate and measure research
progress. To achieve this goal, we chose three initial problems to include in our benchmark (to be
expanded over time), and we share resources to make adoption and replication of these benchmarks
easy for the AEM research community.

4



p

θ

rxry
(b)

r1
r2

r3r4

(c)

t3

t1

t2

(a)

Figure 2: Schematics of geometry in three physical problems. (a) Infinite array of all-dielectric
metasurfaces consists of four elliptical-resonators supercells. (b) A nanophotonic particle consists of
four layers. (c) The color filter design with one layer of SiO2 sandwiched between two metal layers
of Ag. From bottom to top, each layer has thickness t1 − t3.

4.1 AEM Benchmark Problems and Selection Criteria

The three AEM problems that we selected for inclusion in our benchmark are presented in Table
1, along with key details. These problems were chosen based upon several criteria to maximize
relevance to, and adoption by, the AEM research community. The first criterion was that the dataset
was introduced in a recent AEM publication. This helps ensure that these are significant problems
and problems that are of interest to the broader AEM community. This also establishes a precedent of
replicating and comparing existing work rather than introducing more novel problems. For example,
this enabled us to compare our models to those employed by the original authors of each dataset,
strengthening our benchmarking results (see Section 5).

A second criterion was representativeness; we deliberately chose problems from different sub-fields
within AEM research. This was done to broaden the relevance of the problems to the AEM community
as a whole and ensure that any models are evaluated on problems that span a variety of physical
systems, making any conclusions more likely to generalize. Finally, we chose a set of problems that
would also span the range of complexity currently observed in the AEM research. More precisely,
we chose problems of varying input and output dimensionality, since dimensionality is an influential
factor in the performance and behavior of machine-learning models. Below we describe major details
about each benchmark problem, however, further details can be found in Section 1 of the supplement.

Table 1: Overview of the artificial electromagnetic material datasets. Din and Dout represent the
dimensionality of the input and output of each dataset, respectively. CPU time is estimated from total
time it takes to run on a 16 core AMD CPU machine.

Dataset Din Dout Sub-area Simulations CPU time

All-dielectric metasurface 14 2001 Metamaterials 60,000 7 months
Nanophotonic particle 8 201 Nanophotonics 50,000 1.5 hours
Color filter 3 3 Optical waveguides 100,000 -

All-dielectric metasurfaces. (ADM) This problem was originally described and published in [39].
The ADM benchmark dataset [39] was selected because it possesses several salient features: (1) It has
14-dimensional geometry inputs, as shown in Fig 2, which is greater than other AEM studies found
in the literature. The higher dimensional input grants more complexity. (2) The scattering response in
this dataset is the absorptivity spectrum with 2001 frequency points and many sharp peaks that are
traditionally challenging to fit. (3) This is the only dataset that is generated from full-wave simulation
software. Each supercell, as shown in Fig 2, consists of four SiC elliptical resonators. The geometry
parameters of one supercell are: height h (identical for all resonators), periodicity p, x-axis and y-axis
radii rx, ry , and each elliptical resonator is free to rotate and described by θ.

Nanophotonic Particle. (Particle) This problem was originally described and published in [21].
The nanophotonic particle is one of the first AEM studies used to learn the mapping s = f(g) [21].
There are two favorable properties that the nanophotonics particle dataset possesses: (1) The geometry
of the nanophotonics particle, shown in Fig 2, is a sphere consisting of alternating layers of TiO2

and silica, which offers high flexibility for adjustment of the geometry input dimension. We set the
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number of layers to eight in our benchmark in order to achieve a sufficient challenging problem for
the surrogate model. (2) Output of the nanophotonic particle benchmark is the wavelength-dependent
scatter cross-section, thus providing a slight variation of s. The large differences between ADMs and
nanophotonic output can be used to validate the surrogate models’ universality for AEM problems.
In Fig 2 we show a four-layer particle for simplicity, but as mentioned, we explore the eight-layer
structure, with each layer given by a thickness r1−r8. The geometry parameters for the nanophotonic
particle dataset thus consists of thickness values r1 − r8 for eight alternating TiO2 and silica layers.

Color filter. (Color) The color filter problem was originally described and published in [40]. The
color filter problem is interesting due to its unique color space output instead of transmission spectra.
The color filter geometry is a three-layer Fabry–Pérot cavity, consisting of a SiO2 layer sandwiched
by two Ag layers. When white light passes through the color filter, the three layers filter out
wavelengths outside of the range of the resonance frequency – determined by the geometry g. The
resulting transmission spectra yields a peak at the resonant frequency. The SiO2 thickness primarily
determines the resonate peak frequency, and the Ag thickness fine tunes the full width half maximum
of the resonant peak, thereby determining the corresponding color observed. The paper adopted
the multiple beam interference formula to calculate transmission spectra [40]. The three geometry
parameters for the color filter dataset are the thickness t1 − t3 for the bottom Ag layer, SiO2 layer,
and top Ag layer respectively.

4.2 Scoring Metrics

An important benchmark consideration is the chosen evaluation metric. Here we select the average
mean squared error (MSE), given by,

e =
1

Dout

1

N

Dout∑
j=1

N∑
i=1

(sij − ŝij)2 =
1

Dout

Dout∑
j=1

MSE(sj , ŝj) (5)

where ŝ is the estimated AEM property, i indexes the samples in the testing dataset, and j indexes the
dimensions of the output vector s (often a spectrum). We select MSE because it is the most widely-
used metric in the relevant AEM literature (e.g., [41]). It is also well-behaved and well-defined for all
values of s, unlike the mean-relative-error – another metric sometimes used in the AEM literature
(e.g., [21, 42]). MRE has the limitation that it grows exponentially as s→ 0, and becomes infinity
when s = 0.

In addition to MSE, we have also included a wide range of metrics in our benchmark suite code: Mean
absolute error (MAE), Mean absolute relative error (MARE), Mean squared relative error(MSRE),
R2, Kendall’s Tau, Spearman’s Rho. We have also put the result for Kendall’s Tau and Spearman’s
Rho into the supplement for those who are interested in the ranking ability of these benchmarked
algorithms.

4.3 Data Generation and Handling

The data associated with each benchmark problem was obtained by randomly and uniformly sampling
geometries over some pre-defined domain, and then simulating these geometries to obtain their
properties. Random sampling avoids any bias towards particular subsets of designs in the dataset,
and is widely-used in the AEM literature. In each benchmark, we utilize the same sampling domain
that was proposed in the original source publication. Further details about the sampling distributions
can be found in Section 1 of the supplement.

To ensure a rigorous experimental process, we divided the total dataset available for each problem
into three disjoint subsets: training, validation, and testing. Each of these three subsets are randomly
sampled and disjoint. We first take out 10% of the data as the independent test set, to be used
for model evaluation after training and hyperparameter optimizations are complete. We report the
performance of optimized models on this independent test set. The remaining 90% of the dataset is
divided into a training set (80%) and a validation set (20%).

4.4 Benchmark resources and extensibility

The code base for our benchmark task is maintained at the following remote repository: https:
//github.com/ydeng-MLM/ML_MM_Benchmark. The code base includes pipelines for the three
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neural network architectures, and is open source under MIT license. Out of the three AEM benchmark
problems, we generated the all-dielectric metasurface and nanophotonics particles datasets. They
can be accessed 2 under the CC0 1.0 Universal license. We also cited the work from [40], and
their color filter dataset can be accessed 3 under CC by 4.0 license. All the datasets are hosted at a
digital repository with permanent DOI under long-term preservation maintained by corresponding
libraries. We plan to maintain our code base through a remote repository at github and pypi. Any
issues regrading the software suite can be raised at the repository.

Although currently our benchmark suite only holds three datasets specifically from the AEM com-
munity and three neural network architectures, the benchmark suite’s infrastructure is built to be
highly extensible to new models and/or new datasets. New datasets can be put into the ’customize’
folder and, following instructions, it is straightforward to conduct the same experiment on new
dataset. Similarly, new models are easily extensible in our benchmark suite as clearly defined API
and instructions are provided.

5 Numerical Experiments on the AEM Benchmark

In this section we utilize our proposed AEM benchmark to compare different approaches for data-
driven surrogate modeling of AEM properties. For this purpose we employ a two-stage experimental
design. In the first stage we aim to demonstrate the value of our benchmark by comparing a new
model with an existing model, and also thereby establishing a strong baseline performance for each
problem, upon which future work can build. To do this, we develop new surrogate models for each
benchmark problem, and then compare the performance of our new models to that of the models
originally reported for each problem - termed the "Baseline" models. The full details of each Baseline
model (e.g., architecture and hyperparameter settings) can be found in Section 4 of the supplement.

Figure 3: Schematic diagram of our adaptation of
Mixer and Transformer to our data set. Here we use
the optimized MLP model architecture as baseline
to tweak our Mixer and Transformer models.

Nearly all recent studies of data-driven surrogate
models for AEM problems employ (deep) multi-
layer perceptron (MLP) models, with the main
differences arising in hyperparameter choices
(e.g., model depth and width, learning rates),
and the inclusion/exclusion of popular auxiliary
processing strategies (e.g., dropout, batch nor-
malization, skip connections). Rather than con-
sidering all of these variations as separate bench-
mark models, we begin by adopting the Base-
line model originally proposed for each prob-
lem, and then performing a greedy step-wise
optimization [43], whereby we optimize each of
the model’s hyperparameters, or consider includ-
ing/optimizing auxiliary processing strategies,
in turn. For this optimization we use a subset of the available training data as a validation dataset.
Through this optimization we effectively benchmark a large number of existing models from the
literature, and choose the best performer as the representative entry in our benchmark. We then
compare the performance of our optimized model to the Baseline model, providing (to our knowledge)
the first replication, and comparison with, an existing surrogate model and dataset within the AEM
literature.

In the second stage of our experiments, we aim to explore the effectiveness of two recent DNN
architectures as alternatives to the MLP: the Transformer[9] and MLP-Mixer[8]. Transformers are an
attention-based deep learning architecture that has recently achieved state-of-the-art performance
on a variety natural language processing (NLP) and computer vision tasks. The MLP-Mixer has
recently achieved promising results as a simpler and more computationally-efficient alternative to the
convolutional neural network [8]. We hypothesize therefore that the MLP-Mixer or the Transformer
may also provide benefits for solving scientific computing problems, including AEM problems.
By testing this hypothesis we also hope to contribute to the general machine learning community
by considering whether the efficacy of these models extends to problems in scientific computing.

2https://doi.org/10.7924/r4jm2bv29
3http://dx.doi.org/10.5258/SOTON/D1686
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To our knowledge, we are the first to consider Transformers (or any attention-based model) or
MLP-Mixer models for surrogate modeling of AEM problems. In similar fashion to stage one
of our experimentation, we also perform a greedy step-wise optimization of our Transformer and
MLP-Mixer models for each benchmark problem, and subsequently compare their performance to
the Baseline and optimized MLP models. Finally, we also evaluated several non-DNN-based models
as additional baselines in our benchmark: Linear Regression, Random Forests and a Linear Support
Vector Regression. Non-DNN-based models are rarely employed in the AEM literature as surrogate
simulators, and the benchmark provides a useful opportunity to examine the validity of this practice.

5.1 Optimization of Models

In order to minimize potential bias across the three model optimizations that we performed (one
for MLP, MLP-Mixer, and Transformer), we adopted two strategies. First, once we optimized the
MLP model in stage one, we imposed that the Transformer and MLP-Mixer would not be allowed to
exceed this size. This prevents the Transformer or MLP-Mixer from achieving better performance
simply due to greater model capacity. We note however that we did allow for the MLP-Mixer or
Transformer to have fewer parameters, if it was found that better performance was achieved. As a
second strategy, we allotted a budget of 96 hours of optimization time (all on Nvidia 3090 GPUs), so
that any one model would not benefit substantially from additional optimization effort.

5.2 Adaption of MLP-Mixer and Transformer AEM Problems.

Both the MLP-Mixer and the Transformer were originally designed for different tasks than ours, where
the input data is structured (e.g., into sequences) and generally much higher in its dimensionality. To
make our AEM problem more suitable, we leverage the fact that each of these network architectures
is composed of layers that can (within some limits) be composed with one another (e.g., one can
compose a Transformer and an MLP layer). Therefore, we adopt a strategy whereby we first process
the input data, g, with several MLP (i.e., fully-connected layers) to extract a higher-dimensional
representation of the input. Then we arbitrarily structure these new features into a sequence, so that it
can be fed into Transformer and/or MLP-Mixer layers. This hybrid model architecture is outlined in
Fig. 3. We provide the mathematical definition for each type of layer in Section 5.3, details of this
proposed architecture can be found in the supplementary materials.

5.3 Deep neural network architectures

In this section we provide a mathematical definition of the three types of DNN layers that we employ
in our benchmark experiments.

MLP. An MLP layer consists of a full matrix of connections between two sets of neurons. A
conventional MLP layer with (optional) skip connections is given by

ol = ReLU(Wlol−1) + ol−1 (6)
where l indexes the layer of the neural network and ol denotes the activations (or features) of layer l.
Wl refers to the weight matrix of layer l.

Transformer[9]. The transformer layers employed in our experiments are defined as

u
′

i =

H∑
h=1

WT
c,h

n∑
j=1

softmax

(
< WT

h,qxi,W
T
h,kxj >√

k

)
WT

h,vxj , (7)

zi = LN(LN(xi + u
′

i) +WT
2 ReLU(WT

1 LN(xi + u
′

i))) (8)

where x, z ∈ Rn×d are input/output, Wh,q,Wh,k,Wh,v ∈ Rd×k are weight matrices for query, key
and value, W1 ∈ Rd×m,W2 ∈ Rm×d are weight matrices for ending MLP inside encoder, LN is
layer normalization.

MLP-Mixer[8]. An MLP-mixer layer is defined as follows:
U∗,i = X∗,i +W2 ×GeLU(W1LN(X)∗,i), for i = 1 to C, (9)
Yj,∗ = Uj,∗ +W4 ×GeLU(W3LN(U)j,∗), for j = 1 to S, (10)

where Wi are weight matrices for the MLP and C and S are respectively hidden widths and number
of patches that can be tuned, LN is layer normalization.
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5.4 Results and Discussion

The results of our numerical benchmark experiments are presented in Fig 4, and a tabulation of the
numerical values is provided in Table 3 of the supplement. First we note that the MLP model achieves
similar or lower MSE than the Baseline model in all three benchmark problems. Furthermore, on the
All-dielectric metasurfaces (ADM) and Particle problems, the MLP achieves a substantial reduction
in MSE compared to the Baseline. This suggests that by systematically evaluating the efficacy on our
benchmark of different modeling approaches from the literature, we were able to achieve consistent
performance advantages.

The non-DNN-based models perform much worse than their DNN-based counterparts shown in Fig
4, and therefore we put the full details of their results in Fig. 3 of the supplement. DNN-based
approaches now dominate as surrogate simulators in the AEM research and these benchmarking
results provide some support for this practice, although further analysis with more non-DNN-based
models would be benefificial.

Figure 4: The box plot for MSE comparison between architectures. Baseline represents the original
architecture shown in the paper that published the datasets. Mean values are reported as the red
crosses. The image is slightly cropped as the lower percentile MSE values of the Color dataset being
extremely low (a full version can be found in supplement Section 7 Figure 3).

The advantages of the MLP-Mixer and the Transformer, compared to the MLP, are less conclusive.
The MLP-Mixer outperforms the MLP on the Particle and Color datasets, however it performs
worst among all models on the ADM problem, albeit by a relatively narrow margin (based upon the
variance of the MSEs). In no case did the Transformer achieve the lowest error, and it often achieves
average performance among the models. Collectively these results suggest that the Transformer
and MLP-Mixer do not offer consistent performance advantages over the MLP, however, the MLP-
Mixer can sometimes yield substantial performance improvements depending upon the problem.
We constructed a critical difference plot to quantitatively summarize the performance of each of
these three architectures across the three benchmark problems, which is available in Fig. 4 of the
supplement. This analysis suggests that there is no clear winner among the three architectures,
corroborating our qualitative analysis.

Further insights into the results can be obtained by considering the model size (i.e., number of
parameters) of each model in the benchmark, shown in Fig 5. Notably, the Baseline model is
considerably smaller than the MLP, suggesting that previous models were too small for the complexity
of the AEM problems. Furthermore, these results suggest that the performance advantage of the MLP
relative to the Baseline (also an MLP) is likely driven in part by its greater size. By contrast, one
clear advantage of the Transformer, and especially the MLP-Mixer, is its parameter efficiency. The
MLP-Mixer requires substantially fewer parameters (and therefore computational efficiency) while
offering similar or better performance than the other models.
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6 Conclusions

Figure 5: Relative number of parame-
ters of optimized MLP, Transformer and
MLP-Mixer models on each dataset.

In this work, we developed the first publicly available
and easily accessible benchmark for data-driven sur-
rogate modeling for AEM problems. Our benchmark
includes three AEM problems that were adopted from
existing work, and chose to be maximally relevant and
representative of recent AEM research. We then used
our benchmark to optimize and compare three different
state-of-the-art deep learning architectures: the multilayer
perceptron (MLP), MLP-Mixer, and Transformer. We
also compare our developed models to existing models
that were previously developed for each of our benchmark
problems. To our knowledge we are the first to perform
a systematic comparison of this time for AEM surrogate
modeling, or to explore the use of MLP-Mixer and
Transformer architectures for this problem.
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