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ABSTRACT

It is now widely known that by adversarial attacks, clean images with invisible
perturbations can fool deep neural networks. To defend adversarial attacks, we
design a block containing multiple paths to learn robust features and the param-
eters of these paths are required to be orthogonal with each other. The so-called
Orthogonal Multi-Path (OMP) block could be posed in any layer of a neural net-
work. Via forward learning and backward correction, one OMP block makes the
neural networks learn features that are appropriate for all the paths and hence are
expected to be robust. With careful design and thorough experiments on e.g., the
positions of imposing orthogonality constraint, and the trade-off between the vari-
ety and accuracy, the robustness of the neural networks is significantly improved.
For example, under white-box PGD attack with l∞ bound 8/255 (this is a fierce
attack that can make the accuracy of many vanilla neural networks drop to nearly
10% on CIFAR10), VGG16 with the proposed OMP block could keep over 50%
accuracy. For black-box attacks, neural networks equipped with an OMP block
have accuracy over 80%. The performance under both white-box and black-box
attacks is much better than the existing state-of-the-art adversarial defenders.

1 INTRODUCTION

In recent years, Deep Neural Networks (DNNs) have been widely applied in many fields (Good-
fellow et al., 2016). Despite the great progress, vulnerability of DNNs has also been found. For
example, in classification task in computer vision, by adding well-designed, visually-imperceptible
perturbations on clean images, the resulting perturbed images, a.k.a. adversarial examples, can
successfully fool many well-trained DNNs (Szegedy et al., 2014; Goodfellow et al., 2015). Such a
process of generating adversarial examples is called adversarial attack.

Since its proposal, there have been many interesting adversarial attacks, which can be categorized
into two types, black-box attack (Papernot et al., 2017; Liu et al., 2017; Chen et al., 2017; Su et al.,
2019) and white-box attack (Goodfellow et al., 2015; Kurakin et al., 2017; Carlini & Wagner, 2017;
Madry et al., 2018; Tang et al., 2019). As the name suggests, white-box attacks need complete
information of the target model. While black-box attacks rely on the output of target model or
transferability across models.

For a neural network f(x; θ) with input x and parameters θ, we denote the trained parameters
as θ̂ and the example to be attacked as x0. Adversarial attack tries to find a small ∆x such that
f(x0 + ∆x; θ̂) 6= f(x0; θ̂). To defend the attack, i.e., to keep the both sides equal, adversarial
training (Szegedy et al., 2014; Goodfellow et al., 2015; Madry et al., 2018) includes a group of
adversarial perturbations in training process to keep f(x0+∆x; θ) = f(x0; θ). Generally speaking,
adversarial training is the most efficient defence strategy until now (Athalye et al., 2018; Tramer
et al., 2020), but the attack needs to be known in advance. To adapt to all perturbations, researchers
consider the response to perturbations ∆x in Bε = {∆x|‖∆x‖ ≤ ε}. If the maximum change is
small, then a certified robustness could be guaranteed (Raghunathan et al., 2018; Cohen et al., 2019).

Motivated by the coupling of samples and parameters, one could also impose randomness on pa-
rameters to enhance the robustness. Consider a linear layer, which includes convolution layer and
fully-connected layer. Imposing perturbation into samples is equal to giving randomness to param-
eters: ∀∆x ∈ Bε, there exists ∆θ that satisfies 〈x0 + ∆x, θ̂〉 = 〈x0, θ̂ + ∆θ〉. Pioneering and
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(a) network with OMP block v.s. regular network (b) learned features (1st layer, VGG16)

Figure 1: (a) OMP block is to replace a single path by multiple ones and can be posed anywhere in a
neural network. (b) When clean examples (1st row) are adversarially perturbed (2nd row, generated
by attacking a third neural network), the features learned by a vanilla VGG16 change a lot. After
imposing an OMP block even in the last layer, the learned features by the first layer become much
more robust.

representative works on this direction could be found in (He et al., 2019; Liu et al., 2018b), which
aim to learn a distribution for the parameters. The advantages include network diversity and low
dependence on the attacks. However, its learning is not very effective: the learned distribution tends
to shrink to one optimal solution.

In this paper, we propose to embed multiple paths into a neural network. In a regular neural network,
a block with input zk and output zk+1 is denoted as zk+1 = g(zk; θg). For the mapping g, we will
train multiple paths gi(zk; θgi), then it could give multiple outputs and the rest layers are trained
to adapt all the paths. A key issue here is that we require the parameters of all paths orthogonal to
each other, which guarantees the diversity and coverage. Fig.1(a) gives a comparison illustration of
a regular network and a network embedded with L paths.

The proposed Orthogonal Multi-Path (OMP) block can be posed in any layer of a neural network. It
is not surprising that the follow-up layers are more robust since they are capable to handle features
from multiple paths. Let us consider a simple example. A VGG16 is trained on CIFAR10 and we put
an OMP block in the first layer. The average feature change ‖∆zk+2‖∞ at the layer after OMP block
caused by perturbations ‖∆x‖∞ ≤ 8/255 on test images is bounded by 1.39 (which is actually a
certificated robustness measure) in the vanilla VGG16 and is improved to 0.82 by the OMP block.
Interestingly, OMP is also helpful for the front layers. In Fig.1(b), we visualize the learned features
after the first layer in a vanilla network and the same network with an OMP block posed on the last
layer. Although the OMP block is posed on the final layer, it could correct the learned features at the
first layer, resulting in much more alike features of clean and perturbed images. This phenomenon
is explained by the backward correction theory proposed by Allen-Zhu & Li (2020). Actually, this
result could be a strong evidence to verify that training higher-level layers improves the features of
lower-level ones.

With forward learning and backward correction, OMP block could make the feature extractor adap-
tive to multiple paths and then enhance the robustness of the whole networks. For example, under
white-box PGD attack with l∞ bound 8/255, which could destroy the accuracy of many vanilla
networks to nearly 10% on CIFAR10, VGG16 with the proposed OMP block could keep over 50%
accuracy. The contributions of this work are summarized as follows:

• A novel defence method is proposed, which introduces orthogonal multiple paths into a
neural network to enhance the robustness.

• Extensive empirical results against different white-box and black-box attacks indicate the
superior robustness of networks with OMP block in vanilla and adversarial training.

• A thorough empirical analysis on different positions of the OMP block is provided, illustrat-
ing the distinct properties. Ablation study also demonstrates the necessity and effectiveness
of the OMP block.
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2 RELATED WORK

2.1 ADVERSARIAL ATTACK

White-box adversarial attacks are generally based on the gradient information. Given a DNN
f(·) and loss function L(·, ·), Goodfellow et al. (2015) propose a gradient-based white-box attack
method, named Fast Gradient Sign Method (FGSM), which generates an adversarial example x̂ from
a clean sample x with the true label y as follows,

x̂ = x + εsign(∇xL(f(x), y)) (1)

where ε is the perturbation step size. Kurakin et al. (2017) then propose two iterative variants of
FGSM, basic iterative method and iterative least-likely class method. Projected Gradient Descent
(PGD) attack proposed by Madry et al. (2018) is the strongest attack until now. Starting from
x̂(0) = x, the iterative generation process of PGD at the (t+ 1)-th iteration can be described as,

x̂(t+1) = Pγ

{
x̂(t) + εsign(∇xL(f(x̂(t)), y))

}
(2)

where Pγ is the projection to the set {x|‖x− x̂(0)‖∞ ≤ γ} and ε is the step size in each update.

Black-box adversarial attacks only have access to the input and output of a model. To conduct
black-box attacks, a typical method based on the transferability of adversarial examples is to first
attack a substitute model, which is transparent to the attackers. Then, the adversarial examples from
the substitute model are used to attack the target model (Liu et al., 2017; Papernot et al., 2017).
Apart from this, other black-box attacks aim at estimating the gradients by keep querying the target
network (Chen et al., 2017; Su et al., 2019).

2.2 ADVERSARIAL DEFENCE

To improve the adversarial robustness of DNN models, training based on adversarial examples,
called adversarial training, is efficient. Among different adversarial examples generation algorithms,
PGD-based adversarial training has been proved the best choice and keeps the highest accuracies un-
der different attacks (Madry et al., 2018; Athalye et al., 2018). Other defence methods include net-
work distillation (Papernot et al., 2016), adversarial detection (Lu et al., 2017; Metzen et al., 2017)
and feature analysis (Xu et al., 2018; Xie et al., 2019), which are suitable to different situations.

Another line of defences is to introduce randomness on parameters motivated by the coupling of
samples and parameters. For example, He et al. (2019) propose to add learnable Gaussian noise on
parameters, and Liu et al. (2018b) combine adversarial training with Bayes neural network. Apart
from learning a distribution for the parameters, researchers also try to inject randomness into neural
networks in other ways: such as fusing the activations with fixed Gaussian noise (Liu et al., 2018a)
or learnable Gaussian noise (Jeddi et al., 2020), performing dropout with a weighted distribution
(Dhillon et al., 2018), and randomizing the input images (Xie et al., 2018). However, Athalye et al.
(2018) claim that the improvements brought by these methods are due to stochastic gradients.

Last but not least, we notice that very recent concurrent work (Jalwana et al., 2020) also uses orthog-
onality to enhance the robustness of neural networks. The proposed OMP block is totally different
from (Jalwana et al., 2020): 1) Jalwana et al. (2020) train a new regular network that is orthogonal
with a reference network at every layer. While we pose an OMP block in any layer of a network, and
the orthogonality is imposed on the inner paths in OMP block; 2) Jalwana et al. (2020) require or-
thogonality on the gradients, while OMP block imposes orthogonality on the parameters; 3) Jalwana
et al. (2020) only investigate the resistance against adversarial examples created from the reference
network, while networks with OMP block could defend both white-box and black-box attacks.

3 METHODOLOGY

3.1 ORTHOGONAL MULTI-PATH

We embed an OMP block into a neural network. This OMP block could be posed at any layer and
contains multiple mutually-orthogonal paths. Not only the learned features in the follow-up layers
show better robustness, but also the OMP block could correct features learned by front layers.
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Without loss of generality and to make the notation simpler, we take the OMP block posed on the
last linear layer as an example to derive the objective function, where each path in the OMP block
contains a linear classifier (see Fig.2(c)). In a regular network, the linear classifier is denoted as g(·)
with weight matrix W (assuming no bias term), and the remainder of the network is denoted as h(·).
Thus the total network is denoted as g(h(·)) : Rd → RK , where d and K are the input and output
dimension respectively.

Before stepping into the objective function, we first give the definition of orthogonality. Generally,
two one-dimensional vectors are orthogonal if their inner product equals to zero. For two matrices
or tensors, we first vectorize them and then perform ordinary inner product. The inner product of
two linear classifiers gi and gj is computed as:

〈gi, gj〉 ≡ 〈vec(Wi), vec(Wj)〉. (3)

Two linear classifiers are orthogonal if the inner product of their vectorized weight matrices equals
to zero.

To train a neural network with an OMP block posed on the last linear layer, we have the following
optimization problem:

min
h,g1,...,gL

L∑
i=1

L(gi(h(x)), y)

s.t. 〈gi, gj〉 = 0, ∀i 6= j, i, j ∈ {1, 2, ..., L}

(4)

where L denotes the number of paths in the OMP block. The objective function in Eq.(4) indicates
that we minimize the sum of classification losses of all the networks w.r.t. every path in the OMP
block. The equality constraints in Eq.(4) require that these classifiers on the paths in the OMP block
have to be mutually-orthogonal. Parameters to be optimized include all the paths in the OMP block
and the remainder of the network. Incorporating the equality constraints into the objective function,
we have the following optimization problem,

min
h,g1,...,gL

L∑
i=1

L(gi(h(x)), y) + λ

L∑
i=1

L∑
j=1,j 6=i

〈gi, gj〉2, (5)

where λ is the orthogonality coefficient. In Eq.(5), the inner product term gets squared and summed
to achieve the orthogonality of every two paths. For cases where OMP block is imposed on other
layers (see Fig.2(a) and Fig.2(b)), the optimization problem has a similar form as Eq.(4) and Eq.(5)
and is omitted.

3.2 TRAINING AND INFERENCE

Alg.1 illustrates an example to train a neural network with one OMP block posed on the last linear
layer. The orthogonality constraint can be seamlessly equipped with vanilla training or adversarial
training. In vanilla training, at each iteration, we compute the loss values of Eq.(5), back propagate
the gradients and update parameters. In adversarial training, at each iteration, after updating param-
eters using clean samples, adversarial examples are generated based on current network, and then

(a) OMP block on the first convolu-
tion layer.

(b) OMP block on the middle con-
volution layer.

(c) OMP block on the last linear
layer.

Figure 2: Illustration of three architectures of networks with one OMP block. The parameters in
each path in the block (in blue) are required to be mutually-orthogonal.
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Algorithm 1 Example: Training a neural network with one OMP block posed on the last linear layer
Require: Training set Xtr = {(xi, yi)}ni=1, number of paths L, orthogonality coefficient λ, learn-

ing rate η, number of epochs epoch, whether to perform adversarial training adv train. θ denotes
the to-be-optimized parameters of h, g1, ..., gL.

Ensure: A neural network with an OMP block: gi(h(·)), i ∈ {1, 2, ..., L}.
1: while not reach epoch do
2: for (x, y) in Xtr do
3: Lc =

∑L
i=1 L(gi(h(x)), y); Lo =

∑L
i=1

∑L
j=1,j 6=i 〈gi, gj〉

2

4: loss = Lc + λ · Lo
5: θ ← θ − η · ∇θloss
6: if adv train then
7: xadv = pgd attack(x, y, θ)

8: Lc adv =
∑L
i=1 L(gi(h(xadv)), y); Lo =

∑L
i=1

∑L
j=1,j 6=i 〈gi, gj〉

2

9: lossadv = Lc adv + λ · Lo
10: θ ← θ − η · ∇θlossadv
11: end if
12: end for
13: end while

adversarial losses are computed according to Eq.(5) to update the parameters again. More training
details can be found in the appendix.

In adversarial training, when generating adversarial examples, every time the input passes through
the network, one path is randomly selected from OMP block. For example, in PGD-based adversar-
ial training, the iterative process Eq.(2) can be rewritten as

x̂(t+1) = Pγ

{
x̂(t) + εsign(∇xL(gi(h(x̂(t))), y))

}
, (6)

where the index i is randomly selected from {1, 2, ..., L}.
In inference, we evaluate the performance of each single network w.r.t. every path in the OMP block,
including the accuracies on clean samples and the robustness against adversarial examples.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Data set and network architecture. We evaluate the performance of networks with OMP block
on CIFAR10 data set (Krizhevsky, 2009), which includes 50K training samples and 10K test samples
of 32× 32× 3 color images. In both training and inference phase, the mean-variance normalization
preprocess is removed for a convenient and fair comparison of different defences under l∞ bound
attack on image pixel range [0, 1].

The effectiveness of the OMP block is tested on two common network architectures: vgg-like net-
work (vgg-11/13/16/19) (Simonyan & Zisserman, 2015) and residual network (resnet-20/32) (He
et al., 2016). For both network architectures, we impose one OMP block on three different positions:
the first convolution layer, the middle convolution layer (the middle residual block for residual net-
work), and the last linear layer, denoted as OMP-a, OMP-b and OMP-c respectively. Besides, the
number of paths in the OMP block is set as 10, i.e., L = 10.

Adversarial attack. For white-box attacks, we consider FGSM (Goodfellow et al., 2015) and
PGD (Madry et al., 2018), two powerful and popular attacks, and impose them on every network
w.r.t. each path in the OMP block. l∞ distance is used to measure the difference between the
perturbed image and the clean image. For one-step FGSM, l∞ distance refers to the step size ε.
For multi-step PGD, l∞ distance refers to the l∞ bound γ. For black-box attacks, we evaluate the
robustness based on the transferability of adversarial examples. Perturbed images created from a
source model are used to deceive the target model. Due to space limitation, we put the ablation
study in appendix A.5.
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Figure 3: Robustness of each network in model-1(OMP-a), model-2(OMP-b) and model-3(OMP-c).
There is a small variance among the network performance in model-3 (right), and a large variance
among the network performance in model-1 and model-2 (left and middle).

4.2 ROBUSTNESS AGAINST WHITE-BOX ATTACK

Empirically, there is very distinct performance when OMP block is posed on the last linear layer
(OMP-c) or the convolution layers (OMP-a and OMP-b). For example, suppose model-1 of OMP-a,
model-2 of OMP-b and model-3 of OMP-c, then every model consists of 10 networks, each of which
only differs in the paths in the OMP block. We show the results of white-box FGSM attack on these
10 networks respectively for model-1, model-2 and model-3 in Fig.3.

In Fig.3, for model-3 of OMP-c (right), the network performance shows a very small variance. Nu-
merically, under the same step size of FGSM attack, the maximum difference among the accuracies
of these 10 networks is less than two percentage points. Meanwhile, for model-1 of OMP-a and
model-2 of OMP-b (left and middle), there is a much larger variance among the performance of
these 10 networks. Even though the robustness of each single network in model-1 and model-2
seems much worse than model-3, but there still exist interesting properties. Next, we discuss the
robustness of OMP-c separately with OMP-a and OMP-b.

OMP block on the linear layer. Tab.1 shows the accuracies of OMP-c on clean samples and
adversarial examples. For clean samples, we report the average accuracies with standard deviations
of the 10 networks of OMP-c. One can find that compared with vanilla or adversarial training
network, OMP-c keeps nearly the same test accuracies on clean samples with almost no reduction.
For adversarial examples, we again perform white-box FGSM and PGD attacks on each of the 10
networks in OMP-c and report the average accuracies with standard deviations. By posing one
OMP block on the last linear layer, there are evident robustness improvements of OMP-c in the
both cases of vanilla and adversarial training, since more robust features are learned according to
Fig.1(b). Apart from attacking every single path respectively, to further verify the robustness, we
also simultaneously attack all the paths in the OMP block and the results can be found in A.3.1.

OMP block on the convolution layer. As shown in Fig.3, there is large variance among the ac-
curacies of networks in OMP-a and OMP-b. Besides, the robustness of single network in OMP-a or
OMP-b is also vulnerable. However, suppose one network net-1 w.r.t. one path in the OMP block
gets attacked, the corresponding adversarial examples are then reclassified by another network net-2
w.r.t. another path in the OMP block. Under this setting, accuracies of net-2 on the adversarial
examples get obviously improved compared with net-1, which indicates that only by changing the
specified layer with another orthogonal parameters, network robustness can get enhanced.

For OMP-a, where the OMP block is posed on the first layer, we select one path and perform FGSM
and PGD attacks on this network. The corresponding accuracy variations are shown as the dashed
line in Fig.4(a). The adversarial examples created from this network are then reclassified by other
networks w.r.t. other paths in the OMP block, which shows significantly improvements as the solid
lines in Fig.4(a). There also exists similar phenomenon of OMP-b, shown in Fig.4(b).

We give a brief summary for the properties of OMP-a, OMP-b and OMP-c:

• For OMP-c, which consists of mutually-orthogonal linear classifiers, there is a small per-
formance variance among these networks. The robustness of each network all gets sig-
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Table 1: Accuracies (%) on clean samples and adversarial examples of test set in CIFAR10. The l∞
distance of FGSM and PGD attacks equals to 8/255.

model vanilla training adv. training
clean FGSM clean FGSM PGD

vgg11 91.33 19.59 87.04 41.52 25.81
OMP-c 91.57±0.02 30.27±0.21 86.73±0.03 43.95±0.04 27.53±0.08
vgg13 93.19 25.93 89.23 48.67 32.48
OMP-c 93.17±0.02 35.12±0.17 89.28±0.03 50.60±0.03 33.86±0.06
vgg16 93.18 19.52 88.77 56.51 44.23
OMP-c 93.02±0.01 49.04±0.47 89.01±0.01 62.42±0.03 50.60±0.10
vgg19 92.86 10.35 89.07 55.25 39.30
OMP-c 92.83±0.01 53.00±0.71 88.95±0.01 63.35±0.05 54.52±0.10
resnet20 91.71 13.36 88.03 35.06 22.26
OMP-c 91.75±0.03 25.58±0.66 87.95±0.03 38.24±0.10 23.64±0.08
resnet32 93.20 28.26 88.65 37.93 23.26
OMP-c 92.85±0.03 24.15±0.59 89.14±0.04 43.12±0.16 26.91±0.14
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(b) Example of OMP-b

Figure 4: Illustration of the robustness of OMP-a and OMP-b. Single network in OMP-a or OMP-b
shows terrible robustness (dashed lines). But adversarial examples created from this network could
be classified correctly by other networks (solid lines). Detailed settings can be found in A.3.

nificantly improved, with no performance reduction on clean samples, which indicates the
possibility of balancing the trade-off between generalization and adversarial robustness.

• For OMP-a and OMP-b, which consist of mutually-orthogonal convolution layers, there is
a large performance variance among these networks. The robustness of single network is
terrible. But, adversarial examples created from one of these networks can be successfully
reclassified by other networks. It indicates that by altering the direction of the parameters
of one layer to another orthogonal direction, network robustness can get improved. To the
best of our knowledge, this is also the first work to enhance the network robustness by only
changing the parameters of one layer.

4.3 ROBUSTNESS AGAINST BLACK-BOX ATTACK

We evaluate the robustness of network with OMP block against black-box attacks based on the trans-
ferability of adversarial examples. In detail, we perform FGSM and PGD attacks on two transparent
source models: vanilla vgg16 and resnet20. The resulting adversarial examples are then reclassified
by the target model. Target models include vanilla and adversarial training networks and the corre-
sponding OMP-c. Results against black-box attacks from different attacks and network architectures
are shown in Tab.2. Based on the improved or competitive accuracies in Tab.2, OMP-c could suc-
cessfully defend black-box attacks. Results of networks with OMP-a and OMP-b can be found in
the appendix A.4.
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Table 2: Accuracies (%) of black-box attacks on test set in CIFAR10. The l∞ distance of FGSM
and PGD attacks equals to 8/255.

target model attacks on source models
FGSM on vgg16 PGD on vgg16 FGSM on resnet20 PGD on resnet20

vgg16 19.52 0.02 49.57 46.81
OMP-c 41.91±0.04 25.46±0.03 49.44±0.03 49.55±0.02

vgg16-adv 85.13 86.92 86.67 87.46
OMP-c-adv 85.37±0.01 87.28±0.01 86.78±0.01 87.84±0.01

resnet20 37.64 19.36 13.36 0.00
OMP-c 36.79±0.06 21.06±0.04 32.66±0.09 18.08±0.05

resnet20-adv 82.98 85.34 84.50 86.22
OMP-c-adv 82.43±0.05 85.18±0.03 84.21±0.04 86.19±0.07

4.4 ROBUSTNESS COMPARISON

The robustness of networks with proposed OMP block is compared with two defence methods via
imposing randomness on parameters, PNI (He et al., 2019) and advBNN (Liu et al., 2018b). Both
methods aim to learn a distribution for the parameters. PNI adds learnable Gaussian noise on pa-
rameters. AdvBNN incorporates adversarial training into Bayesian neural network.

Accuracies of different models against white-box FGSM and PGD attacks are shown in Fig.5. These
models are of vgg-like architecture. We compare networks with OMP block pose on the last linear
layer with other methods, and report the average accuracies and standard deviations of OMP-c. It is
clearly seen that in vgg-like model, networks imposed orthogonality show much better robustness
compared with networks imposed randomness on parameters.
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Figure 5: Robustness comparison of different models against FGSM and PGD attacks.

5 CONCLUSION

In this work, we propose to embed orthogonal multiple paths into a neural network to enhance
robustness. The mechanism behind is to learn robust features via forcing the follow-up layers to
learn to fit all the paths and correcting the features learned by front layers. We investigate distinct
properties of different positions of the OMP block against white-box attacks, e.g., balancing the
trade-off between generalization and robustness, and enhancing robustness via only changing one-
layer parameters. Besides, experiments on defending black-box attacks, robustness comparison and
ablation study are all adopted to verify the effectivenss of OMP block. We hope that this work could
help inspire researchers to better understand the essence of generalization and robustness of DNNs.
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A APPENDIX

A.1 TRAINING

We first give more details in training networks with OMP block:

• When computing Eq.(5), we determine an equally-weighted loss with respect to each path
in the OMP block, i.e., the loss term in Eq.5 actually is

∑L
k=1

1
LL(gk(h(x)), y).

• For the orthogonality coefficient λ in Eq.5, we set this hyper-parameter as λ = 0.1.

We do not investigate more alternative values since this setting already results in satisfying perfor-
mance.
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A.2 NETWORK STRUCTURE

Then, we describe the detailed structures of networks with OMP block:

• For network of OMP-a, the OMP block is posed on the first convolution layer. In vgg-like
network, each path in OMP block contains the convolution kernel parameters of 3× 64×
3 × 3 dimension. In residual network, each path in OMP block contains the convolution
kernel parameters of 3× 16× 3× 3 dimension. The bias term in the first convolution layer
is omitted.

• For network of OMP-b, the OMP block is posed on the middle convolution layer. In vgg-
like network, the OMP block is posed on the convolution layer right after the first max-
pooling layer, and each path contains the kernel parameters of 64×128×3×3 dimension.
In residual network, the OMP block is posed on the second residual block in the second
stage, and each path contains a residual block. Only the convolution parameters in the
residual block are required to be mutually-orthogonal. The bias term in the convolution
layer is omitted.

• For network of OMP-c, the OMP block is posed on the last linear layer. In vgg-like net-
work, each path in OMP block contains the weight matrix of 512 × 10 dimension. In
residual network, each path in OMP block contains the weight matrix of 64 × 10 dimen-
sion. The bias term in the last linear layer is omitted.

A.3 ROBUSTNESS AGAINST WHITE-BOX ATTACK

We explain how we produce the results in Fig.4. Results in Fig.4(a) and Fig.4(b) are based on
resnet20 architecture. We first show the accuracies on training and test sets of every resnet20 net-
work w.r.t. each path in OMP-a or OMP-b block respectively in Tab.3.

Table 3: Accuracies (%) of each network w.r.t. each path in OMP block on CIFAR10 clean images.
net-1 net-2 net-3 net-4 net-5 net-6 net-7 net-8 net-9 net-10

OMP-a training 95.26 96.108 93.022 13.914 68.96 97.42 96.464 85.98 84.576 94.104
test 87.11 87.62 85.24 13.82 66.05 88.86 87.32 79.72 78.68 85.59

OMP-b training 98.868 98.81 98.88 98.948 98.894 98.798 98.912 98.918 98.814 98.906
test 88.28 88.14 88.01 88.44 88.15 88.35 88.16 88.2 88.28 88.28

In Tab.3, for OMP-a, some networks show distinct accuracies on clean samples, e.g. net-4, net-
5, net-8 and net-7. While every network in OMP-b shows similar accuracies on clean samples.
However, the robustness of these networks is vulnerable and varies a lot (see the left and middle
images in Fig.3).

In Fig.4(a), the attacked network of OMP-a (dashed lines) is the net-6 in the table above, which
shows the highest accuracies on clean samples. We record the accuracies of net-1, net-2, net-3,
net-7 and net10 (solid lines) on the adversarial examples created from net-6. Other networks are not
considered since their performance on clean samples is not acceptable.

In Fig.4(b), the attacked network of OMP-b (dashed lines) is also the net-6 in the table above. We
record the accuracies of the other 9 networks (solid lines) on the adversarial examples created from
net-6.

A.3.1 A STRONGER WHITE-BOX ATTACK

In this section, we perform a stronger white-box attack to further verify the robustness of network
with OMP-c. Instead of attack every single network w.r.t. every path in the OMP block, we si-
multaneously attack all the networks w.r.t. all paths in the OMP block. The resulting adversarial
examples are then reclassified by all the networks. The average accuracies and standard deviations
against FGSM and PGD attacks are shown in Fig.6. It can be seen that even though all the paths are
attacked simultaneously, networks with OMP block could still defend this stronger white-box attack
and sustain better robustness than adversarial training networks.
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Figure 6: Robustness against a stronger white-box attack, which simultaneously attacks all the paths
in the OMP block. Even under such a stronger attack, the networks of OMP-c block still show
superior robustness.

A.4 ROBUSTNESS AGAINST BLACK-BOX ATTACK

We add the results of networks with OMP-a and OMP-b block against black-box attacks in Tab.4.

In Tab.4, for networks with OMP-a block, since each network w.r.t. each path shows a large variance,
we only report the largest accuracies among these networks. For networks with OMP-b block, we
still report the average accuracies of all networks w.r.t. all paths in the block together with the
standard deviations. These results indicate that networks with OMP-a or OMP-b both have the
ability in defending black-box attacks.

Table 4: Accuracies (%) of black-box attacks on test set in CIFAR10.

target model attacks on source models
FGSM on vgg16 PGD on vgg16 FGSM on resnet20 PGD on resnet20

vgg16 19.52 0.02 49.57 46.81
OMP-a 30.92 27.39 30.26 38.31
OMP-b 35.88±2.10 25.84±1.20 37.02±2.45 41.78±2.00
OMP-c 41.91±0.04 25.46±0.03 49.44±0.03 49.55±0.02

vgg16-adv 85.13 86.92 86.67 87.46
OMP-a-adv 61.41 64.57 64.88 68.42
OMP-b-adv 80.34±1.39 83.41±1.46 82.72±1.53 84.88±1.44
OMP-c-adv 85.37±0.01 87.28±0.01 86.78±0.01 87.84±0.01

resnet20 37.64 19.36 13.36 0.00
OMP-a 39.35 36.02 38.23 39.67
OMP-b 34.81±0.25 18.96±0.10 31.88±0.23 18.18±0.16
OMP-c 36.79±0.06 21.06±0.04 32.66±0.09 18.08±0.05

resnet20-adv 82.98 85.34 84.50 86.22
OMP-a-adv 77.71 83.40 80.71 85.24
OMP-b-adv 82.70±0.20 85.46±0.14 84.32±0.19 86.41±0.18
OMP-c-adv 82.43±0.05 85.18±0.03 84.21±0.04 86.19±0.07

A.5 ABLATION STUDY

In this subsection, we explain the necessity of learning the OMP-block. Empirically, once the coef-
ficient λ = 0, then the parameters of multiple paths in OMP block will converge to the same one,
which is meaningless. Therefore, we adopt the ablation study from another perspective. Actually,
two random vectors in high-dimensional space are apt to be orthogonal, in other words, the inner
product of two random high-dimensional vectors approximates zero. Hence we fix the parameters
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Figure 7: Comparison between networks with learned OMP block (in blue) and networks with
randomly-fixed OMP block (in orange). The network architecture is resnet20 of OMP-c. The aver-
age mean accuracies of all the networks and the standard deviations are recorded.

of the OMP block with random values and only train the rest of the neural network. In this way, we
could verify the effectiveness of backward correction.

Fig.7 shows the comparison results between networks with learned OMP block and networks with
randomly-fixed OMP block. Fig.7(a) illustrates the performance on clean training and test sam-
ples. Fig.7(b) illustrates the robustness against FGSM and PGD attacks. If the OMP block is not
jointly learned, there is a large variance among the network performance. Besides, the performance
of network with randomly-fixed OMP block on both clean samples and adversarial examples also
becomes worse than that of network with learned OMP block. Therefore, only by jointly learning
the embedded OMP block with the remainder of the network, the network could get robustness
improvements and keep high accuracy on clean samples simultaneously.
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